(19)
(11)EP 2 652 516 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
27.11.2019 Bulletin 2019/48

(21)Application number: 11804597.0

(22)Date of filing:  05.12.2011
(51)Int. Cl.: 
G01R 33/34  (2006.01)
G01R 33/565  (2006.01)
G01R 33/54  (2006.01)
G01R 33/24  (2006.01)
(86)International application number:
PCT/IB2011/055450
(87)International publication number:
WO 2012/080898 (21.06.2012 Gazette  2012/25)

(54)

PASSIVE B1 FIELD SHIMMING

PASSIVE B1-FELDREGELUNG

CALAGE DE CHAMP B1 PASSIF


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 16.12.2010 US 423624 P

(43)Date of publication of application:
23.10.2013 Bulletin 2013/43

(73)Proprietor: Koninklijke Philips N.V.
5656 AE Eindhoven (NL)

(72)Inventors:
  • ZHAI, Zhiyong
    NL-5656 AE Eindhoven (NL)
  • MORICH, Michael Andrew
    NL-5656 AE Eindhoven (NL)
  • HARVEY, Paul Royston
    NL-5656 AE Eindhoven (NL)
  • FUDERER, Miha
    NL-5656 AE Eindhoven (NL)

(74)Representative: Philips Intellectual Property & Standards 
High Tech Campus 5
5656 AE Eindhoven
5656 AE Eindhoven (NL)


(56)References cited: : 
US-A- 5 865 177
US-A1- 2005 110 493
  
  • YANG QING X ET AL: "Manipulation of image intensity distribution at 7.0 T: passive RF shimming and focusing with dielectric materials.", JOURNAL OF MAGNETIC RESONANCE IMAGING : JMRI JUL 2006 LNKD- PUBMED:16755543, vol. 24, no. 1, July 2006 (2006-07), pages 197-202, XP002524604, ISSN: 1053-1807
  • NEUFELD A ET AL: "Dielectric inserts for sensitivity and RF magnetic field enhancement in NMR volume coils", JOURNAL OF MAGNETIC RESONANCE SEPTEMBER 2009 ACADEMIC PRESS INC. USA, vol. 200, no. 1, September 2009 (2009-09), pages 49-55, XP026587554, DOI: DOI:10.1016/J.JMR.2009.06.001
  • HAINES K ET AL: "New high dielectric constant materials for tailoring the B1<+> distribution at high magnetic fields", JOURNAL OF MAGNETIC RESONANCE, ACADEMIC PRESS, ORLANDO, FL, US, vol. 203, no. 2, 1 April 2010 (2010-04-01) , pages 323-327, XP026969831, ISSN: 1090-7807 [retrieved on 2010-03-16]
  
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description

BACKGROUND OF THE INVENTION



[0001] The present application relates to the magnetic resonance arts. It finds particular application in relation to radio frequency (RF) coils and magnetic field correction generated therefrom. However, it also finds application in magnetic resonance imaging, spectroscopy and other nuclear magnetic resonance techniques.

[0002] Loading from a patient to be examined distorts the B1 excitation field. The distortion varies with the size and shape of the subject, and the operational radio frequency. This distortion becomes particularly acute above 3 Tesla, which has an operational radio frequency for hydrogen of approximately 128 MHz. The lack of B1 uniformity causes artifacts in the resultant images or other magnetic resonance results.

[0003] In the article by Yang, Qing X. et al., "Manipulation of Image Intensity Distribution at 7.0 T: Passive RF Shimming and Focusing With Dielectric Materials", Journal of Magnetic Resonance Imaging 24: 197-202 (2006), a method is described to manipulate image intensity distributions in the human head at ultra-high field strengths by high permittivity padding, for instance by placing water pads containing double-distilled water around the human head. The method is suggested for adjusting the B1 field inside the human head of a given RF coil to reduce the B1 field inhomogeneity artifacts associated with the wave behavior (RF passive shimming) or to locally enhance the signal-to-noise ratio (SNR) in targeted regions of interest.

SUMMARY OF THE INVENTION



[0004] The present application provides a new and improved system and method which overcomes the above-referenced problems and others.

[0005] In accordance with one aspect, a magnetic resonance system is provided, as defined in claim 1. A plurality of radio frequency coil elements is disposed adjacent an examination region, wherein the plurality of radio frequency coil elements (18) is operatively connectable to at least one radio frequency transmitter, and is configured to generate a B1 excitation field in the examination region. At least one shimming device is disposed in the examination region between the RF coil elements and a space in the examination region to be occupied by a subject, and is provided to improve the uniformity in the generated B1 excitation field.

[0006] The passive shimming device includes at least one of at least one rod, composed of a non-proton magnetic resonance signal generating solid dielectric material with a permittivity of at least 100, that is disposed in the examination region to passively shim the generated B1 excitation field, and at least one tube configured to receive a variable volume of dielectric fluid disposed adjacent to the radio frequency coil elements to passively shim the generated B1 excitation field.

[0007] The magnetic resonance system further includes a shimming processor which is configured to analyze a distribution of the generated B1 excitation field and to determine the position of the at least one rod and/or the volume or dielectric permittivity of the at least one tube in order to improve a uniformity of the B1 distribution to optimize a homogeneity of the B1 excitation field.

[0008] In the case of the at least one rod, the magnetic resonance system includes an actuator which is configured to position the dielectric rod in the examination region according to the position determined by the shimming processor.

[0009] In the case of the at least one tube, the magnetic resonance system includes a reservoir which is configured to supply the dielectric fluid to the at least one tube, and a fluid controller which is configured to control at least one of the volume of dielectric fluid in the at least one tube and the dielectric permittivity of the dielectric fluid supplied to the at least one tube according to respectively the volume and dielectric permittivity determined by the shimming processor.

[0010] It is noted that, in this context, the examination region includes the entire space within the RF coil. In some cases, such as a whole body RF coil the examination region, in this context, is larger than the usual imaging volume.

