(19)
(11)EP 2 652 756 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
20.05.2020 Bulletin 2020/21

(21)Application number: 11797320.6

(22)Date of filing:  15.12.2011
(51)Int. Cl.: 
H01F 7/123  (2006.01)
H01H 83/12  (2006.01)
H01H 71/26  (2006.01)
(86)International application number:
PCT/EP2011/072898
(87)International publication number:
WO 2012/080393 (21.06.2012 Gazette  2012/25)

(54)

ELECTROMAGNETIC ACTUATOR WITH UNDER VOLTAGE RELEASE

ELEKTROMAGNETISCHER AUSLÖSER MIT UNTERSPANNUNGSFREIGABE

ACTIONNEUR ÉLECTROMAGNÉTIQUE AVEC RELÂCHEMENT EN CAS DE SOUS-TENSION


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 15.12.2010 EP 10195260

(43)Date of publication of application:
23.10.2013 Bulletin 2013/43

(73)Proprietor: Eaton Intelligent Power Limited
Dublin 4 (IE)

(72)Inventor:
  • LAMMERS, Arend
    NL-7558 TV Hengelo (NL)

(74)Representative: Eaton IP Group EMEA 
c/o Eaton Industries Manufacturing GmbH Route de la Longeraie 7
1110 Morges
1110 Morges (CH)


(56)References cited: : 
WO-A1-99/14769
DE-A1- 2 635 096
FR-A- 1 532 765
DE-A1- 1 811 146
DE-C- 474 087
US-A- 4 641 117
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    Field of the invention



    [0001] The present invention relates to an electromagnetic actuator comprising a yoke for guiding a magnetic flux, a holding plate attached to an actuating member, the holding plate and yoke forming a first magnetic circuit, and a magnetic flux generation device for generating a magnetic flux in the first magnetic circuit.

    Prior art



    [0002] International patent publication WO99/14769 discloses an actuator for operating a vacuum switch in a switch gear installation. The actuator is provided with a switch on coil and a switch off coil, and with a permanent magnet for keeping a holding plate locked against a yoke, and against a spring force. Furthermore, a trip device is arranged in the actuator which can counteract the magnet field of the permanent magnet to trip the actuator to an off position using the energy stored in the spring.

    Summary of the invention



    [0003] The present invention seeks to provide an improved electromagnetic actuator.

    [0004] According to the present invention, an electromagnetic actuator according to the preamble defined above is provided, wherein the magnetic flux generation device comprises an under voltage release coil electrically connected to an auxiliary voltage source representing the value of a voltage to be monitored.

    [0005] This obviates the need for a permanent magnet in the electromagnetic actuator, while at the same time incorporating an under voltage protection function in the electromagnetic actuator.

    [0006] According to the present invention, the electromagnetic actuator furthermore comprises a tripping coil, the under voltage release coil being able to generate a magnetic flux in the first magnetic circuit opposing a magnetic flux generated by the tripping coil. Combining an under voltage release coil and a tripping coil in the same magnetic circuit provides a more efficient actuator. In an embodiment, the under voltage release coil has a winding orientation opposite to a winding orientation of the tripping coil. This allows to have opposite working of the different coils according to their intended function. In an even further embodiment, the under voltage release coil is positioned coaxial to the tripping coil, which provides efficient use of available space in the actuator.

    [0007] According to the present invention, the electromagnetic actuator further comprises a pre-tensioning device (e.g. a spring coil) which exerts a pre-tension force on the holding plate away from the yoke, the under voltage release coil being dimensioned to generate an attraction force holding the holding plate against the yoke, the attraction force exceeding the pre-tension force when the auxiliary voltage exceeds a predetermined threshold value. The under voltage release coil in normal operation then provides a sufficiently high magnetic flux to keep the actuator in the on position. Once the monitored voltage drops below a certain value, the actuator will change to an off position. In an embodiment the pre-tensioning device comprises a mechanical device such as a spring coil, leaf coil, etc.

