(19)
(11)EP 2 643 443 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
20.05.2015 Bulletin 2015/21

(21)Application number: 11826131.2

(22)Date of filing:  25.11.2011
(51)International Patent Classification (IPC): 
C11B 13/00(2006.01)
C10L 1/18(2006.01)
B01D 3/14(2006.01)
C10G 3/00(2006.01)
(86)International application number:
PCT/FI2011/051043
(87)International publication number:
WO 2012/069705 (31.05.2012 Gazette  2012/22)

(54)

PROCESS AND APPARATUS FOR PURIFYING MATERIAL OF BIOLOGICAL ORIGIN

VERFAHREN UND VORRICHTUNG ZUR REINIGUNG VON MATERIAL BIOLOGISCHEN URSPRUNGS

PROCÉDÉ ET APPAREIL POUR PURIFIER UNE SUBSTANCE D'ORIGINE BIOLOGIQUE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 26.11.2010 FI 20106252
03.03.2011 FI 20115217
06.07.2011 FI 20115722

(43)Date of publication of application:
02.10.2013 Bulletin 2013/40

(73)Proprietor: UPM-Kymmene Corporation
00130 Helsinki (FI)

(72)Inventors:
  • NOUSIAINEN, Jaakko
    FI-53500 Lappeenranta (FI)
  • LAUMOLA, Heli
    FI-00650 Helsinki (FI)
  • RISSANEN, Arto
    FI-53300 Lappeenranta (FI)
  • KOTONEVA, Jari
    FI-53100 Lappeenranta (FI)
  • RISTOLAINEN, Matti
    FI-53900 Lappeenranta (FI)

(74)Representative: Boco IP Oy Ab 
Itämerenkatu 5
00180 Helsinki
00180 Helsinki (FI)


(56)References cited: : 
EP-A1- 1 586 624
WO-A1-2009/125072
WO-A2-2009/011639
US-A- 2 716 630
US-A1- 2007 131 579
WO-A1-2008/017730
WO-A1-2009/131510
US-A- 2 296 952
US-A- 2 886 492
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    Field of the invention



    [0001] The present invention relates to a process and an apparatus for purifying feed material of biological origin for the purposes of producing biofuels and components thereof. Especially the invention relates to a process and an apparatus for purifying a mixture of terpene material and tall oil material. The invention also relates to the use of the purified fractions recovered from the process for the production of biofuels and components thereof by hydroconversion processes.

    Background of the invention



    [0002] Raw materials of biological origin are potential sources of various biofuels or biofuel components. These raw materials can be converted to biofuels by feeding the raw material through a catalytic reactor by contacting it simultaneously with gaseous hydrogen. The resulting product is drawn off from the reactor as a product stream which can be further fractionated for example by distillation to form biofuel/biofuel components.

    [0003] There are however various problems related to production processes of biofuels from the raw materials of biological origin, such as poisoning and clogging of the catalyst material used in the production processes. There are impurities in the raw materials of biological origin, such as metals and solids that cause the inactivation of the catalyst material or cause coking on the catalyst and prevent it to function properly. In order to prevent the inactivation of the catalyst and to prolong its lifetime, the raw material can be purified and/or pretreated before feeding it to the hydrotreatment process. Purifying of the raw materials of biological origin to be suitable for feeding to a catalytic process is also challenging. Prior art describes various ways of doing this. However, these all have problems and the quality of the raw material is not always on a required level for the catalytic step to be able to function in the most efficient way.

    [0004] One possibility of purifying and/or pretreating a raw material of biological origin, such as crude tall oil (CTO), which is to be fed to catalytic hydrotreatment processes, is ion-exchange with a cationic and/or anionic ion exchange resin.

    [0005] Another possibility is to use methods such as adsorption on a suitable material or acid washing to remove alkaline metals and earth alkaline metals (Na, K, Ca). The adsorption material can be catalytically active or inactive. Yet another possibility is to use degumming for removing metals in the feed.

    [0006] When the raw material of biological origin contains tall oil, depitching of the crude tall oil can also be used to remove impurities from the tall oil. Depitched tall oil is obtained by evaporating crude tall oil, for example by thin-film evaporator. US patent document 5,705,722 describes converting unsaturated fatty acids, for example tall oil fatty acids to naphtha and cetane improvers for diesel fuels. However, this process has disadvantages, for example the yield of biofuel or biofuel components, i.e. naphtha and cetane improvers, is poor. This is due to the fact that in depitching a huge amount of valuable raw material for hydrogenation is lost as residue, i.e. pitch. According to the document, the residue is used as such as fuel for boilers.

    [0007] WO2009/131510 A1 relates to conversion of crude tall oil, where non-oil contaminants and volatile fraction are removed, followed by vacuum distillation to obtain fractions, which are subjected to lowering of oxygen content and decarboxylation/decarbonylation.

    [0008] Terpene-based materials, such as crude turpentine and turpentine distillation residues can also be used as feed materials in biorefineries. However, at the moment the purity of terpene-based materials received, for example from a pulp mill or thermo mechanical processes, can be such that it is not always suitable as a feed material in a catalytic conversion process. Consequently, nowadays most of the terpene-based material that is not directed to other turpentine converting processes is considered as a waste and it ends up to be burnt in a lime kiln or a recovery boiler or any other boiler such as boilers using light or heavy oil as the fuel.

    [0009] It has not been suggested in the prior art to purify a mixture of terpene-based material and tall oil-based material by evaporating and to use the fractions recovered from the purification as a feed to catalytic hydroprocessing thereafter.

    Brief description of the invention



    [0010] An object of the present invention is thus to provide a process and an apparatus for implementing the process so as to overcome the above problems. The objects of the invention are achieved by a process and an apparatus, which are characterized by what is stated in the independent claims. The preferred embodiments of the invention are disclosed in the dependent claims.

    [0011] The present invention relates to a process for purifying a mixture of terpene material and tall oil material, wherein the mixture of terpene material and tall oil material is obtained by adding terpene material to the tall oil material, and wherein the process comprises the following steps
    1. (a) evaporating the mixture of terpene material and tall oil material in a first evaporation step to produce a first fraction comprising hydrocarbons having a boiling point of up to 250°C (NTP) and water and a second fraction comprising fatty acids, resin acids, neutral substances and residue components, wherein the evaporation is performed at a temperature of 50 to 250°C and at a pressure of 5 to 100 mbar,
    2. (b) evaporating said second fraction in at least one further evaporation step (G; F,G) to produce a third fraction comprising fatty acids, resin acids and neutral substances having a boiling point under 500°C (NTP), and a residue fraction, and
    3. (c) recovering said first fraction, third fraction and residue fraction.


    [0012] The present invention also relates to an apparatus for purifying a mixture of terpene material and tall oil material, wherein the mixture of terpene material and tall oil material is obtained by adding terpene material to the tall oil material, wherein the apparatus comprises
    • a first evaporator arranged to evaporate said mixture at a temperature of 50 to 250°C and at a pressure of 5 to 100 mbar and to produce a first fraction comprising hydrocarbons having a boiling point of up to 250°C (NTP) and water and a second fraction comprising fatty acids, resin acids, neutral substances and residue components,
    • at least one further evaporator arranged to evaporate said second fraction and to produce a third fraction comprising fatty acids, resin acids and neutral substances having a boiling point under 500°C (NTP), and a residue fraction,
    • a first connection arranged to feed the second fraction to said at least one further evaporator, and
    • optionally one or more further connections between said further evaporators.


    [0013] In a preferred embodiment of the invention, said at least one further evaporation step is performed in one step, whereby the process as a whole comprises two evaporation steps. In another preferred embodiment of the invention, said at least one further evaporation step is performed in two steps, whereby the evaporation as a whole comprises three steps.

    [0014] In a further preferred embodiment of the invention, the process further comprises a pretreatment step of storing the mixture of terpene material and tall oil material in a storage tank before the first evaporation step.

    [0015] The present invention also relates to the use of an apparatus comprising at least two sequentially arranged evaporators, for example three sequentially arranged evaporators, for purifying a mixture of terpene material and tall oil material, wherein the mixture of terpene material and tall oil material is obtained by adding terpene material to the tall oil material.

    [0016] Furthermore, the present invention relates to the use of the hydrocarbons having a boiling point of up to 250°C (NTP), fatty acids, resin acids and light neutral substances obtained in accordance with the process of the present invention for the production of biofuels and components thereof. Especially the invention relates to the use of the hydrocarbons having a boiling point of up to 250°C (NTP) for the production of gasoline, naphtha, jet fuel, diesel and fuel gases and to the use of the fatty acids, resin acids and neutral substances having a boiling point under 500°C (NTP), for the production of diesel, jet fuel, gasoline, naphtha and fuel gases.

    [0017] The invention is based on the idea of purifying a mixture of terpene material and tall oil material to obtain purified hydrocarbon fractions. The purification in accordance with the present invention is performed by evaporation. The purified hydrocarbon fractions obtained in the process, after optional further purification, can be used as feedstock for the production of biofuels, such as biogasoline, biodiesel and/or components thereof. The purifying of the mixture of terpene material and tall oil material in accordance with the present invention is performed by a multistep evaporation process, for example by a three-step process.