[0011] In accordance with another aspect, a method for passively shimming a B1 excitation field is provided, as defined in claim 9. At least one passive shimming device is disposed in an examination region defined inside of RF coil elements of an RF coil. The passive shimming elements improve uniformity of the B1 excitation field generated by the RF coil.

[0012] The at least one passive shimming element includes at least one of at least one rod composed of a non-proton magnetic resonance signal generating solid dielectric material with a permittivity of at least 100 that is disposed in the examination region to passively shim the generated B1 excitation field, and at least one tube configured to receive a variable volume of dielectric fluid disposed adjacent to the radio frequency coil elements to passively shim the generated B1 excitation field.

[0013] The method further comprises steps of analyzing a distribution of the generated B1 excitation field and determining the position of the at least one rod and/or the volume or dielectric permittivity of the at least one tube in order to improve a uniformity of the B1 distribution to optimize a homogeneity of the B1 excitation field, by a shimming processor, and with a controller, controlling at least one of the volume of dielectric fluid in the at least one tube and a position of the at least one rod. In the case of controlling the at least one rod, the method comprises positioning the dielectric rod in the examination region with an actuator according to the position determined by the shimming processor, and in the case of controlling the at least one tube, the method comprises controlling at least one of the volume of dielectric fluid in the at least one tube and the dielectric permittivity of the dielectric fluid supplied to the at least one tube according to respectively the volume and dielectric permittivity determined by the shimming processor.

[0014] One advantage is that B1 excitation uniformity is improved.

[0015] Another advantage is that work flow for MR imaging at high fields strengths is improved.

[0016] Another advantage is that signal-to-noise ratio is improved.

[0017] Still further advantages of the present invention will be appreciated to those of ordinary skill in the art upon reading and understand the following detailed description.

[0018] The invention may take form in various components and arrangements of components, and in various steps and arrangements of steps. The drawings are only for purposes of illustrating the preferred embodiments and are not to be construed as limiting the invention.

FIGURE 1 is a diagrammatic illustration of a magnetic resonance system which includes passive shimming devices;

FIGURE 2 is another diagrammatic illustration of the magnetic resonance system and passive shimming devices;

FIGURE 3 illustrates a female body-shaped phantom in a quadrature birdcage body coil with and without dielectric passive shimming rods;

FIGURE 4 illustrates B1 distributions with various shimming combinations using a quadrature birdcage body coil with two independent transmit/receive channels;

FIGURES 5A and 5B illustrate a symmetric placement of two shimming rods disposed below a phantom and the resultant B1 field distribution using a quadrature birdcage body coil with two independent transmit/receive channels;

FIGURES 5C and 5D illustrate a single passive shimming rod disposed below the phantom and the corresponding B1 distribution using a quadrature birdcage body coil with two independent transmit/receive channels;

FIGURE 6 illustrates a symmetric placement of passive shimming rods below a slim body-shaped phantom and resultant B1 field distributions with quadrature driven RF coils and no dielectric rods, with B1 shimming without dielectric rods, and shimming with the dielectric rods;

FIGURE 7 illustrates an RF head coil with a human head model in which the passive shimming element includes a water balloon and the resultant B1 distribution with and without the water balloon; and

FIGURE 8 illustrates a method of using the passive shimming elements.



[0019] With reference to FIGURES 1 and 2, a magnetic resonance (MR) imaging system 10 includes a main magnet 12 which generates a spatial and temporally uniform B0 field of at least 3 Tesla and above through an examination region 14. The main magnet can be an annular or bore-type magnet, or the like. Gradient magnetic field coils 16 disposed adjacent the main magnet serve to generate magnetic field gradients along selected axes relative to the B0 magnetic field for spatially encoding magnetic resonance signals, for producing magnetization-spoiling field gradients, or the like. The magnetic field gradient coil 16 may include coil segments configured to produce magnetic field gradients in three orthogonal directions, typically longitudinal or z, transverse or x, and vertical or y directions.

[0020] A radio-frequency (RF) coil assembly, such as a whole-body radio frequency coil, is disposed adjacent the examination region. The RF coil assembly may include a plurality of individual RF coil elements 18, or may be a birdcage-type coil with the multiple elements 18 interconnected by end ring RF coil structures. In the illustrated embodiment, eight coil elements 18 are shown. However, more or less coil elements 18 are also contemplated. The RF coil assembly generates radio frequency pulses for exciting magnetic resonance in aligned dipoles of the subject. In some embodiments, the radio frequency coil assembly 18 also serves to detect magnetic resonance signals emanating from the imaging region. In other embodiments, local or surface RF coils (not shown) are provided in addition to or instead of the whole-body RF coil for more sensitive, localized spatial encoding, excitation, and reception of magnetic resonance signals. The individual RF coils 18 together can act a single coil, as a plurality of independent coil elements, as an array such as in a parallel transmit system, or a combination. For example, where the RF coil 18 is configured as a birdcage-type coil the two modes may be driven independently for purposes of RF shimming.

[0021] To improve homogeneity of the B1 field, or excitation field, in the examination region 14, a uniformity distribution |B1+|of the transmit coils 18 is determined by a shimming processor 20, e.g. by a short measurement prior to the actual imaging sequence to compensate for dielectric resonances occurring in patient tissue at high frequencies, i.e. Larmor frequency at static fields strengths, particularly at 3 Tesla or greater. The imaging system 10 includes one or more passive shimming devices 22, 24 disposed in the examination region 14 to improve the homogeneity of the excitation field.

[0022] According to the invention the passive shimming device contains at least one dielectric rod 22, which in one embodiment is composed of a solid dielectric material having a dielectric permittivity (εr) of at least 100. Several dielectric rods 22 with varying length, shape, and dielectric permittivity are available to optimize the homogeneity of the B1 excitation field. Shapes include cylindrical, elliptical, rectangular, or the like. The shimming processor 20 determines the number, length, and position of the dielectric rods to be disposed in the examination region based on the determined uniformity distribution which optimizes homogeneity of the B1 excitation field. In order not to disrupt the workflow of an imaging procedure, the rods 22 are disposed on a lower side of the subject as stand-alone structures in the examination region 14 or as part of the patient support 19. The rods can be manually positioned in the examination region 14 by a clinician or automatically by an actuator 26, such as non-ferromagnetic motor or the like. The actuator receives the determined position of the rods 22 from the shimming processor 20 and adjusts the x, y, and z position and rotation accordingly. The actuator 26 can remove one or more of the rods 22 or introduce additional rods into the examination region 14 without user intervention.