    [0008] According to the present invention, the pre-tensioning device comprises a device external to the electromagnetic actuator, such as a vacuum interrupter which itself is provided with pre-tensioning elements.

    [0009] The electromagnetic actuator comprises a closing coil for generating a magnetic flux in a second magnetic circuit, the second magnetic circuit being separate from the first magnetic circuit. Keeping the second magnetic circuit separate prevents any possible interference with another function of the actuator as described above.

    [0010] The auxiliary voltage source is an auxiliary voltage supply available in a switch gear installation in a further embodiment, the auxiliary voltage supply providing a voltage representative for the switch gear installation main voltage. This allows efficient use of available elements in the switch gear to enable proper operation of the present actuator.

    [0011] In a further aspect, the present invention relates to a switch gear installation comprising an auxiliary voltage supply providing a voltage representing a main voltage of the switch gear installation, and an electromagnetic actuator according to any one of the present invention embodiments.

    Short description of drawings



    [0012] The present invention will be discussed in more detail below, using a number of exemplary embodiments, with reference to the attached drawings, in which

    Fig. 1 shows a cross sectional view of an electromagnetic actuator as known in the prior art;

    Fig. 2 shows a cross sectional view of an example of an electromagnetic actuator useful for understanding the present invention;

    Fig. 3 shows a cross sectional view of an electromagnetic actuator as known in the prior art for operating a vacuum interrupter; and

    Fig. 4 shows a cross sectional view of an electromagnetic actuator according to an embodiment of the present invention.


    Detailed description of exemplary embodiments



    [0013] The present invention embodiments relate to a solution for providing a mechanism for releasing an electromagnetic actuator, e.g. in the form of a tripping circuit and/or an actuator for a circuit breaker (such as a vacuum interrupter), when an under voltage occurs in a switch gear installation. Electromagnetic actuators are widely used in switch gear installations and are usually operated for switching off and on circuit breakers or tripping circuits.

    [0014] Fig. 1 shows a cross sectional view of a prior art electromagnetic actuator 10, in the form of a tripping actuator. A spring 2 is positioned between an actuator housing 7 and a spring plate 8 which is attached to a trip pin 1. The trip pin 1 is able to trip a tripping device mechanically linked to the trip pin 1 (e.g. to switch off a circuit breaker). The spring 2 is able to store a trip energy which is sufficient to move the pin 1 back to an extended position when the tripping actuator is energized.

    [0015] The trip energy in the spring 2 is e.g. stored when closing a medium voltage switching device or a tripping device. The trip pin 1 is fixedly attached to a holding plate 6. As shown in the embodiment, a magnetic circuit is formed in a holding plate 6 and a yoke 9. A permanent magnet 4 is positioned in the magnetic circuit, and the magnetic flux thus induced is chosen to be sufficient to hold the holding plate 6 against the yoke 9, despite the force generated by the spring 2.

    [0016] Furthermore a trip coil 3 is provided which allows to generate an additional magnetic flux in the magnetic circuit. When the additional magnetic flux opposes the magnetic flux generated by the permanent magnet 4 (e.g. by energizing the trip coil 3 with a properly chosen voltage), the holding plate 6 is released. The force of the spring 2 then assures that the trip pin 1 is extended and able to trip a tripping device. This type of tripping actuator has a compact design and requires little trip energy. The tripping actuator 10 has to be charged by an external action, e.g. the closing of a vacuum switch, which allows the holding plate 6 to close the magnetic circuit and to charge the spring 2.

    [0017] In Fig. 2, a cross sectional view is depicted of an electromagnetic actuator 10 according to an example useful for understanding the present invention. Again, a housing 7 is provided, as well as a spring 2 and a spring plate 8. A yoke 9 is provided for guiding a magnetic flux in which a tripping coil 3 is positioned. A holding plate 6 is attached to an actuating member in the form of a pin 1 and in energized state of the actuator 10 the holding plate 6 closes a first magnetic circuit with the yoke 9.