    [0018] In the process of the present invention, the evaporation is accomplished in such a manner that the amount of residue from the evaporation is very small, typically ranging from 5% to 15%, preferably under 10% by weight from the feed. This is a great advantage over the prior art depitching processes, where the amount of the pitch residue from the evaporation may be as high as 20% to 35% by weight from the feed. In the present invention, the process conditions (temperature, pressure) are controlled in such a way that as much as possible of the neutral components of the tall oil material are withdrawn with the recovered fractions for further utilization, instead of being withdrawn with the residue as in the prior art tall oil depitching processes.

    [0019] Another advantage of the invention is increasing the productive use of terpene material, such as crude turpentine and especially contaminated turpentine, as the raw material for biofuel production, since they are usually only burnt in a boiler.

    [0020] The process of the invention provides an efficient way of utilizing contaminated terpene-based materials, such as crude turpentine. Even though washing is proposed as one way of purifying contaminated crude turpentine, it is not practical due to the generation of large amounts of wash waters and related bad smell causing environmental and work hygiene problems.

    [0021] As a further advantage, combining terpene material, such as turpentine with tall oil material improves the separation of water from the feedstock mixture. The terpene material, such as turpentine also acts as a solvent for tall oil by thinning the tall oil and this reduces the viscosity of tall oil and enhances the separation of water therefrom.

    [0022] A further advantage of the process and system of the invention comprising a multi-step evaporation is that when a mixture of terpene material and tall oil material is evaporated, the impurities, such as metals and solids are retained in the concentrate and the condensate retrieved from the evaporation is ready to be fed to the hydroprocessing reactor. Water and light components are first evaporated from the mixture of terpene material and tall oil material, which makes further evaporation steps more efficient. Also the risk of carry-over of non-desired residual substances into the distillate fraction in the further evaporation steps is reduced in a controlled way. An advantage of such purifying with a multi-step evaporation is that the boiling takes place in a more controlled manner because low boiling light components, i.e. components having boiling point of 150 - 210°C, preferably 150 - 170°C, at a normal pressure, do not cause so much "carry over", i.e. migrating of the compounds having a boiling point range at the higher end of the above boiling point ranges as well as impurities to the vapour in the subsequent evaporation steps. The light components can be, if desired, returned back to the material of biological origin or refined further in another process or sold further as such.

    [0023] A still further advantage of using three-step evaporation is that the evaporator in the second evaporation step can be a small and cheap evaporator that removes light components from the feed material. The following third evaporator can also be smaller and cheaper than the second evaporator in two-step evaporation. Consequently, a three-step evaporation unit can be cheaper than a two-step evaporation unit.

    [0024] A still further advantage of the present invention compared to those known from the prior art is that the material purified according to the present invention is ready to be fed to hydroprocessing and the hydroprocessing is able to produce fuel components with excellent yield, because the pitch fraction is minimized. The heavy hydrocarbons present in the terpene material, such as in crude turpentine, increase the yield of biodiesel when they are fed to a catalytic hydroprocessing together with the heavy hydrocarbons contained in the tall oil. The lighter hydrocarbon components of the terpene material increase the yield of biogasoline. A still further advantage of the present invention is that even the quality of biogasoline thus obtained is improved because a higher octane number for biogasoline is achieved through the hydrocarbon components providing a higher octane number originating from the crude turpentine feedstock.

    [0025] A further advantage of the present invention is that the heavy components generated from the pitch can be avoided in the product fractions.

    [0026] A still further advantage of the present invention is that the yield of the purified material from the evaporation is as high as 65% to 95%, in a preferred embodiment from 80% to 95% and in a most preferred embodiment from 88% to 95%.

    Brief description of the drawings



    [0027] In the following the invention will be described in greater detail by means of preferred embodiments with reference to the attached drawings, in which

    Figure 1 shows a flowchart and an apparatus according to the present invention for the process for purifying a mixture of terpene material and tall oil material wherein the apparatus comprises two evaporators.

    Figure 2 shows a flowchart and an apparatus according to the present invention for the process for purifying a mixture of terpene material and tall oil material wherein the apparatus comprises three evaporators.


    Detailed description of the invention



    [0028] In the present invention, the terpene material refers to C5-C10 hydrocarbons or mixtures thereof. In a typical embodiment of the invention, the terpene material mainly comprises C5-C10 hydrocarbons or mixtures thereof. The C5-C10 hydrocarbons in connection with the present invention are unsaturated cyclic or acyclic hydrocarbons, which may also contain heteroatoms. The cyclic C5-C10 hydrocarbons are typically volatile mono- and bicyclic hydrocarbons. Furthermore, the C5-C10 hydrocarbons may contain minor amounts of heavier hydrocarbons as contaminants.

    [0029] The terpene material for the feed mixture may be obtained from any biological source, typically from a plant-based source. Synthetically or chemically formed terpenes from biological starting materials are also useful.

    [0030] In one embodiment of the invention, the terpene material used for the feed mixture is a material substantially composed of C10H16 terpenes, such as crude turpentine. In the present invention, the crude turpentine is to be understood to be of wood origin, especially of coniferous wood origin.

    [0031] In one embodiment of the invention, the crude turpentine is crude sulphate turpentine (CST), which is obtained from kraft pulping of coniferous wood. The CST is predominantly composed of volatile unsaturated C10H16 terpene isomers derived from pitch. The main terpene components included in the CST are α-pinene, β-pinene and Δ-3-carene. The main component is typically α-pinene. The crude turpentine typically contains sulphur up to 6% by weight as a contaminant.

    [0032] In another embodiment of the invention, the crude turpentine is derived from mechanical pulping of wood, such as from grinding and pressure grinding, thermomechanical pulping, or chemimechanical pulping. The crude turpentine may be obtained in a gaseous form from these processes. Turpentine in gaseous form may also be obtained from chipping of wood and saw mills.

    [0033] In a further embodiment of the invention, the crude turpentine may also comprise C5-C10 hydrocarbon streams or side streams from wood processing industry, which may contain sulphur.

    [0034] In a still further embodiment of the invention, mixtures of various crude turpentine can be used as the terpene material for the feed mixture. In one embodiment of then invention, even one or more terpene compounds (like α-pinene) isolated from terpene mixtures, such as from the crude sulphate turpentine, can be used as the terpene material.

    [0035] In a typical embodiment of the invention, the terpene material for the feed is contaminated turpentine obtained from turpentine refining plants, such as Glidfuel, turpentine distillation bottoms and/or turpentine distillation residues.

    [0036] In a still further embodiment of the invention, products and side streams from processes refining citrus fruits may be used as the terpene material for the feed mixture. Citrus fruits contain, as a major component, a cyclic terpene D-limonene having the formula C10H16. Furthermore, terpene compounds such as p-cymene and other cymene compounds derived from biological material such as thyme and/or cumin oils may be used as the terpene material. Also terpineol derived from tall oil, cajuput oil and petitgrain oil is useful as the terpene material. Further useful materials are terpenes formed in the cracking of sesqui or larger terpenes. Also products and side streams from processes refining gum turpentine may be used as the terpene material for the feed mixture.

    [0037] In a preferred embodiment of the invention, the terpene material for the feed is selected from the group consisting of contaminated turpentine, such as turpentine distillation residues and turpentine distillation bottoms, crude turpentine, crude sulphate turpentine (CST), wood turpentine and mixtures thereof.

    [0038] The other feed component in the feed mixture of the process of the present invention is tall oil material. Tall oil material in connection with the present invention refers to a byproduct of Kraft pulping of wood, especially coniferous wood. The tall oil material is a mixture of fatty acids, resin acids, neutral compounds and turpentine components originating from wood, especially coniferous wood.

    [0039] In one embodiment of the invention, the tall oil material is crude tall oil (CTO). CTO refers to the processed mixture of naturally-occurring compounds extracted from wood species like pine, spruce and aspen. It is obtained from the acidulation of crude tall oil soap from Kraft and sulphite pulping processes used in paper making. Crude tall oil (CTO) generally contains both saturated and unsaturated oxygen-containing organic compounds such as resin acids (mainly abietic acid and isomers thereof), fatty acids (mainly linoleic acid, oleic acid and linolenic acid), neutral substances, fatty alcohols, sterols and other alkyl hydrocarbon derivatives, as well as inorganic impurities (alkaline metal compounds, sulphur, silicon, phosphorus, calcium and iron compounds). CTO also covers soap oil.

    [0040] In one embodiment of the invention, the tall oil material used for the feed or a part thereof may comprise purified CTO. Depitching, washing and/or distilling may be used for the purification of CTO.

    [0041] In another embodiment of the invention, fatty acids or free fatty acids obtained from tall oil may be used as tall oil material, alone or as a mixture of other tall oil material.

    [0042] In a further embodiment of the invention, soap oil may be used as the tall oil material for the feed. Also mixtures of soap oil and tall oil can be used as the tall oil material for the feed.

    [0043] In connection with the present invention, the tall oil materials for the feed mixture are preferably selected from tall oil, crude tall oil (CTO), soap oil and mixtures thereof, for example.

    [0044] The mixture of terpene material and tall oil material used as the feed in the process of the invention contains terpene material in an amount ranging from 1% to 80%, preferably from 1% to 50%, still more preferably from 1% to 15%, the rest being tall oil material.

    [0045] In an embodiment of the invention, the mixture of terpene material and tall oil material is obtained by adding terpene material to the tall oil material.