[0023] In another embodiment, the shape, size, placement, and dielectric permittivity of the rods are determined for a nominal patient and the rods are fixedly mounted. In another embodiment, the shape, size, placement, and dielectric permittivity are calculated for a plurality of groups or classes of patients, such as large or obese, normal or average, and petite. According to the invention the passive shimming device includes at least one tube 24 of dielectric fluid disposed adjacent to a corresponding coil element 18 in-between the examination region 14 and the individual coil 18. Examples of dielectric fluids include heavily doped water, heavy water, or other non-proton MR signal generating fluid. The volume of dielectric fluid in each tube 24 is adjusted by a fluid controller 28 according to the uniformity distribution to optimize the homogeneity of the B1 excitation field. A fluid reservoir 30 supplies the dielectric fluid to the fluid controller 28 which supplies the fluid to each tube 24 via supply lines 25 routed through a gantry housing of the imaging system 10. The reservoir 30 may include a plurality of sub-reservoirs, each of which includes dielectric fluid with a unique dielectric permittivity. In this arrangement, the fluid controller 28 can supply dielectric fluid from one or more of the sub-reservoirs to each tube 24. Therefore, the dielectric permittivity of each tube can be tuned by adjusting the dielectric permittivity of the fluid and the volume of the fluid.

[0024] The tubes 24 can have the same or different lengths, in the axial direction, of the corresponding coil element 18 adjacent the tube. In one embodiment, the tubes 24 include a serpentine structure to ensure a uniform cross-section along the length of the tube or a uniform volume in the axial direction. In another embodiment, each tube is segmented in the axial direction. The fluid controller 28 can adjust the volume of each segment to account for non uniform dielectric load by the patient in the axial direction. For example, the head, torso, and legs exhibit varying dielectric loading because of the size, geometry, internal structure, and density of the corresponding anatomical region. In a further embodiment, each segment includes a serpentine structure to ensure that each segment has a uniform cross-section or volume in the axial direction. In another embodiment, the tubes 24 are or include expandable bladders or other structures to control the distribution of liquid between each coil element 18 and the imaging region 14. For one example, a uniform thickness of liquid can be formed around the side of the coil element towards the imaging region. For another example, a parabolic distribution can be provided.

[0025] In another embodiment, the imaging system 10 includes both the dielectric rods 22 and the tubes 24 of dielectric fluid to shim the B1 excitation field for optimal homogeneity. After analysis of the uniformity distribution, the shimming processor 20 determines the optimal size, geometry, dielectric permittivity, and position of each dielectric rod 22 and the shimming processor 20 determines the optimal volume and dielectric permittivity of each tube 24 which affords the optimal B1 excitation field for the imaging subject. For example, the size, geometry, dielectric permittivity, and position of the rods 22 can be fixed and the liquid in the tubes 24 can be used to fine tune the B1 field.

[0026] Once the B1 excitation field is optimized for the imaging subject, magnetic resonance data of the subject is acquired. The subject remains inside the examination region 14 in the same position as when the uniformity distribution was determined. A scan controller 40 controls a gradient controller 42 which causes the gradient coils 16 to apply the selected magnetic field gradient pulses across the imaging region, as may be appropriate to a selected magnetic resonance imaging or spectroscopy sequence. The scan controller 40 also controls at least one RF transmitter 44 which causes the RF coil assembly to generate magnetic resonance excitation and manipulation of B1 pulses. In a parallel system, the RF transmitter 44 includes a plurality of transmitters or a single transmitter with a plurality of transmit channels, each transmit channel operatively connected to at least one corresponding coil element 18 of the assembly. In the case of a birdcage-type RF coil the transmitter may have two independent channels to drive the two modes of the birdcage. The scan controller, in coordination with the shimming processor, also controls the transmitter and gradient controller to generate B1 shimming sequences and B1 shimmed sequences.

[0027] The scan controller also controls an RF receiver 46 which is connected to the RF coils 18, and/or a dedicated receive coil placed inside the examination region 14, to receive magnetic resonance signals therefrom. In a parallel system, the RF receiver 46 includes a plurality of receivers or a single receivers with a plurality of receive channels, each receive channel operatively connected to at least one corresponding coil element 18 of the assembly. The received data from the receiver 46 is temporarily stored in a data buffer 48 and processed by a magnetic resonance data processor 50. The magnetic resonance data processor can perform various functions as are known in the art, including image reconstruction, magnetic resonance spectroscopy processing, catheter or interventional instrument localization, and the like. Reconstructed magnetic resonance images, spectroscopy readouts, interventional instrument location information, and other processed MR data are displayed on a graphical user interface 52. The graphic user interface 52 also includes a user input device which a clinician can use for controlling the scan controller 40 to select scanning sequences and protocols, and the like.

[0028] In another embodiment, the imaging system 10 is a parallel transmit system with a plurality of RF transmitters 44. The shimming processor 20 determines unique a phase and amplitude component for each excitation signal generated by the individual RF transmitters 44 based on the analyzed uniformity distribution. In this arrangement, the B1 excitation field is optimized by varying the generated B1 excitation field transmitted by the individual coil elements 18. For example, in a two-channel parallel transmit system the imaging system 10 includes two RF transmitters 44 where each transmitter is operatively connected to one or more feed points of the coil elements 18 or connected to drive the two modes of a birdcage-type RF coil. The shimming processor determines changes in the phase and amplitude of B1 excitation signal for each channel such that the composite B1 excitation field resulting from the two channels is optimized for homogeneity. The shimming processor controls the amount of fluid in each tube 24 to adjust the relative phase of RF field produced by coil segments associated with the same transmitter.