    [0018] In this example, an under voltage protection coil 5 is provided coaxial to the tripping coil 3, the under voltage protection coil 5 implementing a magnetic flux generation device for generating a magnetic flux in the first magnetic circuit. The under voltage protection coil 5 is energized using an auxiliary voltage source of the switch gear in which the actuator is used. The auxiliary voltage source provides a voltage representing the value of a voltage to be monitored. In normal operation, the coil 5 provides the magnetic flux needed in the actuator 10 to hold the holding plate 6 against the yoke 9 (i.e. the coil 5 replaces the permanent magnet 4 in the embodiment shown in Fig. 1).

    [0019] The magnetic flux generated by the under voltage release coil 5 opposes a magnetic flux generated by the tripping coil 3. This may be implemented by providing the under voltage release coil 5 with a winding orientation opposite to a winding orientation of the tripping coil 3. In the example shown, the under voltage release coil 5 is furthermore positioned coaxial to the tripping coil 3 inside the yoke 9, allowing efficient use of space.

    [0020] According to IEC62271-1, an under voltage release device shall operate to open a switching device it protects when the voltage at the terminals of the release device falls below 35% of its rated voltage, even if the fall is slow and gradual. On the other hand, it shall not operate the switching device when the voltage at its terminals exceeds 70% of its rated supply voltage. The closing of the switching device protected by the release device shall be possible when the values of the voltage at the terminals of the voltage release are equal to or higher than 85% of its rated voltage. Its closing shall be impossible when the voltage at the terminal is lower than 35% of its rated supply voltage. The present invention embodiments are able to meet these requirements, by properly dimensioning the magnetic circuits and elements, especially the under voltage release coil 5.

    [0021] In prior art systems, an under voltage release device is a separate device (e.g. mechanically or electrically) linked to the switching device it is intended to protect. An under voltage release device e.g. comprises a spring loaded device that trips a circuit breaker mechanism. When the mechanism fails or the fixation of the under voltage release device is broken, there is no possibility to trip the associated device in case of under voltage.

    [0022] In normal operation, the coil 5 of the actuator 10 is constantly energized by an auxiliary voltage of the switch gear in which it is used. When the auxiliary voltage drops to 35-70% of the nominal value, the magnetic force generated by the coil 5 which keeps the holding plate 6 against the yoke 9 becomes less than the mechanical force of the spring 2 trying to drive the holding plate 6 away from the yoke 9. This causes the trip pin 1 to move upwards and to trip the medium voltage switch or circuit breaker to which it is connected.

    [0023] When the coil 5 is energized (normal operation of the switch gear), the trip coil 3 may be energized in a manner opposing or counteracting the magnetic flux generated by the coil 5, in order to release the trip pin 1 due to the force executed by the spring 2.

    [0024] The actuator 10 according to the embodiment of Fig. 2 may by symmetrical around a longitudinal axis of the actuator 10. The various elements such as the yoke 9 and coils 3, 5 can have a circular (cylindrical) shape. Alternatively, the elements may have a rectangular or other form.

    [0025] The spring 2 and disc 8 of the electromagnetic actuator embodiment shown in Fig. 2 form a pre-tensioning device which exerts a pre-tension force on the holding plate away from the yoke. The under voltage release coil 5 is dimensioned to generate an attraction force holding the holding plate 6 against the yoke 9, the attraction force exceeding the pre-tension force when the auxiliary voltage exceeds a predetermined threshold value. The spring 2 may take any suitable form, such as a coil spring, or leaf spring.

    [0026] In a further example useful for understanding the present invention, the pre-tensioning device comprises a device external to the electromagnetic actuator 10, 20. Fig. 3 shows a cross sectional view of an electromagnetic actuator 20 used for operating a vacuum switch in a switch gear. The vacuum switch is provided with a pre-tensioning device which stores energy for switching off the vacuum switch when needed. The force generated by this pre-tensioning device may be used as well in the electromagnetic actuator 20. A pin 1 is attached to a plunger 11 and a holding plate 6. The assembly of pin 1, holding plate 6 and plunger 11 can move between two positions relative to a yoke 9. A closing coil 12 is provided in the actuator for generating a magnetic flux in a second magnetic circuit which is separate from the first magnetic circuit. When energised, the closing coil 12 attracts the plunger 11, and moves the pin 1 upward thereby switching on a vacuum interrupter or other switching device in the switch gear installation. This is accomplished using the second magnetic circuit through the yoke 9 and plunger 11 indicated by the dash-dot line at the top of the yoke 9 in Fig. 3.