    [0046] The evaporation in connection with the present invention refers to any suitable separation method for separating two or more components from each other, such as gases from liquid, which separation method is based on utilising the differences in the vapour pressure of the components. Examples of such separation methods are evaporation, flashing and distillation. Preferably the evaporating is performed in an evaporator using thin film evaporation technology. In this embodiment of the invention, the evaporator can thus be selected from the group consisting of thin film evaporator, falling film evaporator, short path evaporator and plate molecular still and any other evaporator using thin film technology. The falling film evaporator refers to falling film tube evaporator.

    [0047] The evaporating in the process is performed with any commercially available suitable evaporators. Preferably the evaporating is performed in an evaporator selected from the group defined above. In an especially preferred embodiment of the invention, the evaporation is performed by evaporation using thin film evaporation. Suitable combinations for evaporators (in this order) in the evaporation unit are:

    For two stage evaporation:

    TF+SP

    FF+TF

    TF + FF

    TF + TF

    For three stage evaporation:

    TF + TF + SP

    TF + PMS + SP

    FF + TF + SP

    FF+TF+TF

    where

    TF = thin film evaporator

    FF = falling film tube evaporator

    SP = short path evaporator

    PMS = plate molecular still



    [0048] Thus in one embodiment, the evaporation in a two-step evaporation is performed by using a thin film evaporator in the first evaporation step and a short path evaporator in the second evaporation step. In another embodiment, the two-step evaporation is performed by using a thin film evaporator in the first evaporation step and a falling film evaporator in the second evaporation step. Yet in another embodiment, the two-step evaporation is performed by using a thin film evaporator both in the first and second evaporation steps. In a preferred embodiment, the two-step evaporation is performed by using a falling film evaporator in the first evaporation step and a thin film evaporator in the second evaporation step.

    [0049] In one embodiment of a three-step evaporation, the evaporation is performed by using a thin film evaporator in the first step, a plate molecular still in the second step and a short path evaporator in the third evaporation step. In another embodiment, the three-step evaporation is performed by using a thin film evaporator in the first step, a thin film evaporator in the second step and a short path evaporator in the third evaporation step. In another embodiment, the three-step evaporation is performed by using a falling film evaporator in the first step, a thin film evaporator in the second step and a short path evaporator in the third evaporation step. Yet in another embodiment, the three-step evaporation is performed by using a falling film evaporator in the first step, and a thin film evaporator in the second and third evaporation steps. The second evaporator in both two-step and three-step evaporation is most preferably a thin film evaporator.

    [0050] In connection with the present invention, the impurities to be removed by the evaporation refer to water, solids, such as lignin, particulates, various inorganic compounds, metals, such as Na, Fe, P and Si, sulphur compounds, such as sulphates, for example Na2SO4 and H2SO4, and organic compounds, such as carbohydrates. Many of these impurities (such as metals and sulphur compounds) are harmful in later catalytic hydroprocessing steps and are therefore not desirable in the feed to the hydroprocessing.

    [0051] In the following, the process of the invention will be explained by referring to Figures 1 and 2, which are here to be contemplated as a flowchart of the process. Figure 1 discloses a process comprising two-step evaporation. Figure 2 discloses a process comprising three-step evaporation.

    [0052] The evaporation in accordance with the present invention comprises a first evaporation step E and at least one further evaporation step shown by letter G or letters F and G. In accordance with the embodiment of Figure 1, said at least one further evaporation step is performed in one step G, whereby the evaporation as a whole comprises two steps E, G. In accordance with Figure 2, said at least one further evaporation step is performed in two steps F and G, whereby the evaporation as a whole comprises three steps E, F and G.

    [0053] In the first evaporation step E, light hydrocarbons and water are evaporated off as distillate. Fatty acids, resin acids, neutral substances and residue components are remained as the evaporation concentrate.

    [0054] In said at least one further evaporation step (G; F, G), compounds comprising fatty acids, resin acids and light neutral substances are evaporated off as distillate. Residue components and heavy neutral substances are retained in the evaporation concentrate and are recovered as a first residue fraction (also named as a residue fraction in connection with the present invention).

    [0055] In connection with the present invention, neutral substances of tall oil material and terpene material refer to a mixture of components, such as esters of fatty acids, sterols, stanols, dimeric acids, resin and wax alcohols, hydrocarbons and sterol alcohols. Fatty acids and resin acids refer to those inherently present in tall oil material and terpene material. Fatty acids mainly comprise linoleic acid, oleic acid and linolenic acid. Resin acids mainly comprise abietic acid and isomers thereof.

    [0056] In connection with the present invention, the light hydrocarbons recovered from the first evaporation step E refer to hydrocarbons having a boiling point of up to 250°C (NTP). These hydrocarbons mainly comprise terpenes, of which most is turpentine.

    [0057] Said light neutral substances recovered in the distillate from said at least one further evaporation step (G; F, G) comprise C20-C27-hydrocarbons such as resin and wax alcohols, sterol alcohols and light sterols. The light neutral substances typically have a boiling point under 500°C (NTP).

    [0058] Said first residue fraction comprises heavy neutral substances and residue components, such as pitch and metals and other inorganic material. The first residue fraction typically contains components having a boiling point of over 500°C (NTP).

    [0059] Said heavy neutral substances recovered in the first residue fraction refer to hydrocarbons having at least 28 carbon atoms, such as sterols, stanols and dimeric acids, having a boiling point of over 500°C (NTP).

    [0060] The first evaporation step E is performed in a first evaporator 10. The evaporation is preferably performed at a temperature of 50 to 250°C and at a pressure of 5 to 100 mbar, more preferably at a temperature of 120 to 200°C and a pressure of 10 to 55 mbar. In the first evaporation step, step E is preferably performed by thin film evaporation.

    [0061] According to the embodiment of Figure 1, said at least one further evaporation step (second evaporation step in the embodiment of Figure 1) is performed in one step G in a second evaporator 20. The second evaporation step is preferably effected at a temperature of 200 to 450°C and a pressure of 0 to 50 mbar, more preferably at a temperature of 300 to 390°C and a pressure of 0.01 to 15 mbar. Within this temperature and pressure range, the proportion of the pitch fraction (residue fraction) in this evaporation step is minimized. The evaporation in the second evaporation step G is preferably performed by short path evaporation.

    [0062] According to the embodiment of Figure 2, said at least one further evaporation step is performed in two steps F and G in two further evaporators 16 and 20. The first (F) of said two further evaporation steps (second evaporation step in the embodiment of Figure 2) is preferably performed at a temperature of 180 to 350°C and a pressure of 0.1 to 40 mbar, more preferably at a temperature of 200 to 270°C and a pressure of 0.1 to 20 mbar. The second evaporation step F of the embodiment of Figure 2 is preferably performed by plate molecular still evaporation or thin film evaporation. The third evaporation step G of the embodiment of Figure 2 is preferably performed at a temperature of 200 to 450°C and a pressure of 0 to 50 mbar, more preferably at a temperature of 300 to 390°C and a pressure of 0.01 to 10 mbar. The third evaporation step of the embodiment of Figure 2 is preferably performed by short path evaporation.

    [0063] The first evaporation step E in accordance with the present invention provides a first fraction comprising light hydrocarbons and water, which is withdrawn through the first product outlet 12. This fraction may be further treated by separating the water in water separation step 11, whereafter the light hydrocarbon fraction thus obtained may be subjected to one or more further purifications 11', for example by ion exchange. The light hydrocarbons of the first fraction may be then subjected to catalytic processes C1 for the production of biofuels and components thereof, such as gasoline, naphtha, jet fuel, diesel and fuel gases. The biofuels and components thereof produced from the light hydrocarbons of the first fraction refer to hydrocarbons having a boiling point in the range of 20 to 210°C, preferably 20 to 170°C at a normal pressure.

    [0064] The first evaporation step E also provides a second fraction comprising fatty acids, resin acids, neutral substances and residue components, such as pitch and metals. This second fraction is introduced into said at least one further evaporation step (G; F, G) for further purification through connection 14.

    [0065] In accordance with the embodiment of Figure 1, said second fraction comprising fatty acids, resin acids, neutral substances and residue components is introduced to the second evaporation step G through connection 14. The second evaporation step G in Figure 1 is performed in a second evaporator 20. The second evaporation step G in Figure 1 provides a third fraction comprising fatty acids, resin acids and light neutral components, which is withdrawn through a second product outlet 18. The second evaporation step G also provides a first residue fraction comprising residue components, such as pitch and metals. The first residue fraction is withdrawn through a first residue outlet 22.

    [0066] In accordance with the embodiment of Figure 2, said second fraction comprising fatty acids, resin acids, neutral substances and residue components is treated in two evaporation steps F and G, instead of only one step G. Said fraction is first introduced into a second evaporation step F through connection 14. The second evaporation step F in Figure 2 is performed in a second evaporator 16. The liquid fraction (condensate) from the second evaporator 16 is directed to a third evaporation step G through connection 19. The distillate fraction from the second evaporator step 16 is withdrawn through connection 19' and may be combined with the third fraction from the third evaporation step G. The third evaporation step G is performed in a third evaporator 20. The third evaporation step G in Figure 2 provides a third fraction comprising fatty acids, resin acids and light neutral substances, which is withdrawn through a second product outlet 18. The third evaporation step G of Figure 2 also provides a first residue fraction comprising residue components, such as pitch and metals. In the same way as in Figure 1, the first residue fraction is withdrawn through the first residue outlet 22.

    [0067] The third fraction withdrawn through the second product outlet 18 in the embodiments of Figures 1 and 2 may be then subjected to catalytic processes C2 for the production of biofuels and components thereof, such as diesel, jet fuel, gasoline, naphtha and fuel gases. The biofuels or components thereof produced from the third fraction refer to hydrocarbons having a boiling point in the range of 150 to 380°C at a normal pressure.