[0029] In another embodiment, the imaging system 10 includes the dielectric rods 22, the tubes 24 of dielectric fluid, and the parallel transmit system with multiple RF transmitters 44 to shim the B1 excitation field for optimal homogeneity. After analysis of the uniformity distribution, the shimming processor 20 determines the optimal size, geometry, dielectric permittivity, and position of each dielectric rod 22; the optimal volume distribution, and dielectric permittivity of dielectric fluid for each tube 24; and unique phase and amplitude components for each excitation signal generated by each of the RF transmitters 44. As a result, the homogeneity of the overall B1 field is substantially improved at higher field strengths for the imaging subject.

[0030] With reference to FIGURES 3 and 4, the improvement of homogeneity of the B1 excitation field is illustrated in a Finite-difference time-domain (FDTD) model for a 3 Tesla imaging system 10. The RF assembly in this embodiment is a birdcage-type quadrature body coil (QBC) loaded with a female body-shaped phantom. The QBC is driven with two independent transmit/receive (T/R) channels. With reference to FIGURE 4, as seen, |B1+| over the center transverse slice of the phantom is relatively non-uniform. Considering |B1+|-shimming over the torso region only (excluding both arms and breasts), (a) shows that, in a conventional quadrature feed case, the |B1+| standard deviation (divided by mean field, no units) in the torso area is 0.33. When using two channel transmit, |B1+| standard deviation can be reduced to 0.23, a 30% improvement, as shown in (b). As seen in (b), the shimmed |B1+| is still not quite uniform with higher |B1+| over upper-right area and lower |B1+| over bottom-left area. The ratio of maximum |B1+| over minimum |B1+| is 3.6 when comparing to 7 for convention quadrature feed (a).

[0031] Continuing with reference to FIGURE 4, to further improve |B1+| uniformity, two dielectric rods are inserted in the bottom left area and right area of the phantom adjacent to the phantom (as depicted in FIGURE 3). The diameter of the rods is 4cm with length of 65cm and a dielectric constant εr = 1000. The rods are separated 31cm apart. As seen in (c), even though the cross-section of two rods is relatively small compared with that of the body phantom, |B1+| field distribution is re-distributed over the |B1+| shimming area. When permittivity εr is reduced to 100, as shown in (d), a better shimmed |B1+| is achieved with deviation of 0.19, which is 42% better than 0.33 result for the un-shimmed quadrature feed case; the result is also better than the 0.23 deviation of (b) when RF shimming only is used. The ratio of maximum |B1+| over minimum |B1+| is 3.3, better than the optimal 2-channel shimming case result of 3.6 in (b) without the rods.

[0032] With reference to FIGURES 5A and 5B, in another scenario, two same-sized rods are placed away from the phantom which would model the rods 22 being placed inside the patient table 19. The distance from the two rods to the isocenter of the QBC is 15.5cm, the εr = 1000 for both of the rods 22 in this case, and the two rods 22 are positioned 31cm apart. As seen from the shimmed |B1+| in FIGURE 5B, over the defined shimming area |B1+| the standard deviation is reduced to 0.16, 52% less than the un-shimmed quadrature driven case result of 0.33 in (a) of FIGURE 4 and 30% less than the shimmed quadrature driven case result of 0.23 in (b) of FIGURE 4 without the dielectric rods. The ratio of maximum |B1+| over minimum |B1+| is 2.2 comparing with 3.6 of shimmed case without the use of dielectric rods.

[0033] With reference to FIGURE 5C and 5D, when local receive coils are used, one dielectric rod can be used to improve only the transmit |B1+|-field. As shown in FIGURE 5C and 5D, the shimmed |B1+| case with dielectric rod (εr = 1000) positioned to the left of the phantom, the |B1+| distribution is almost identical to that of two rods case in FIGURE 5A and 5B. From the model, the left dielectric rod (FIGURE 5C) has a greater |B1+| shimming influence than the right dielectric rod during RF field transmission. On the other hand, the right dielectric rod has much more effect on the |B1-| shimming during reception of the MR signal.

[0034] In above calculations using the FDTD model, we used a "body-shaped" female phantom body model with the aspect ratio of 0.60 (anterior-posterior width over left-right width in the torso center transverse slice). The same calculations are also repeated for a "body-shaped" male phantom body model with a slimmer aspect ratio of 0.46 (modified from the female model by removing the breast and reducing the aspect ratio). FIGURE 6 shows the |B1+|-field over the center transverse slice excluding arms (shimming area). As seen, with the addition of dielectric rods (εr = 1000), |B1+| uniformity is also improved further from the shimming case without the dielectric rods.

[0035] To further optimize |B1+| uniformity using one or more dielectric rod(s) 22, the rod diameter, size, the optimal permittivity εr, and positions can be determined through the FDTD modeling or other numerical calculations with the shimming processor 20. The dielectric rods can either be mobile, e.g., used inside the patient accessible area of the bore, or be placed in permanent positions under the patient table (i.e., non-patient accessible area of the bore). The dielectric rods can be made of materials without proton MR signals (heavily doped water to mitigate proton signal, or ceramics without substantial electrical conductivity). They are relatively small and can be inserted into the QBC space.

[0036] With reference to FIGURE 7, a 7 Tesla head T/R coil model was driven in quadrature using a single transmit channel with a quadrature T/R switch. One rectangular water balloon with dimension of 4cm x 2.5cm x 16.5cm is placed between two coil rungs and a human head model. Calculated |B1+|-field in the center transverse slice is also shown (|B1+| is normalized to the field at the center). As shown, the |B1+| standard deviation (divided by mean value, no units) for the conventional quadrature driven case is 0.232. With the addition of one water balloon, it reduced to 0.225, a 3% reduction of |B1+| field non-uniformity. In other cases, when more than one water balloons are used, the sizes and positions of these water balloons can be optimized. The conductivity (salt level) can also be optimized for individual water balloons, we expect even more improvement of |B1+| uniformity.