    [0027] The yoke 9 is formed at its end near the holding plate 6 to have two legs 9a, 9b and space for a permanent magnet 4, for forming a secondary magnetic circuit in combination with the holding plate 6. The permanent magnet 4 assures the holding plate 6 is kept against the yoke legs 9a, 9b, withstanding and maintaining contact pressure springs in the vacuum interrupter mechanically linked to the pin 1.

    [0028] A trip coil 3 is provided which allows to counteract the magnetic flux in the secondary magnetic circuit when properly energized. When energizing the trip coil 3, the magnetic flux in the secondary magnetic circuit is counteracted, allowing the holding plate 6 to come off the yoke legs 9a, 9b. The electromagnetic actuator 20 itself or the switching device it is connected to may be equipped with force generating means (such as a spring) to force the actuator 20 to its off position.

    [0029] Fig. 4 shows a cross sectional view of an electromagnetic actuator according to an embodiment of the present invention. Here, the permanent magnet 4 is no longer present to generate the magnetic flux in the secondary magnetic circuit. Instead, an under voltage release coil 5 is provided in the secondary magnetic circuit. As in the example of Fig. 2, the under voltage release coil 5 may be positioned coaxial to the trip coil 3. Also, the under voltage release coil 5 is connected to an auxiliary voltage representing the voltage to be monitored for the under voltage release functionality. In normal operation, the coil 5 provides the magnetic flux in the secondary magnetic circuit which is needed to hold the holding plate 6 to the yoke legs 9a, 9b (and the vacuum interrupter linked to the pin 1 in a switched on state).

    [0030] When the voltage on the terminals of the coil 5 drops below a predefined minimum voltage (representing a threshold value of the voltage to be monitored), the magnetic flux in the secondary circuit decreases as well below the force of the contact pressure springs of the vacuum interrupter, and the electromagnetic actuator 20 will open the vacuum interrupter.

    [0031] The present invention embodiments of the electromagnetic actuator 20 has the advantage that no additional devices are needed to implement an under voltage protection or under voltage release function in a switch gear installation. The energy needed to energise coil 5 (in the order of several Watts) is not very high, and is usually marginal when compared to the energy transported by the switching device it protects. The electromagnetic actuator 20 with built-in under voltage protection according to the present invention embodiments is also fail safe, as any failure to the coil 5 or associated electrical wiring will bring or keep the associated switching device in the off position.

    [0032] The dimensions and characteristics of the under voltage release coil 5 depend on the specific application and dimension and characteristics of the other elements used in the electromagnetic actuator embodiments 10, 20, and the associated switch gear or installation it is used in. Determination of dimensions and (magnetic, electrical) characteristics of magnetic circuits and elements thereof are within the reach of the person skilled in the art of electromagnetic actuator technology.

    [0033] The assembly of the under voltage release coil 5 and trip coils 3 as shown in the exemplary embodiment of Fig. 4 may also be implemented in other types of electromagnetic actuators 20 for vacuum interrupters, e.g. having two operating coils (switch on and switch off coil) in the primary magnetic circuit.

    [0034] The electromagnetic actuator according to the present invention embodiments provides for a more efficient use of resources in an actuator, such as space and cost. The electromagnetic actuator embodiments may be used whenever an auxiliary voltage supply is available in a switch gear installation, the auxiliary voltage supply providing a voltage representative for the switch gear installation main voltage. In a further aspect, the present invention relates to a switch gear installation comprising an auxiliary voltage supply providing a voltage representing a main voltage of the switch gear installation, and an electromagnetic actuator according to any one of the present invention embodiments.