    [0068] The terpene material and the tall oil material are preferably fed to the first evaporation step E as a preformed mixture. However, they can also be fed as separate streams, whereby the mixture is formed in the first evaporator E.

    [0069] In a preferred embodiment of the invention, the process further comprises a pretreatment step P of storing said mixture of terpene material, and tall oil material in a storage tank 6 before the first evaporation step E. In this embodiment of the invention, the mixture of terpene material and the tall oil material is introduced to the first evaporation step E from a storage tank 6 through connection 8. In this embodiment of the invention, the mixture of terpene material and tall oil material is kept in a storage tank for periods of hours to weeks before feeding to the first evaporation step E. This provides the advantage that non-desired components, such as water and solids separating from the mixture by gravity and impurities such as metals and inorganic sulphur compounds dissolved or adsorbed/absorbed to them are separated from the mixture already in the storage tank and can be easily removed from the mixture for example by decantation through a second residue outlet 7 before feeding to the first evaporation step E.

    [0070] In addition to selecting optimal evaporating process conditions in the evaporation steps E, F, G, the catalyst in the later hydroprocessing steps C1, C2 may be selected so that it is capable of transforming the heavy components in the purified material to biofuel components.

    [0071] Between the last evaporation step G (the second evaporation step in the embodiment of Figure 1 and the third evaporation step in the embodiment of Figure 2) and hydroprocessing C2 there may be an additional purification step 17.

    [0072] In one embodiment of the invention, the light hydrocarbons of the first fraction withdrawn through a connection 13 from the optional water removal step 11 or from one or optional further purification steps 11' may be combined with the third fraction comprising fatty acids, resin acids and light neutral compounds, which is withdrawn through the second product outlet 18 from the last evaporator 20. The fractions may be combined either before or after the additional purification step 17 of the third fraction.

    [0073] The additional purification step 17 may be realised using for example a guard bed, i.e. a separate pretreatment/purification bed prior to the hydroprocessing C2. The additional purification 17 may also be realised by a purification bed or a section located in connection with the hydroprocessing reactor. The hydroprocessing optionally comprises one or more guard beds. The one or more guard beds can be arranged either to separate guard bed units and/or in the hydroprocessing reactor.

    [0074] The guard bed has the task of acting against harmful substances in the feed. The guard bed is typically activated gamma aluminium oxide or some commercially available purifying catalyst. The guard bed material may be catalytically active or inactive. The guard bed or the guard bed units can retain both solid and solvated impurities of the mixture of terpene material and tall oil material, such as silicon based anti-foaming agents of a tall oil process and harmful chemical elements. The guard bed and/or the guard bed units can be heated, unheated, pressurized or unpressurised, fed with hydrogen gas or without hydrogen gas. Preferably the guard bed and/or the guard bed units are heated and pressurised.

    [0075] There are basically two types of guard beds, i.e. active and inactive guard beds. The active guard beds take part in the purification of the feed and changing the chemical composition of the feed and they can be placed either in separate guard bed units or inside the hydroprocessing reactor itself. The inactive guard beds merely take part in the purification of the feed. These guard beds comprise suitable passive or inert materials which do not significantly change the molecular structure of the feed components but are effective towards harmful substances and elements. The separate guard beds can be multiplied, whereby there is one or several guard beds in a stand-by mode in parallel or in series with the guard bed(s) in use.

    [0076] After the purification by evaporating, the purified fractions are fed to the hydroprocessing. The fractions can be hydrotreated separately or in the same apparatus.

    [0077] Consequently, the first and third fraction obtained from the process of the present invention and withdrawn through the first and second product outlets 12, 18 may be further fed to hydroprocessing C1, C2, after an optional water removal step 11 and one or more optional further purification steps 11',17. Hydroprocessing C1, C2 comprises at least one catalyst to form a mixture of fuel components. The hydroprocessing can be done in one, two or more steps in one apparatus or in several apparatuses.

    [0078] The light hydrocarbons of the first fraction withdrawn through the first product outlet 12 are hydroprocessed to obtain gasoline, naphtha, jet fuel, diesel and fuel gases.

    [0079] The fatty acids, resin acids and light neutral substances withdrawn through the second product outlet 18 are hydroprocessed to obtain diesel, jet fuel, gasoline, naphtha and fuel gases.

    [0080] The invention also relates to an apparatus for purifying a mixture of terpene material and tall oil material. The apparatus of the invention may be used for implementing the process of the invention. The apparatus of the invention will now be explained with reference to Figures 1 and 2, which are here to be contemplated as referring to the elements of the apparatus.

    [0081] The apparatus comprises
    • a first evaporator 10 arranged to evaporate at a temperature of 50 to 250 °C and at a pressure of 5 to 100 mbar a mixture of terpene material and tall oil material wherein the mixture of terpene material and tall oil material is obtained by adding terpene material to the tall oil material, and to produce a first fraction comprising hydrocarbons having a boiling point of up to 250°C (NTP) and water and a second fraction comprising fatty acids, resin acids, neutral substances and residue components,
    • at least one further evaporator (20;16,20) arranged to evaporate said second fraction and to produce a third fraction comprising fatty acids, resin acids and I neutral substances having a boiling point under 500°C (NTP) and a residue fraction,
    • a first connection 14 arranged to feed the second fraction to said at least one further evaporator (20;16,20), and
    • optionally one or more further connections 19 between said further evaporators 16,20.


    [0082] In accordance with the embodiment of Figure 1, said at least one further evaporator comprises one evaporator 20. In this embodiment of the invention, the apparatus as a whole comprises two sequentially arranged evaporators 10 and 20.

    [0083] In accordance with the embodiment of Figure 2, said at least one further evaporator comprises two evaporators 16 and 20. In this embodiment of the invention, the apparatus as a whole comprises three sequentially arranged evaporators 10, 16 and 20.

    [0084] The evaporators 10, 16, 20 mean here any suitable equipments for separating two or more components from each other, such as gases from liquid, which separator utilises the differences in the vapour pressure of the components. The separators and evaporators are described above in connection with the process of the invention. In the embodiments of Figures 1 and 2, the first evaporator 10 is preferably a thin film evaporator or a falling film evaporator. In the embodiment of Figure 1, the second evaporator 20 is preferably a thin film evaporator. In the embodiment of Figure 2, the second evaporator 16 is preferably a plate molecular still or a thin film evaporator and the third evaporator 20 is preferably a short path evaporator. Most preferably the second evaporator is a thin film evaporator.

    [0085] The apparatus further comprises a first product outlet 12 for recovering the fraction comprising light hydrocarbons and water from the first evaporator 10, a second product outlet 18 for recovering the third fraction comprising fatty acids, resin acids and light neutral substances from said at least one further evaporator (20;16,20) and a first residue outlet 22 for recovering a first residue fraction containing pitch and metals from said at least one further evaporator (20; 16,20).

    [0086] Referring to Figure 2, when said at least one further evaporator comprises two evaporators 16,20, the second product outlet 18 and the first residue outlet 22 are connected to the last evaporator 20.

    [0087] In a typical embodiment of the invention, the apparatus further comprises one or more first feed inlets 8 arranged to feed the mixture of terpene material and tall oil material to said first evaporator 10.

    [0088] The feed inlet/inlets 8 may be any suitable inlets for feeding the mixture of terpene material and tall oil material to the system, such as pipe, hose, hole or any suitable connection.

    [0089] According to a preferred embodiment of the invention shown in Figures 1 and 2, the apparatus further comprises at least one storage tank 6 for the terpene material and the tall oil material located before the first evaporator 10 in the flow direction of the mixture of the terpene material and tall oil material. The storage tank in accordance with the present invention may be any suitable commercially available tank, vessel, container or such.

    [0090] In this embodiment of the invention, the apparatus may further comprise a second residue outlet 7 for recovering a second residue fraction comprising water and inorganic material from the storage tank 6.

    [0091] In this embodiment of the invention, the apparatus may further comprise a second feed inlet 2 for feeding the terpene material and a third feed inlet 4 for feeding the tall oil material to the storage tank 6.

    [0092] The apparatus of the invention may further comprise at least one catalytic hydroconversion unit C1, C2 for converting the light hydrocarbons of the first fraction to one more biofuels or components thereof selected from the group consisting of gasoline, naphtha, jet fuel, diesel and fuel gases and/or for converting the third fraction comprising fatty acids, resin acids and light neutral substances to one or more biofuels or components thereof selected from diesel, jet fuel, gasoline, naphtha and fuel gases.

    [0093] Consequently, the light hydrocarbons of the first fraction recovered through the first product outlet 12 from the first evaporator 10 can be fed to a first catalytic hydroprocessing unit C1 or to a second catalytic hydroprocessing unit C2.

    [0094] The third fraction comprising fatty acids, resin acids and light neutral substances recovered through the second product outlet 18 from said at least one further evaporator 20 can be fed to a second catalytic hydroprocessing unit C2.

    [0095] In the figures, the first and second catalytic hydroprocessing processes/units C1,C2 are presented as separate units/processes. However, it is also possible to combine these units/processes and treat both recovered hydrocarbon fractions in one process having one or more process steps.