[0037] With reference to FIGURE 8, a method for shimming a B1 excitation field is presented. After a subject is positioned in the examination region, a B1 field is generated and its uniformity is analyzed S100 by the shimming processor 20. Based on the analyzed uniformity distribution |B1+|, the shimming processor 20 determines the position, dimensions, and dielectric permittivity εr S102 of the dielectric rods 22 to be disposed in the examination region 14 and/or the volume and εr S104 of the dielectric fluid supplied to each tube 24; and the excitation signal S106 for each independent transmit channel Tx. The actuator 26 selects and positions the dielectric rods 22 accordingly S108. The fluid controller 28 adjusts the volume and εr of the dielectric fluid accordingly S110. Optionally, steps S100-S110 can be iteratively repeated to optimize the B1 uniformity. Once the passive shimming devices 22, 24 are tuned according to the analyzed uniform distribution, the RF transmitter 44 causes the coils elements 18 associated with each transmit channel to apply a shimmed B1 excitation field S112 to the examination region 14 according to the excitation signals determined in step S106. The induced MR signals are received S114 by the RF receiver 48 via the coil elements 18 or a dedicated receive coil in examination region 14 and reconstructed S116 into an image representation of the subject by the data processor 50. The image representation is displayed on the graphical user interface 52.

[0038] The invention has been described with reference to the preferred embodiments. Modifications and alterations may occur to others upon reading and understanding the preceding detailed description. It is intended that the invention be constructed as including all such modifications and alterations insofar as they come within the scope of the appended claims.


Claims

1. A magnetic resonance system (10), comprising:

a plurality of radio frequency coil elements (18) adjacent to an examination region (14), wherein the plurality of radio frequency coil elements (18) is operatively connectable to at least one radio frequency transmitter (44), and is configured to generate a B1 excitation field in the examination region according to a generated excitation signal; and

at least one passive shimming device (22,24) disposed in the examination region (14) between the radio frequency coil elements (18) and a space in the examination region (14) to be occupied by a subject, and provided for improving uniformity of the generated B1 excitation field, the at least one passive shimming device (22,24) including at least one of

- at least one rod (22) composed of a non-proton magnetic resonance signal generating solid dielectric material with a permittivity of at least 100 that is disposed in the examination region (14) to passively shim the generated B1 excitation field; and

- at least one tube (24) configured to receive a variable volume of dielectric fluid disposed adjacent to the radio frequency coil elements (18) to passively shim the generated B1 excitation field,

wherein the magnetic resonance system further comprises a shimming processor (20) which is configured to analyze a distribution of the generated B1 excitation field and to determine the position of the at least one rod (22) and/or the volume or dielectric permittivity of the at least one tube (24) in order to improve a uniformity of the B1 distribution to optimize a homogeneity of the B1 excitation field, wherein

in the case of the at least one rod, the magnetic resonance system (10) includes an actuator (26) which is configured to position the dielectric rod (22) in the examination region (14) according to the position determined by the shimming processor (20), and

in the case of the at least one tube (24), the magnetic resonance system (10) includes

a reservoir (30) which is configured to supply the dielectric fluid to the at least one tube (24); and

a fluid controller (28) which is configured to control at least one of the volume of dielectric fluid in the at least one tube (24) and the dielectric permittivity of the dielectric fluid supplied to the at least one tube (24) according to respectively the volume and dielectric permittivity determined by the shimming processor (20).


 
2. The magnetic resonance system (10) according to claim 1, wherein the at least one dielectric rod (22) is disposed below the space to be occupied by the subject.
 
3. The magnetic resonance system (10) according to any one of claims 1 or 2, wherein the dielectric permittivity of the dielectric rod (22) is greater than 500.
 
4. The magnetic resonance system (10) according to any one of claims 1-3, further including:
a tube or reservoir (24) with a variable volume of dielectric fluid disposed adjacent to each radio frequency coil element of the plurality of radio frequency coil elements (18).
 
5. The magnetic resonance system (10) according to any one of claims 1-4, further including:
two or more radio frequency transmitters (44), each of which is configured to generate an excitation signal for transmission via the plurality of radio frequency coil elements (18) to generate a passively shimmed B1 excitation field.
 
6. The magnetic resonance system (10) according to any one of claims 1-5, wherein the radio frequency coil elements (18) form a birdcage radio frequency coil (18), further including:
two or more radio frequency transmitters (44), each of which is configured to generate an excitation signal for transmission via the birdcage radio frequency coil (18) to generate a passively and actively shimmed B1 excitation field.
 
7. The magnetic resonance system (10) according to either one of claims 5 and 6, wherein the shimming processor (20) is configured to determine unique phase and amplitude components for each excitation signal generated by each of the two or more RF transmitters and the shimming processor (20) is configured to control each of the two or more radio frequency transmitters (44) to generate the determined excitation signal according to the analyzed uniformity distribution determined by the shimming processor (20) to improve homogeneity of the passively shimmed B1 excitation field.
 
8. The magnetic resonance system (10) according to any one of claims 1-7, further including:

a main magnet (12) which is configured to generate a static magnetic field of at least 3 Tesla in the examination region (14); and

at least one radio frequency receiver (46) which is configured to receive induced magnetic resonance signals from the examination region (14) resulting from the B1 excitation field.