    [0035] The present invention embodiments have been described above with reference to a number of exemplary embodiments as shown in the drawings. Modifications and alternative implementations of some parts or elements are possible, and are included in the scope of protection as defined in the appended claims.


    Claims

    1. Electromagnetic actuator comprising
    a yoke (9) for guiding a magnetic flux,
    a holding plate (6) attached to an actuating member (1), the holding plate (6) and yoke (9) forming a first magnetic circuit,
    a pre-tensioning device (2) which exerts a pre-tension force on the holding plate (6) away from the yoke (9), the pre-tensioning device comprising a device external to the electromagnetic actuator, a magnetic flux generation device for generating a magnetic flux in the first magnetic circuit, the magnetic flux generation device being dimensioned to generate an attraction force holding the holding plate (6) against the yoke (9),
    a tripping coil (3),
    the magnetic flux generation device being able to generate a magnetic flux in the first magnetic circuit opposing a magnetic flux generated by the tripping coil (3), and
    a closing coil (12) for generating a magnetic flux in a second magnetic circuit, the second magnetic circuit being separate from the first magnetic circuit,
    characterized in that the magnetic flux generation device comprises an under voltage release coil (59) electrically connected to an auxiliary voltage source representing the value of a voltage to be monitored and the attraction force exceeds the pre-tension force when the auxiliary voltage exceeds a predetermined threshold value.
     
    2. Electromagnetic actuator according to claim 1, wherein the under voltage release coil (5) has a winding orientation opposite to a winding orientation of the tripping coil (3).
     
    3. Electromagnetic actuator according to claim 1 or 2, wherein the under voltage release coil (5) is positioned coaxial to the tripping coil (3)
     
    4. Electromagnetic actuator according to any one of claims 1-3, wherein the pre-tensioning device comprises a mechanical device.
     
    5. Electromagnetic actuator according to any one of claims 1-4, wherein the auxiliary voltage source is an auxiliary voltage supply available in a switch gear installation, the auxiliary voltage supply providing a voltage representative for the switch gear installation main voltage.
     
    6. Switch gear installation comprising
    an auxiliary voltage supply providing a voltage representing a main voltage of the switch gear installation, and
    an electromagnetic actuator according to any one of claims 1-5.
     


    Ansprüche

    1. Elektromagnetischer Aktor, umfassend
    ein Joch (9) zum Leiten eines Magnetflusses,
    eine Halteplatte (6), die an einem Betätigungsglied (1) angebracht ist, wobei die Halteplatte (6) und das Joch (9) einen ersten Magnetkreis bilden,
    eine Vorspannvorrichtung (2), die eine Vorspannkraft vom Joch (9) weg auf die Halteplatte (6) ausübt, wobei die Vorspannvorrichtung eine Vorrichtung außerhalb des elektromagnetischen Aktors umfasst,
    eine Magnetfluss-Erzeugungsvorrichtung zum Erzeugen eines Magnetflusses im ersten Magnetkreis, wobei die Magnetfluss-Erzeugungsvorrichtung so bemessen ist, dass sie eine Anziehungskraft erzeugt, die die Halteplatte (6) am Joch (9) hält,
    eine Auslösespule (3),
    wobei die Magnetfluss-Erzeugungsvorrichtung in der Lage ist, einen Magnetfluss im ersten Magnetkreis zu erzeugen, der einem von der Auslösespule (3) erzeugten Magnetfluss entgegengesetzt ist, und
    eine Schließspule (12) zum Erzeugen eines Magnetflusses in einem zweiten Magnetkreis, wobei der zweite Magnetkreis vom ersten Magnetkreis getrennt ist,
    dadurch gekennzeichnet, dass die Magnetfluss-Erzeugungsvorrichtung eine Unterspannungsfreigabespule (59) umfasst, die elektrisch mit einer Hilfsspannungsquelle verbunden ist, welche den Wert einer Spannung darstellt, die überwacht werden soll, und die Anziehungskraft die Vorspannkraft übersteigt, wenn die Hilfsspannung einen vorbestimmten Schwellenwert übersteigt.
     