    [0096] Referring to Figures 1 and 2, the apparatus of the invention may also comprise a water separation unit 11 and one or more further purification units 11' arranged before the first catalytic hydroprocessing unit C1 and one or more further purification units 17 arranged before the second hydroprocessing unit C2. The apparatus may further comprise a connection 13 arranged after the water separation unit 11 or after said one or more further separation units 11', to feed the recovered light hydrocarbons of the first fraction to the third fraction withdrawn through connection 18.

    EXAMPLES



    [0097] In the following examples 1 and 2, the impurities in the material of biological origin were removed by two different evaporation units. In Example 1, the evaporation unit comprised of two evaporators and in Example 2 the evaporation unit comprised of three evaporators. The material of biological origin was a mixture containing crude tall oil and terpene-containing Glidfuel.

    Example 1



    [0098] A mixture containing 90% crude tall oil (CTO) and 10% terpene-containing Glid fuel was fed from storage at a temperature of 60°C to an evaporation unit containing a thin film evaporator and a short path evaporator. The feed rate of the mixture of the crude tall oil and terpenes to the evaporation unit was between 30 - 80 kg/h. The temperature of the first evaporation step was 195°C and the pressure was 9 mbar. A first fraction comprising water, turpentine and light fatty acids was removed from the feed of crude tall oil and terpenes.

    [0099] The first evaporation step was performed on a thin film evaporator. In the first evaporator, all together 12% of the original amount of the mixture was evaporated, of which 11 % was turpentine and light fatty acids and 1 % was water. 88% of the amount of the original feed was recovered as condensate, i.e. second fraction, from the first evaporator and fed further to a second evaporator.

    [0100] The second evaporation step was performed on a short path evaporator at 315°C and 0.3 mbar. 5% of the amount of the original feed was removed from the second evaporation step as a heavy fraction (residue fraction) comprising pitch. Distillate, i.e. third fraction, was recovered from the second evaporating step and the amount of it was 83% of the amount of the original feed of crude tall oil and terpenes. The residue fraction removed from the second evaporator contained 1600 ppm metals in total consisting mainly of Na, Fe, P and 10 to 20 other metals, and in addition to metals also SO42-, in the form of Na2SO4 and lignin.

    Example 2



    [0101] A mixture containing 90% crude tall oil (CTO) and 10% terpene-containing Glidfuel was fed from storage at a temperature of 60°C to an evaporation unit containing a thin film evaporator, a plate molecular still and a short path evaporator. The feed rate of the crude tall oil to the evaporation unit was between 30 - 80 kg/h. The temperature of the first evaporation step was 200°C and the pressure was 9 mbar. A first fraction comprising water, turpentine and light fatty acids was removed from the feed of crude tall oil.

    [0102] The first evaporation step was performed on a thin film evaporator. In the first evaporator, all together 12% of the original amount of the mixture was evaporated, of which 11 % was turpentine and light fatty acids and 1 % was water. 88% of the amount of the original feed was collected as the condensate, i.e. second fraction, from the first evaporator and fed further to a second evaporator.

    [0103] The second evaporation step was performed on a plate molecular still at 220°C and 5 mbar. 45% of the amount of the original feed was removed from the second evaporation step as a liquid fraction. Distillate fraction was recovered from the second evaporating step and the amount of it was 43% of the amount of the original feed of crude tall oil and terpenes. The liquid fraction from the second evaporation step was fed to the third evaporation step.

    [0104] The third evaporation step was performed on a short path evaporator at 330°C and 0.1 mbar. The amount of the residue fraction (evaporation concentrate) removed from the third evaporator was 5.5% from the original feed and it contained 1550 ppm metals in total, consisting mainly of Na, Fe, P and 10 to 20 other metals, and in addition to metals also SO42, in the form of Na2SO4 and lignin.

    [0105] Distillate, third fraction, was also recovered from the second evaporating step. Distillates from evaporation stages 2 and 3 were collected and mixed together. The purified mixture of CTO and Glidfuel had a 15 ppm metal content.

    [0106] From the examples above it is obvious that using a multi-stage evaporation according to the invention for purifying a mixture of CTO and terp-nes is a very efficient method for removing impurities from it. It is also obvious that by using the process according to the invention, light neutral components can be separated to be processed to raw materials for valuable transportation fuel products and the amount of the residue fraction, pitch, is minimized.

    [0107] It will be obvious to a person skilled in the art that, as the technology advances, the inventive concept can be implemented in various ways. The invention and its embodiments are not limited to the examples described above but may vary within the scope of the claims.


    Claims

    1. A process for purifying a mixture of terpene material and tall oil material, wherein the mixture of terpene material and tall oil material is ob-tained by adding terpene material to the tall oil material, and wherein the process comprises the following steps

    (a) evaporating the mixture of terpene material and tall oil material in a first evaporation step (E) to produce a first fraction comprising hydrocarbons having a boiling point of up to 250°C (NTP) and water and a second fraction comprising fatty acids, resin acids, neutral substances and residue compo-nents,
    wherein the evaporation is performed at a temperature of 50 to 250°C and at a pressure of 5 to 100 mbar,

    (b) evaporating said second fraction in at least one further evapora-tion step (G; F,G) to produce a third fraction comprising fatty acids, resin acids and neutral substances having a boiling point under 500°C (NTP), and a resi-due fraction, and

    (c) recovering said first fraction, third fraction and residue fraction.


     
    2. The process according to claim 1, characterized in that said at least one further evaporation step (G; F,G) is performed in one step (G) or in two steps (F,G).
     
    3. The process according to claim 2, characterized in that said at least one further evaporation step (G; F,G) is performed in one step (G) at a temperature of 200 to 450°C and at a pressure of 0 to 50 mbar.
     
    4. The process according to claim 2, characterized in that said at least one further evaporation step (G; F,G) is performed in two steps (F,G), whereby the first (F) of said two further evaporation steps is performed at a temperature of 180 to 350°C and at a pressure of 0.1 to 40 mbar and the se-cond (G) of said two further evaporation steps is performed at a temperature of 200 to 450°C and at a pressure of 0 to 50 mbar.
     
    5. The process according to any one of the preceding claims, characterized in that the evaporation in the first evaporation step (E) and said further evaporation steps (G; F,G) is performed by evaporation using thin film evaporation technology.
     
    6. The process according claim 5, characterized in that the evapora-tion is performed by thin film evaporation, falling film evaporation, short path evaporation or plate molecular still evaporation.
     
    7. The process according to claim 1, characterized in that the terpene material comprises C5-C10 hydrocarbons, preferably C10H16 hydrocarbons.
     
    8. The process according to claim 1, characterized in that the ter-pene material is selected from the group consisting of contaminated turpentine, such as turpentine distillation residues and turpentine distillation bottoms, crude turpentine, crude sulphate turpentine (CST), wood turpentine and mix-tures thereof.
     
    9. The process according to claim 1, characterized in that the tall oil material is a by-product of Kraft pulping of wood, preferably coniferous wood.
     
    10. The process according to claim 1, characterized in that the tall oil material is selected from tall oil, crude tall oil (CTO), soap oil and mixtures thereof.
     
    11. The process according to claim 1, characterized in that the neu-tral substances having a boiling point under 500°C (NTP) of said third fraction comprise C20-C27-hydrocarbons.
     
    12. The process according to claim 1, characterized in that said residue fraction comprises heavy neutral substances and residue components, such as pitch and metals.
     
    13. The process according to claim 12, characterized in that said heavy neutral substances comprise hydrocarbons having at least 28 carbon atoms, having a boiling point of over 500°C (NTP).
     
    14. The process according to claim 1, characterized in that the process further comprises a pretreatment step (P) of storing said mixture of terpene material and tall oil material in a storage tank before the first evaporation step (E).
     
    15. The process according to any one of the preceding claims, characterized in that the process comprises a further step (11) of separating water from the first fraction, followed by one or more optional further purification steps (11').
     
    16. The process according to any one of the preceding claims, characterized in that the process further comprises one or more purification steps (17) for the third fraction.
     
    17. The process according to any one of the preceding claims, characterized in that the process further comprises one or more hydroprocessing steps (C1,C2) to convert the recovered first and third fraction to biofuels or components thereof, after an optional water separation step (11) and one or more optional further purification steps (11', 17).
     
    18. The process according to claim 17, characterized in that the process further comprises one or more hydroprocessing steps (C1) of converting the first fraction to one or more biofuels or components thereof selected from the group consisting of gasoline, naphtha, jet fuel, diesel and fuel gases.
     
    19. The process according to claim 17, characterized in that the process further comprises one or more hydroprocessing steps (C2) of converting the third fraction to one or more biofuels or components thereof selected from the group consisting of diesel, jet fuel, gasoline, naphta and fuel gases.
     
    20. An apparatus for purifying a mixture of terpene material and tall oil material, wherein the mixture of terpene material and tall oil material is obtained by adding terpene material to the tall oil material, characterized in that the apparatus comprises

    - a first evaporator (10) arranged to evaporate said mixture at a temperature of 50 to 250°C and at a pressure of 5 to 100 mbar and to produce a first fraction comprising hydrocarbons having a boiling point of up to 250°C (NTP) and water and a second fraction comprising fatty acids, resin acids, neutral substances and residue components,

    - at least one further evaporator (20;16,20) arranged to evaporate said second fraction and to produce a third fraction comprising fatty acids, resin acids and neutral substances having a boiling point under 500°C (NTP) and a residue fraction,

    - a first connection (14) arranged to feed the second fraction to said at least one further evaporator (20;16,20), and

    - optionally one or more further connections (19) between said further evaporators (16,20).