 
9. A method for passively shimming a B1 excitation field, comprising:

disposing at least one passive shimming device (22, 24) in an examination region (14) defined inside of radio frequency coil elements (18) of a radio frequency coil to improve uniformity of the B1 excitation field generated by the radio frequency coil, the at least one passive shimming device (22, 24) including at least one of

- at least one rod (22) composed of a non-proton magnetic resonance signal generating solid dielectric material with a permittivity of at least 100 that is disposed in the examination region (14) to passively shim the generated B1 excitation field; and

- at least one tube (24) configured to receive a variable volume of dielectric fluid disposed adjacent to the radio frequency coil elements (18) to passively shim the generated B1 excitation field,

analyzing a distribution of the generated B1 excitation field and

determining the position of the at least one rod (22) and/or the volume or dielectric permittivity of the at least one tube (24) in order to improve a uniformity of the B1 distribution to optimize a homogeneity of the B1 excitation field, by a shimming processor (20),

with a controller (26, 28), controlling at least one of the volume of dielectric fluid in the at least one tube (24) and a position of the at least one rod (22),

in the case of controlling the at least one rod, positioning the dielectric rod (22) in the examination region (14) with an actuator (26) according to the position determined by the shimming processor (20),

in the case of controlling the at least one tube, controlling at least one of the volume of dielectric fluid in the at least one tube (24) and the dielectric permittivity of the dielectric fluid supplied to the a least one tube (24) according to respectively the volume and dielectric permittivity determined by the shimming processor (20).


 
10. The method according to claim 9, wherein the at least one rod (22) has a permittivity greater than 500.
 
11. The method according to claim 10, further including:

with the controller (26, 28), selecting one of a plurality of rods of different sizes and/or permittivity in accordance with a size of a subject to be examined; and

with the controller (26, 28), positioning the selected rod in the examination region.


 


Ansprüche

1. Magnetresonanzsystem (10), umfassend:

eine Vielzahl von Hochfrequenzspulenelemente (18) angrenzend an eine Untersuchungsregion (14), wobei die Vielzahl von Hochfrequenzspulenelementen (18) betriebsfähig mit mindestens einem Hochfrequenzsender (44) verbunden werden kann und konfiguriert ist, um ein B1-Anregungsfeld gemäß einem erzeugten Anregungssignal in der Untersuchungsregion zu erzeugen; und

mindestens eine passive Feldkorrekturvorrichtung (22, 24), die in der Untersuchungsregion (14) zwischen den Hochfrequenzspulenelementen (18) und einem durch eine Person einzunehmenden Raum in der Untersuchungsregion (14) angeordnet ist und bereitgestellt ist, um die Gleichförmigkeit des erzeugten B1-Anregungsfelds zu verbessern, wobei die mindestens eine passive Feldkorrekturvorrichtung (22, 24) mindestens eines von Folgendem beinhaltet:

- mindestens einen Stab (22) bestehend aus einem festen dielektrischen, Magnetresonanzsignal erzeugenden Nicht-Protonen-Material mit einer Permittivität von mindestens 100, der in der Untersuchungsregion (14) angeordnet ist, um eine passive Feldkorrektur für das erzeugte B1-Anregungsfeld zu bewirken; und

- mindestens eine Röhre (24), die konfiguriert ist, um ein variables Volumen von dielektrischem Fluid aufzunehmen, und angrenzend an die Hochfrequenzspulenelemente (18) angeordnet ist, um eine passive Feldkorrektur für das erzeugte B1-Anregungsfeld zu bewirken,

wobei das Magnetresonanzsystem ferner einen Feldkorrekturprozessor (20) umfasst, der konfiguriert ist, um eine Verteilung des erzeugten Bi-Anregungsfelds zu analysieren und die Position des mindestens einen Stabs (22) und/oder das Volumen oder die dielektrische Permittivität der mindestens einen Röhre (24) zu bestimmen, um eine Gleichmäßigkeit der B1-Verteilung zu verbessern und dadurch eine Homogenität des B1-Anregungsfelds zu optimieren, wobei

in dem Fall des mindestens einen Stabs, das Magnetresonanzsystem (10) einen Aktuator (26) beinhaltet, der konfiguriert ist, um den dielektrischen Stab (22) in der Untersuchungsregion (14) entsprechend der durch den Feldkorrekturprozessor (20) bestimmten Position zu positionieren, und

in dem Fall der mindestens einen Röhre (24), das Magnetresonanzsystem (10) beinhaltet:

ein Reservoir (30), das konfiguriert ist, um der mindestens eine Röhre (24) das dielektrische Fluid zuzuführen; und

eine Fluidsteuereinheit (28), die konfiguriert ist, um mindestens entweder das Volumen des dielektrischen Fluids in der mindestens einen Röhre (24) oder die dielektrische Permittivität des der mindestsens einen Röhre (24) zugeführten dielektrisches Fluids entsprechend dem durch den Feldkorrekturprozessor (20) bestimmten Volumen bzw. der durch den Feldkorrekturprozessor bestimmten dielektrischen Permittivität zu steuern.


 
2. Magnetresonanzsystem (10) nach Anspruch 1, wobei der mindestens eine dielektrische Stab (22) unterhalb des durch die Person einzunehmenden Raums angeordnet ist.
 
3. Magnetresonanzsystem (10) nach einem der Ansprüche 1 oder 2, wobei die dielektrische Permittivität des dielektrischen Stabs (22) größer als 500 ist.
 
4. Magnetresonanzsystem (10) nach einem der Ansprüche 1 bis 3, ferner umfassend:
eine Röhre oder ein Reservoir (24) mit einem variablen Volumen an dielektrischem Fluid angeordnet angrenzend an jedes Hochfrequenzspulenelement der Vielzahl von Hochfrequenzspulenelementen (18).
 
5. Magnetresonanzsystem (10) nach einem der Ansprüche 1 bis 4, ferner umfassend:
zwei oder mehr Hochfrequenzsender (44), von denen jeder konfiguriert ist, um ein Anregungssignal zur Übertragung über die Vielzahl von Hochfrequenzspulenelementen (18) zu erzeugen, um ein passiv feldkorrigiertes B1-Anregungsfeld zu erzeugen.
 
6. Magnetresonanzsystem (10) nach einem der Ansprüche 1 bis 5, wobei die Hochfrequenzspulenelemente (18) eine Birdcage-Hochfrequenzspule (18) bilden, ferner umfassend:
zwei oder mehr Hochfrequenzsender (44), von denen jeder konfiguriert ist, um ein Anregungssignal zur Übertragung über die Birdcage-Hochfrequenzspule (18) zu erzeugen, um ein passiv und aktiv feldkorrigiertes Bi-Anregungsfeld zu erzeugen.
 