    2. Elektromagnetischer Aktor nach Anspruch 1, wobei die Unterspannungsfreigabespule (5) einen Wicklungssinn aufweist, der einem Wicklungssinn der Auslösespule (3) entgegengesetzt ist.
     
    3. Elektromagnetischer Aktor nach Anspruch 1 oder 2, wobei die Unterspannungsfreigabespule (5) koaxial zur Auslösespule (3) angeordnet ist.
     
    4. Elektromagnetischer Aktor nach einem der Ansprüche 1-3, wobei die Vorspannvorrichtung eine mechanische Vorrichtung umfasst.
     
    5. Elektromagnetischer Aktor nach einem der Ansprüche 1-4, wobei es sich bei der Hilfsspannungsquelle um eine Hilfsspannungsversorgung handelt, die in einer Schaltanlage zur Verfügung steht, wobei die Hilfsspannungsversorgung eine Spannung bereitstellt, die für die Hauptspannung der Schaltanlage repräsentativ ist.
     
    6. Schaltanlage, umfassend
    eine Hilfsspannungsversorgung, die eine Spannung bereitstellt, welche eine Hauptspannung der Schaltanlage darstellt, und
    einen elektromagnetischen Aktor nach einem der Ansprüche 1-5.
     


    Revendications

    1. Actionneur électromagnétique comprenant
    une culasse (9) permettant de guider un flux magnétique,
    une plaque de maintien (6) fixée à un élément d'actionnement (1), la plaque de maintien (6) et la culasse (9) formant un premier circuit magnétique,
    un dispositif de précontrainte (2) qui exerce une force de précontrainte sur la plaque de maintien (6) à l'écart de la culasse (9), le dispositif de précontrainte comprenant un dispositif externe à l'actionneur électromagnétique,
    un dispositif de génération de flux magnétique permettant de générer un flux magnétique dans le premier circuit magnétique, le dispositif de génération de flux magnétique étant dimensionné pour générer une force d'attraction maintenant la plaque de maintien (6) contre la culasse (9),
    une bobine de déclenchement (3),
    le dispositif de génération de flux magnétique étant apte à générer un flux magnétique dans le premier circuit magnétique à l'opposé d'un flux magnétique généré par la bobine de déclenchement (3), et
    une bobine de fermeture (12) permettant de générer un flux magnétique dans un second circuit magnétique, le second circuit magnétique étant distinct du premier circuit magnétique,
    caractérisé en ce que le dispositif de génération de flux magnétique comprend une bobine de relâchement en cas de sous-tension (59) connectée électriquement à une source de tension auxiliaire représentant la valeur d'une tension devant être surveillée et la force d'attraction dépasse la force de précontrainte lorsque la tension auxiliaire dépasse une valeur seuil prédéterminée.
     
    2. Actionneur électromagnétique selon la revendication 1, dans lequel la bobine de relâchement en cas de sous-tension (5) a une orientation d'enroulement opposée à une orientation d'enroulement de la bobine de déclenchement (3).
     
    3. Actionneur électromagnétique selon la revendication 1 ou 2, dans lequel la bobine de relâchement en cas de sous-tension (5) est positionnée de manière coaxiale à la bobine de déclenchement (3).
     
    4. Actionneur électromagnétique selon l'une quelconque des revendications 1 à 3, dans lequel le dispositif de précontrainte comprend un dispositif mécanique.
     
    5. Actionneur électromagnétique selon l'une quelconque des revendications 1 à 4, dans lequel la source de tension auxiliaire est une alimentation en tension auxiliaire disponible dans une installation d'appareillage de commutation, l'alimentation en tension auxiliaire fournissant une tension représentative pour la tension principale d'installation d'appareillage de commutation.
     
    6. Installation d'appareillage de commutation comprenant
    une alimentation en tension auxiliaire fournissant une tension représentant une tension principale de l'installation d'appareillage de commutation, et
    un actionneur électromagnétique selon l'une quelconque des revendications 1 à 5.
     




    Drawing









    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description