     
    21. The apparatus according to claim 20, characterized in that said at least one further evaporator (20; 16,20) comprises one evaporator (20).
     
    22. The apparatus according to claim 20, characterized in that said at least one further evaporator (20;16,20) comprises two evaporators (16,20).
     
    23. The apparatus according to claim 20, characterized in that the apparatus further comprises a first product outlet (12) for recovering the first fraction comprising hydrocarbons having a boiling point of up to 250°C (NTP) and water from the first evaporator (10), a second product outlet (18) for recovering the third fraction from said at least one further evaporator (20; 16,20) and a first residue outlet (22) for recovering the residue fraction from said at least one further evaporator (20; 16,20).
     
    24. The apparatus according to claim 20, characterized in that the apparatus further comprises one or more first feed inlets (8) arranged to feed the mixture of terpene material and tall oil material to said first evaporator (10).
     
    25. The apparatus according to any one of claims 20 to 24, characterized in that the apparatus further comprises at least one storage tank (6) for the terpene material and the tall oil material located before the first evaporator (10) in the flow direction of the mixture of the terpene material and tall oil material.
     
    26. The apparatus according to claim 25, characterized in that the apparatus further comprises a second residue outlet (7) for recovering a second residue fraction comprising water and inorganic material from the reservoir tank (6).
     
    27. The apparatus according to claim 26, characterized in that the apparatus further comprises a second feed inlet (2) for feeding the terpene material and a third feed inlet (4) for feeding the tall oil material to the storage tank (6).
     
    28. The apparatus according to any one of claims 20 to 27, characterized in that the evaporators (10, 16, 20) are selected from the group consisting of evaporators using thin film evaporation technology.
     
    29. The apparatus according to claim 28, characterized in that the evaporators are selected from the group consisting of thin film evaporator, falling film evaporator, short path evaporator and plate molecular still.
     
    30. The apparatus according to any one of claims 20 to 29, characterized in that the apparatus further comprises at least one catalytic hydroconversion unit (C1, C2) for converting the hydrocarbons having a boiling point of up to 250°C (NTP) of the first fraction to one more biofuels or components thereof selected from the group consisting of gasoline, naphtha, jet fuel, diesel and fuel gases and/or for converting the third fraction comprising fatty acids, resin acids and neutral substances having a boiling point under 500°C (NTP) to one or more biofuels or components thereof selected from diesel, jet fuel, gasoline, naphtha and fuel gases.
     
    31. Use of an apparatus comprising two or three sequentially arranged evaporators (10, 16, 20) for purifying a mixture of terpene material and tall oil material, wherein the mixture of terpene material and tall oil material is obtained by adding terpene material to the tall oil material.
     
    32. Use of the hydrocarbons having a boiling point of up to 250°C (NTP) of the first fraction and the fatty acids, resin acids and neutral substances having a boiling point under 500°C of the third fraction obtained in accordance with any one of claims 1 to 19 for the production of biofuels or components thereof.
     
    33. Use of the hydrocarbons having a boiling point of up to 250°C (NTP) obtained in accordance with any one of claims 1 to 19 for the production of gasoline, naphtha, jet fuel, diesel and fuel gases.
     
    34. Use of the fatty acids, resin acids and neutral substances having a boiling point under 500°C obtained in accordance with any one of claims 1 to 19 for the production of diesel, jet fuel, gasoline, naphtha and fuel gases.
     


    Ansprüche

    1. Verfahren zur Reinigung eines Gemischs von Terpenmaterial und Tallölmaterial, wobei das Gemisch von Terpenmaterial und Tallölmaterial erzeugt wird, indem Terpenmaterial dem Tallölmaterial zugesetzt wird, und wobei das Verfahren die folgenden Schritte umfasst:

    a) Verdampfen des Gemischs von Terpenmaterial und Tallölmaterial in einem ersten Verdampfungsschritt (E) zur Erzeugung einer ersten Fraktion, die Kohlenwasserstoffe mit einem Siedepunkt von bis zu 250 °C (NTP) und Wasser umfasst, und einer zweiten Fraktion, die Fettsäuren, Harzsäuren, neutrale Substanzen und Restbestandteile umfasst,
    wobei das Verdampfen bei einer Temperatur von 50 bis 250 °C und bei einem Druck von 5 bis 100 mbar durchgeführt wird,

    b) Verdampfen dieser zweiten Fraktion in wenigstens einem weiteren Verdampfungsschritt (G; F, G) zur Erzeugung einer dritten Fraktion, die Fettsäuren, Harzsäuren und neutrale Substanzen mit einem Siedepunkt unter 500 °C (NTP) umfasst, und einer Reststofffraktion, und

    c) Rückgewinnen dieser ersten Fraktion, dritten Fraktion und Reststofffraktion.


     
    2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass dieser wenigstens eine weitere Verdampfungsschritt (G; F, G) in einem Schritt (G) oder in zwei Schritten (F, G) durchgeführt wird.
     
    3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass dieser wenigstens eine weitere Verdampfungsschritt (G; F, G) in einem Schritt (G) bei einer Temperatur von 200 bis 450 °C und bei einem Druck von 0 bis 50 mbar durchgeführt wird.
     
    4. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass dieser wenigstens eine weitere Verdampfungsschritt (G; F, G) in zwei Schritten (F, G) ausgeführt wird, wobei der erste (F) dieser beiden weiteren Verdampfungsschritte bei einer Temperatur von 180 bis 350 °C und bei einem Druck von 0,1 bis 40 mbar durchgeführt wird und der zweite (G) dieser beiden weiteren Verdampfungsschritte bei einer Temperatur von 200 bis 450 °C und bei einem Druck von 0 bis 50 mbar durchgeführt wird.
     
    5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Verdampfen im ersten Verdampfungsschritt (E) und in diesen weiteren Verdampfungsschritten (G; F, G) durch Verdampfung mit Dünnschichtverdampfungstechnologie durchgeführt wird.
     
    6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass das Verdampfen durch Dünnschichtverdampfung, Fallfilmverdampfung, Kurzwegverdampfung oder Plattenmolekularverdampfung durchgeführt wird.
     
    7. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Terpenmaterial C5-C10-Kohlenwasserstoffe, vorzugsweise C10H16-Kohlenwasserstoffe, umfasst.
     
    8. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Terpenmaterial aus der Gruppe gewählt ist, die aus verunreinigtem Terpentin, wie Terpentindestillationsreststoffen und Terpentindestillationsrückständen, Rohterpentin, Rohsulfatterpentin (CST), Holzterpentin und Gemischen derselben besteht.
     
    9. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Tallölmaterial ein Nebenprodukt des Sulfataufschlusses von Holz, vorzugsweise von Nadelholz, ist.
     
    10. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Tallölmaterial aus Tallöl, Rohtallöl (CTO), Seifenöl und Gemischen derselben gewählt ist.
     
    11. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die einen Siedepunkt von unter 500 °C (NTP) aufweisenden neutralen Substanzen dieser dritten Fraktion C20-C27-Kohlenwasserstoffe umfassen.
     
    12. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass diese Reststofffraktion schwere neutrale Substanzen und Restbestandteile wie Harz (Pitch) und Metalle umfasst.
     
    13. Verfahren nach Anspruch 12, dadurch gekennzeichnet, dass diese schweren neutralen Substanzen Kohlenwasserstoffe mit wenigstens 28 Kohlenstoffatomen, mit einem Siedepunkt von über 500 °C (NTP), umfassen.
     
    14. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Verfahren ferner einen Vorbehandlungsschritt (P) zur Ablage dieses Gemischs von Terpenmaterial und Tallölmaterial in einem Speichertank vor dem ersten Verdampfungsschritt (E) umfasst.
     
    15. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Verfahren einen weiteren Schritt (11) Abscheiden von Wasser aus der ersten Fraktion umfasst, gefolgt von einem oder mehreren optionalen weiteren Reinigungsschritten (11').
     
    16. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Verfahren ferner einen oder mehrere Reinigungsschritte (17) für die dritte Fraktion umfasst.
     
    17. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Verfahren nach einem optionalen Wasserabscheideschritt (11) und einem oder mehreren weiteren Reinigungsschritten (11', 17) ferner einen oder mehrere Hydroprocessing-Schritte (C1, C2) umfasst, um die rückgewonnene erste und dritte Fraktion in Biokraftstoffe oder Bestandteile dieser Biokraftstoffe umzuwandeln.
     
    18. Verfahren nach Anspruch 17, dadurch gekennzeichnet, dass das Verfahren ferner umfasst: einen oder mehrere Hydroprocessing-Schritte (C1) zur Umwandlung der ersten Fraktion in einen oder mehrere Biokraftstoffe oder Bestandteile dieser Biokraftstoffe, gewählt aus der Gruppe bestehend aus Ottokraftstoff (Gasolin), Naphtha, Düsenkraftstoff, Dieselkraftstoff und Brenngasen.
     
    19. Verfahren nach Anspruch 17, dadurch gekennzeichnet, dass das Verfahren ferner umfasst: einen oder mehrere Hydroprocessing-Schritte (C2) zur Umwandlung der dritten Fraktion in einen oder mehrere Biokraftstoffe oder Bestandteile dieser Biokraftstoffe, gewählt aus der Gruppe bestehend aus Dieselkraftstoff, Düsenkraftstoff, Ottokraftstoff, Naphtha und Brenngasen.
     