7. Magnetresonanzsystem (10) nach einem der Ansprüche 5 und 6, wobei der Feldkorrekturprozessor (20) konfiguriert ist, um die einzigartigen Phasen- und Amplitudenkomponenten für jedes durch jeden der zwei oder mehr HF-Sender erzeugte Anregungssignal zu bestimmen und wobei der Feldkorrekturprozessor (20) konfiguriert ist, um jeden der zwei oder mehr Hochfrequenzsender (44) zu steuern, um das bestimmte Anregungssignal entsprechend der durch den Feldkorrekturprozessor (20) bestimmten analysierten Gleichmäßigkeitsverteilung zu erzeugen und dadurch die Homogenität des passiv feldkorrigierten Bi-Anregungsfelds zu verbessern.
 
8. Magnetresonanzsystem (10) nach einem der Ansprüche 1 bis 7, ferner umfassend:

einen Hauptmagneten (12), der konfiguriert ist, um ein statisches Magnetfeld von mindestens 3 Tesla in der Untersuchungsregion (14) zu erzeugen; und

mindestens einen Hochfrequenzempfänger (46), der konfiguriert ist, um induzierte Magnetresonanzsignale aus der Untersuchungsregion (14) zu empfangen, die aus dem B1-Anregungsfeld resultieren.


 
9. Verfahren zur passiven Feldkorrektur eines B1-Anregungsfelds, umfassend:

Anordnen mindestens einer passiven Feldkorrekturvorrichtung (22, 24) in einer Untersuchungsregion (14), die innerhalb von Hochfrequenzspulenelementen (18) einer Hochfrequenzspule definiert ist, um die Gleichförmigkeit des durch die Hochfrequenzspule erzeugten B1-Anregungsfelds zu verbessern, wobei die mindestens eine passive Feldkorrekturvorrichtung (22, 24) mindestens eines von Folgendem beinhaltet:

- mindestens einen Stab (22) bestehend aus einem festen dielektrischen, Magnetresonanzsignal erzeugenden Nicht-Protonen-Material mit einer Permittivität von mindestens 100, der in der Untersuchungsregion (14) angeordnet ist, um eine passive Feldkorrektur für das erzeugte B1-Anregungsfeld zu bewirken; und

- mindestens eine Röhre (24), die konfiguriert ist, um ein variables Volumen von dielektrischem Fluid aufzunehmen, und angrenzend an die Hochfrequenzspulenelemente (18) angeordnet ist, um eine passive Feldkorrektur für das erzeugte B1-Anregungsfeld zu bewirken,

Analysieren einer Verteilung des erzeugten B1-Anregungsfelds und

Bestimmen der Position des mindestens einen Stabs (22) und/oder des Volumens oder der dielektrischen Permittivität der mindestens einen Röhre (24), um eine Gleichmäßigkeit der B1-Verteilung zu verbessern und dadurch eine Homogenität des B1-Anregungsfelds zu optimieren, durch einen Feldkorrekturprozessor (20),

wobei eine Steuereinheit (26, 28) mindestens eines von dem Volumen des dielektrischen des Fluids in der mindestens einen Röhre (24) und einer Position des mindestens einen Stabs (22) steuert,

in dem Fall des Steuerns des mindestens einen Stabs, Positionieren des dielektrischen Stabs (22) in der Untersuchungsregion (14) mit einem Aktuator (26) entsprechend der durch den Feldkorrekturprozessor (20) bestimmten Position,

in dem Fall des Steuerns der mindestens einen Röhre, Steuern von mindestens einem von dem Volumen des dielektrischen Fluids in der mindestens einen Röhre (24) und der dielektrischen Permittivität des der mindestens einen Röhre (24) zugeführten dielektrischen Fluids entsprechend dem durch den Feldkorrekturprozessor (20) bestimmten Volumen bzw. der durch den Feldkorrekturprozessor bestimmten dielektrischen Permittivität.


 
10. Verfahren nach Anspruch 9, wobei der mindestens eine Stab (22) eine Permittivität größer als 500 aufweist.
 
11. Verfahren nach Anspruch 10, ferner umfassend:

mit der Steuereinheit (26, 28), Auswählen von einem von der Vielzahl von Stäben von unterschiedlicher Größe und/oder Permittivität entsprechend einer Größe der zu untersuchenden Person; und

mit der Steuereinheit (26, 28), Positionieren des ausgewählten Stabs in der Untersuchungsregion.


 


Revendications

1. Système à résonnance magnétique (10), comprenant :
une pluralité d'éléments de bobine de radiofréquence (18) adjacents à une région d'examen (14), dans lequel la pluralité d'éléments de bobine de radiofréquence (18) peuvent être connectés de manière fonctionnelle à au moins un émetteur de radiofréquence (44), et sont configurés pour générer un champ d'excitation B1 dans la région d'examen en fonction d'un signal d'excitation généré ; et

au moins un dispositif d'ajustement passif (22, 24) disposé dans la région d'examen (14) entre les éléments de bobine de radiofréquence (18) et un espace dans la région d'examen (14) devant être occupé par un sujet, et fourni pour améliorer l'uniformité du champ d'excitation B1 généré, le au moins un dispositif d'ajustement passif (22, 24) incluant au moins l'un parmi

- au moins une tige (22) composée d'un matériau diélectrique solide ne générant pas de signal de résonance magnétique du proton ayant une permittivité d'au moins 100 qui est disposé dans la région d'examen (14) pour ajuster de manière passive le champ d'excitation B1 généré ; et

- au moins un tube (24) configuré pour recevoir un volume variable de fluide diélectrique disposé adjacent aux éléments de bobine de radiofréquence (18) pour ajuster de manière passive le champ d'excitation B1 généré,

dans lequel le système à résonance magnétique comprend en outre un processeur d'ajustement (20) qui est configuré pour analyser une distribution du champ d'excitation B1 généré et pour déterminer la position de la au moins une tige (22) et/ou le volume ou la permittivité diélectrique du au moins un tube (24) afin d'améliorer une uniformité de la distribution B1 pour optimiser une homogénéité du champ d'excitation B1, dans lequel

dans le cas de la au moins une tige, le système à résonnance magnétique (10) inclut un actionneur (26) qui est configuré pour positionner la tige diélectrique (22) dans la région d'examen (14) en fonction de la position déterminée par le processeur d'ajustement (20), et

dans le cas du au moins un tube (24), le système à résonnance magnétique (10) inclut

un réservoir (30) qui est configuré pour fournir le fluide diélectrique au au moins un tube (24) ; et

un dispositif de commande de fluide (28) qui est configuré pour commander au moins l'un parmi le volume de fluide diélectrique dans le au moins un tube (24) et la permittivité diélectrique du fluide diélectrique fourni au au moins un tube (24) en fonction respectivement du volume et de la permittivité diélectrique déterminés par le processeur d'ajustement (20).