    20. Vorrichtung zur Reinigung eines Gemischs von Terpenmaterial und Tallölmaterial, wobei das Gemisch von Terpenmaterial und Tallölmaterial erzeugt wird, indem Terpenmaterial dem Tallölmaterial zugesetzt wird, dadurch gekennzeichnet, dass die Vorrichtung Folgendes umfasst:

    - einen ersten Verdampfer (10), der so angeordnet ist, dass er dieses Gemisch bei einer Temperatur von 20 bis 250 °C und bei einem Druck von 5 bis 100 mbar verdampft und eine erste Fraktion, die Kohlenwasserstoffe mit einem Siedepunkt von bis zu 250 °C (NTP) und Wasser umfasst, und eine zweite Fraktion, die Fettsäuren, Harzsäuren, neutrale Substanzen und Restbestandteile umfasst, erzeugt,

    - wenigstens einen weiteren Verdampfer (20; 16, 20), der so angeordnet ist, dass er diese zweite Fraktion verdampft und eine dritte Fraktion, die Fettsäuren, Harzsäuren und neutrale Substanzen mit einem Siedepunkt unter 500 °C (NTP) umfasst, und eine Reststofffraktion erzeugt,

    - eine erste Verbindung (14), die so angeordnet ist, dass sie die zweite Fraktion zum wenigstens einen weiteren Verdampfer (20; 16, 20) führt, und

    - optional eine oder mehrere weitere Verbindungen (19) zwischen diesen weiteren Verdampfern (16, 20).


     
    21. Vorrichtung nach Anspruch 20, dadurch gekennzeichnet, dass dieser wenigstens eine weitere Verdampfer (20; 16, 20) einen Verdampfer (20) umfasst.
     
    22. Vorrichtung nach Anspruch 20, dadurch gekennzeichnet, dass dieser wenigstens eine weitere Verdampfer (20; 16, 20) zwei Verdampfer (16, 20) umfasst.
     
    23. Vorrichtung nach Anspruch 20, dadurch gekennzeichnet, dass die Vorrichtung ferner umfasst: einen ersten Produktauslass (12) zur Rückgewinnung der Kohlenwasserstoffe mit einem Siedepunkt von bis zu 250 °C (NTP) und Wasser umfassenden ersten Fraktion aus dem ersten Verdampfer (10), einen zweiten Produktauslass (18) zur Rückgewinnung der dritten Fraktion aus dem wenigstens einen weiteren Verdampfer (20; 16, 20) und einen ersten Reststoffauslass (22) zur Rückgewinnung der Reststofffraktion aus dem wenigstens einen weiteren Verdampfer (20; 16, 20).
     
    24. Vorrichtung nach Anspruch 20, dadurch gekennzeichnet, dass die Vorrichtung ferner einen oder mehrere erste Zuführeinlässe (8) umfasst, die so angeordnet sind, dass sie das Gemisch von Terpenmaterial und Tallölmaterial dem ersten Verdampfer (10) zuführen.
     
    25. Vorrichtung nach einem der Ansprüche 20 bis 24, dadurch gekennzeichnet, dass die Vorrichtung ferner wenigstens einen Speichertank (6) für das Terpenmaterial und das Tallölmaterial umfasst, der, in Fließrichtung des Gemischs von Terpenmaterial und Tallölmaterial, vor dem ersten Verdampfer (10) angeordnet ist.
     
    26. Vorrichtung nach Anspruch 25, dadurch gekennzeichnet, dass die Vorrichtung ferner umfasst: einen zweiten Reststoffauslass (7) zur Rückgewinnung einer Wasser und anorganisches Material umfassenden zweiten Reststofffraktion aus dem Speichertank (6).
     
    27. Vorrichtung nach Anspruch 26, dadurch gekennzeichnet, dass die Vorrichtung ferner umfasst: einen zweiten Zuführeinlass (2) für die Zuführung des Terpenmaterials und einen dritten Zuführeinlass (4) für die Zuführung des Tallölmaterials zum Speichertank (6).
     
    28. Vorrichtung nach einem der Ansprüche 20 bis 27, dadurch gekennzeichnet, dass die Verdampfer (10, 16, 20) aus der Gruppe gewählt sind, die aus Verdampfern mit Dünnschichtverdampfungstechnologie besteht.
     
    29. Vorrichtung nach Anspruch 28, dadurch gekennzeichnet, dass die Verdampfer aus der Gruppe bestehend aus Dünnschichtverdampfer, Fallfilmverdampfer, Kurzwegverdampfer und Plattenmolekularverdampfer gewählt sind.
     
    30. Vorrichtung nach einem der Ansprüche 20 bis 29, dadurch gekennzeichnet, dass die Vorrichtung ferner wenigstens eine katalytische Hydrokonversionseinheit (C1, C2) zur Umwandlung der einen Siedepunkt von bis zu 250 °C (NTP) aufweisenden Kohlenwasserstoffe der ersten Fraktion in einen oder mehrere Biokraftstoffe oder Bestandteile dieser Biokraftstoffe, gewählt aus der Gruppe bestehend aus Ottokraftstoff, Naphtha, Düsenkraftstoff, Dieselkraftstoff und Brenngasen, und/oder zur Umwandlung der Fettsäuren, Harzsäuren und neutrale Substanzen mit einem Siedepunkt von unter 500 °C (NTP) umfassenden dritten Fraktion in einen oder mehrere Biokraftstoffe oder Bestandteile dieser Biokraftstoffe, gewählt aus Dieselkraftstoff, Düsenkraftstoff, Ottokraftstoff, Naphtha und Brenngasen.
     
    31. Verwendung einer Vorrichtung, die zwei oder drei aufeinanderfolgend angeordnete Verdampfer (10, 16, 20) umfasst, zur Reinigung eines Gemischs von Terpenmaterial und Tallölmaterial, wobei das Gemisch von Terpenmaterial und Tallölmaterial erzeugt wird, indem Terpenmaterial dem Tallölmaterial zugesetzt wird.
     
    32. Verwendung der nach einem der Ansprüche 1 bis 19 erzeugten, einen Siedepunkt von bis zu 250 °C (NTP) aufweisenden Kohlenwasserstoffe der ersten Fraktion sowie Fettsäuren, Harzsäuren und einen Siedepunkt von unter 500 °C aufweisenden neutralen Substanzen der dritten Fraktion für die Produktion von Biokraftstoffen oder Bestandteilen dieser Biokraftstoffe.
     
    33. Verwendung der nach einem der Ansprüche 1 bis 19 erzeugten Kohlenwasserstoffe, die einen Siedepunkt von bis zu 250 °C (NTP) aufweisen, für die Produktion von Ottokraftstoff, Naphtha, Düsenkraftstoff, Dieselkraftstoff und Brenngasen.
     
    34. Verwendung der nach einem der Ansprüche 1 bis 19 erzeugten Fettsäuren, Harzsäuren und neutralen Substanzen, die einen Siedepunkt von unter 500 °C aufweisen, für die Produktion von Dieselkraftstoff, Düsenkraftstoff, Ottokraftstoff, Naphtha und Brenngasen.
     


    Revendications

    1. Un procédé pour la purification d'un mélange d'un matériau de terpène et d'un matériau de tallol, dans lequel le mélange du matériau de terpène et du matériau de tallol est obtenu par addition du matériau de terpène sur le matériau de tallol, et dans lequel le procédé comprend les étapes suivantes

    (a) l'évaporation du mélange du matériau de terpène et du matériau de tallol en une première étape d'évaporation (E) pour produire une première fraction comprenant des hydrocarbures ayant un point d'ébullition allant jusqu'à 250°C (NTP) et de l'eau et une deuxième fraction comprenant des acides gras, des acides résiniques, des substances neutres et des composants de résidus,
    dans lequel l'évaporation est effectuée à une température de 50 à 250°C et sous une pression de 5 à 100 mbar,

    (b) l'évaporation de ladite deuxième fraction dans au moins une étape d'évaporation supplémentaire (G; F, G) pour produire une troisième fraction comprenant des acides gras, des acides résiniques et des substances neutres ayant un point d'ébullition inférieur à 500°C (NTP), et une fraction résiduelle, et

    (c) la récupération desdites première fraction, troisième fraction et fraction résiduelle.


     
    2. Le procédé selon la revendication 1, caractérisé en ce que ladite au moins une étape d'évaporation supplémentaire (G; F, G) est effectuée en une étape (G) ou en deux étapes (F, G).
     
    3. Le procédé selon la revendication 2, caractérisé en ce que ladite au moins une étape d'évaporation supplémentaire (G; F, G) est effectuée en une étape (G) à une température de 200 à 450°C et sous une pression de 0 à 50 mbar.
     
    4. Le procédé selon la revendication 2, caractérisé en ce que ladite au moins une étape d'évaporation supplémentaire (G; F, G) est effectuée en deux étapes (F, G), dans lequel la première (F) desdites deux étapes d'évaporation supplémentaires est effectuée à une température de 180 à 350°C et sous une pression de 0,1 à 40 mbar et la deuxième (G) desdites deux étapes d'évaporation supplémentaires est effectuée à une température de 200 à 450°C et sous une pression de 0 à 50 mbar.
     
    5. Le procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'évaporation dans la première étape d'évaporation (E) et dans lesdites étapes d'évaporation supplémentaires (G; F, G) est effectuée par évaporation en utilisant la technologie d'évaporation à couche mince.
     