 
2. Système à résonnance magnétique (10) selon la revendication 1, dans lequel la au moins une tige diélectrique (22) est disposée en dessous de l'espace devant être occupé par le sujet.
 
3. Système à résonnance magnétique (10) selon la revendication 1 ou 2, dans lequel la permittivité diélectrique de la tige diélectrique (22) est supérieure à 500.
 
4. Système à résonnance magnétique (10) selon l'une quelconque des revendications 1 à 3, incluant en outre :
un tube ou un réservoir (24) ayant un volume variable de fluide diélectrique disposé adjacent à chaque élément de bobine de radiofréquence de la pluralité d'éléments de bobine de radiofréquence (18).
 
5. Système à résonnance magnétique (10) selon l'une quelconque des revendications 1 à 4, incluant en outre :
deux ou plus de deux émetteurs de radiofréquence (44), chacun étant configuré pour générer un signal d'excitation pour une émission via la pluralité d'éléments de bobine de radiofréquence (18) pour générer un champ d'excitation B1 ajusté de manière passive.
 
6. Système à résonnance magnétique (10) selon l'une quelconque des revendications 1 à 5, dans lequel les d'éléments de bobine de radiofréquence (18) forment une bobine de radiofréquence (18) de type cage d'oiseau, incluant en outre :
deux ou plus de deux émetteurs de radiofréquence (44), chacun étant configuré pour générer un signal d'excitation pour une émission via la bobine de radiofréquence en cage d'oiseau (18) pour générer un champ d'excitation B1 ajusté de manière active et passive.
 
7. Système à résonnance magnétique (10) selon l'une quelconque des revendications 5 et 6, dans lequel le processeur d'ajustement (20) est configuré pour déterminer des composantes uniques de phase et d'amplitude pour chaque signal d'excitation généré par chacun des deux ou plus de deux émetteurs RF et le processeur d'ajustement (20) est configuré pour commander chacun des deux ou plus de deux émetteurs de radiofréquence (44) pour générer le signal d'excitation déterminé en fonction de la distribution d'uniformité analysée déterminée par le processeur d'ajustement (20) pour améliorer l'homogénéité du champ d'excitation B1 ajusté de manière passive.
 
8. Système à résonnance magnétique (10) selon l'une quelconque des revendications 1 à 7, incluant en outre :

un aimant principal (12) qui est configuré pour générer un champ magnétique statique d'au moins 3 teslas dans la région d'examen (14) ; et

au moins un récepteur de radiofréquence (46) qui est configuré pour recevoir des signaux de résonance magnétique induits provenant de la région d'examen (14) résultant du champ d'excitation B1.


 
9. Procédé pour ajuster de manière passive un champ d'excitation B1, comprenant :

le placement d'au moins un dispositif d'ajustement passif (22, 24) dans une région d'examen (14) définie à l'intérieur d'éléments de bobine de radiofréquence (18) d'une bobine de radiofréquence pour améliorer l'uniformité du champ d'excitation B1 généré par la bobine de radiofréquence, le au moins un dispositif d'ajustement passif (22, 24) incluant au moins l'un parmi

- au moins une tige (22) composée d'un matériau diélectrique solide ne générant pas de signal de résonance magnétique du proton ayant une permittivité d'au moins 100 qui est disposé dans la région d'examen (14) pour ajuster de manière passive le champ d'excitation B1 généré ; et

- au moins un tube (24) configuré pour recevoir un volume variable de fluide diélectrique disposé adjacent aux éléments de bobine de radiofréquence (18) pour ajuster de manière passive le champ d'excitation B1 généré,

l'analyse d'une distribution du champ d'excitation B1 généré et

la détermination de la position de la au moins une tige (22) et/ou du volume ou de la permittivité diélectrique du au moins un tube (24) afin d'améliorer une uniformité de la distribution B1 pour optimiser une homogénéité du champ d'excitation B1, par un processeur d'ajustement (20),

avec un dispositif de commande (26, 28), la commande d'au moins l'un parmi le volume de fluide diélectrique dans le au moins un tube (24) et une position de la au moins une tige (22),

dans le cas de la commande de la au moins une tige, le positionnement de la tige diélectrique (22) dans la région d'examen (14) avec un actionneur (26) en fonction de la position déterminée par le processeur d'ajustement (20),

dans le cas de la commande du au moins un tube, la commande d'au moins l'un parmi le volume de fluide diélectrique dans le au moins un tube (24) et la permittivité diélectrique du fluide diélectrique fourni au au moins un tube (24) en fonction respectivement du volume et de la permittivité diélectrique déterminés par le processeur d'ajustement (20).


 
10. Procédé selon la revendication 9, dans lequel la au moins une tige (22) présente une permittivité supérieure à 500.
 
11. Procédé selon la revendication 10, incluant en outre :

avec le dispositif de commande (26, 28), la sélection d'une d'une pluralité de tiges de différentes tailles et/ou permittivités en fonction d'une taille d'un sujet à examiner ; et

avec le dispositif de commande (26, 28), le positionnement de la tige sélectionnée dans la région d'examen.


 




Drawing



























REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Non-patent literature cited in the description