    6. Le procédé selon la revendication 5, caractérisé en ce que l'évaporation est effectuée par l'évaporation à couche mince, par l'évaporation à couche tombante, par l'évaporation à chemin court ou par l'évaporation par plaque de distillation moléculaire.
     
    7. Le procédé selon la revendication 1, caractérisé en ce que le matériau de terpène comprend des hydrocarbures en C5-C10, de préférence des hydrocarbures en C10H16.
     
    8. Le procédé selon la revendication 1, caractérisé en ce que le matériau de terpène est choisi dans le groupe constitué par la térébenthine contaminée, dont les résidus de distillation de la térébenthine et les fonds de distillation de la térébenthine, par la térébenthine brute, par le sulfate brut de térébenthine (CST), par la térébenthine de bois et par les mélanges de ceux-ci.
     
    9. Le procédé selon la revendication 1, caractérisé en ce que le matériau de tallol est un sous-produit de la fabrication de pâte Kraft de bois, de préférence de bois de conifères.
     
    10. Le procédé selon la revendication 1, caractérisé en ce que le matériau de tallol est choisi parmi le tallol, le tallol brut (CTO), l'huile de savon et les mélanges de ceux-ci.
     
    11. Le procédé selon la revendication 1, caractérisé en ce que les substances neutres ayant un point d'ébullition inférieur à 500°C (NTP) de ladite troisième fraction comprennent des hydrocarbures en C20-C27.
     
    12. Le procédé selon la revendication 1, caractérisé en ce que ladite fraction résiduelle comprend des substances neutres lourdes et des composants de résidus tels que de la brai et des métaux.
     
    13. Le procédé selon la revendication 12, caractérisé en ce que lesdites substances neutres lourdes comprennent des hydrocarbures ayant au moins 28 atomes de carbone, ayant un point d'ébullition de plus de 500°C (NTP).
     
    14. Le procédé selon la revendication 1, caractérisé en ce que le procédé comprend en outre une étape de pré-traitement (P) de stockage dudit mélange du matériau de terpène et du matériau de tallol dans un réservoir de stockage avant la première étape d'évaporation (E).
     
    15. Le procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le procédé comprend une étape supplémentaire de séparation de l'eau de la première fraction (11), suivie par une ou plusieurs étapes optionnelles de purification supplémentaires (11').
     
    16. Le procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le procédé comprend en outre une ou plusieurs étapes de purification (17) pour la troisième fraction.
     
    17. Le procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le procédé comprend en outre une ou plusieurs étapes d'hydrotraitement (C1, C2) pour convertir la première fraction récupérée en des biocombustibles ou en des composants de ceux-ci, après une étape optionnelle de séparation de l'eau (11) et une ou plusieurs étapes optionnelles de purification supplémentaires (11', 17).
     
    18. Le procédé selon la revendication 17, caractérisé en ce que le procédé comprend en outre une ou plusieurs étapes d'hydrotraitement (C1) pour convertir la première fraction en un ou plusieurs biocombustibles ou en des composants de ceux-ci choisis dans le groupe constitué par l'essence, par le naphta, par le carburéacteur, par le diesel et par les gaz combustibles.
     
    19. Le procédé selon la revendication 17, caractérisé en ce que le procédé comprend en outre une ou plusieurs étapes d'hydrotraitement (C2) pour convertir la troisième fraction en un ou plusieurs biocombustibles ou en des composants de ceux-ci choisis dans le groupe constitué par le diesel, par le carburéacteur, par l'essence, par le naphta et par les gaz combustibles.
     
    20. Un appareil pour la purification d'un mélange d'un matériau de terpène et d'un matériau de tallol, dans lequel le mélange du matériau de terpène et du matériau de tallol est obtenu par addition du matériau de terpène sur le matériau de tallol, caractérisé en ce que l'appareil comprend

    - un premier évaporateur (10) agencé de manière à évaporer ledit mélange à une température de 50 à 250°C et sous une pression de 5 à 100 mbar et à produire une première fraction comprenant des hydrocarbures ayant un point d'ébullition allant jusqu'à 250°C (NTP) et de l'eau et une deuxième fraction comprenant des acides gras, des acides résiniques, des substances neutres et des composants de résidus,

    - au moins un évaporateur supplémentaire (20; 16, 20) agencé de manière à évaporer ladite deuxième fraction et à produire une troisième fraction comprenant des acides gras, des acides résiniques et des substances neutres ayant un point d'ébullition inférieur à 500°C (NTP) et une fraction résiduelle,

    - un premier raccordement (14) agencé de manière à alimenter la deuxième fraction vers ledit au moins un évaporateur supplémentaire (20; 16, 20), et

    - éventuellement un ou plusieurs raccordements supplémentaires (19) entre lesdits évaporateurs supplémentaires (16, 20).


     
    21. L'appareil selon la revendication 20, caractérisé en ce que ledit au moins un évaporateur supplémentaire (20; 16, 20) comprend un évaporateur (20).
     
    22. L'appareil selon la revendication 20, caractérisé en ce que ledit au moins un évaporateur supplémentaire (20; 16, 20) comprend deux évaporateurs (16, 20).
     
    23. L'appareil selon la revendication 20, caractérisé en ce que l'appareil comprend en outre une première sortie de produit (12) pour la récupération de la première fraction comprenant des hydrocarbures ayant un point d'ébullition allant jusqu'à 250°C (NTP) et de l'eau à partir du premier évaporateur (10), une deuxième sortie de produit (18) pour la récupération de la troisième fraction à partir dudit au moins un évaporateur supplémentaire (20; 16, 20) et une première sortie de résidu (22) pour la récupération de la fraction résiduelle à partir dudit au moins un évaporateur supplémentaire (20; 16, 20).
     
    24. L'appareil selon la revendication 20, caractérisé en ce que l'appareil comprend en outre une ou plusieurs premières entrées d'alimentation (8) agencées de manière à alimenter le mélange du matériau de terpène et du matériau de tallol vers ledit premier évaporateur (10).
     
    25. L'appareil selon l'une quelconque des revendications 20 à 24, caractérisé en ce que l'appareil comprend en outre au moins un réservoir de stockage (6) pour le matériau de terpène et le matériau de tallol situé avant le premier évaporateur (10) dans la direction d'écoulement du mélange du matériau de terpène et du matériau de tallol.
     
    26. L'appareil selon la revendication 25, caractérisé en ce que l'appareil comprend en outre une deuxième sortie de résidu (7) pour la récupération d'une deuxième fraction résiduelle comprenant de l'eau et des matériaux inorganiques à partir du réservoir (6).
     
    27. L'appareil selon la revendication 26, caractérisé en ce que l'appareil comprend en outre une deuxième entrée d'alimentation (2) pour alimenter le matériau de terpène et une troisième entrée d'alimentation (4) pour alimenter le matériau de tallol vers le réservoir de stockage (6).
     
    28. L'appareil selon l'une quelconque des revendications 20 à 27, caractérisé en ce que les évaporateurs (10, 16, 20) sont choisis dans le groupe constitué par les évaporateurs utilisant la technologie d'évaporation à couche mince.
     
    29. L'appareil selon la revendication 28, caractérisé en ce que les évaporateurs sont choisis dans le groupe constitué par l'évaporateur à couche mince, par l'évaporateur à couche tombante, par l'évaporateur à chemin court et par la plaque de distillation moléculaire.
     
    30. L'appareil selon l'une quelconque des revendications 20 à 29, caractérisé en ce que l'appareil comprend en outre au moins une unité d'hydroconversion catalytique (C1, C2) pour convertir les hydrocarbures ayant un point d'ébullition allant jusqu'à 250°C (NTP) de la première fraction en un ou plusieurs biocombustibles ou en des composants de ceux-ci choisis dans le groupe constitué par l'essence, par le naphta, par le carburéacteur, par le diesel et par les gaz combustibles et/ou pour convertir la troisième fraction comprenant des acides gras, des acides résiniques et des substances neutres ayant un point d'ébullition inférieur à 500°C (NTP) en un ou plusieurs biocombustibles ou en des composants de ceux-ci choisis parmi le diesel, le carburéacteur, l'essence, le naphta et les gaz combustibles.
     
    31. L'tilisation d'un appareil comprenant deux ou trois évaporateurs (10, 16, 20) disposés séquentiellement pour la purification d'un mélange du matériau de terpène et du matériau de tallol, dans laquelle le mélange du matériau de terpène et du matériau de tallol est obtenu par addition d'un matériau de terpène sur le matériau de tallol.
     
    32. L'utilisation des hydrocarbures ayant un point d'ébullition allant jusqu'à 250°C (NTP) de la première fraction et des acides gras, des acides résiniques et des substances neutres ayant un point d'ébullition inférieur à 500°C de la troisième fraction obtenus conformément à l'une quelconque des revendications 1 à 19 pour la production de biocombustibles ou de composants de ceux-ci.
     
    33. L'utilisation des hydrocarbures ayant un point d'ébullition allant jusqu'à 250°C (NTP) obtenus selon l'une quelconque des revendications 1 à 19 pour la production d'essence, de naphta, de carburéacteur, de diesel et de gaz combustibles.
     
    34. L'utilisation des acides gras, des acides résiniques et des substances neutres ayant un point d'ébullition inférieur à 500°C obtenus conformément à l'une quelconque des revendications 1 à 19 pour la production de diesel, de carburéacteur, d'essence, de naphta et de gaz combustibles.
     




    Drawing











    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description