(19)
(11)EP 2 658 615 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
02.09.2020 Bulletin 2020/36

(21)Application number: 10861496.7

(22)Date of filing:  30.12.2010
(51)International Patent Classification (IPC): 
A62C 35/02(2006.01)
A62C 5/02(2006.01)
A62C 5/00(2006.01)
A62C 99/00(2010.01)
(86)International application number:
PCT/US2010/062451
(87)International publication number:
WO 2012/091710 (05.07.2012 Gazette  2012/27)

(54)

FIRE SUPPRESSION SYSTEM WITH VARIABLE DUAL USE OF GAS SOURCE

BRANDLÖSCHSYSTEM MIT VARIABLER DUALER VERWENDUNG DER GASQUELLE

SYSTÈME D'EXTINCTION D'INCENDIE À DOUBLE UTILISATION VARIABLE DE SOURCE DE GAZ


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(43)Date of publication of application:
06.11.2013 Bulletin 2013/45

(73)Proprietor: UTC Fire & Security Corporation
Farmington, Connecticut 06032 (US)

(72)Inventors:
  • SIEWERT, Bryan, Robert
    Clinton, Connecticut 06413 (US)
  • CORN, May, L.
    Manchester, Connecticut 06040 (US)
  • COHEN, Jeffrey, M.
    Hebron, Connecticut 06248 (US)
  • CAREY, Michael, R.
    East Hampton, Connecticut 06424 (US)
  • LINDSAY, Mike
    Swainsboro, Georgia 30401 (US)

(74)Representative: Schmitt-Nilson Schraud Waibel Wohlfrom Patentanwälte Partnerschaft mbB 
Pelkovenstraße 143
80992 München
80992 München (DE)


(56)References cited: : 
EP-A1- 2 039 396
WO-A1-2009/041935
US-A- 5 713 417
US-A- 6 155 351
US-A1- 2010 175 897
WO-A1-94/23798
US-A- 3 337 195
US-A- 5 738 174
US-A1- 2008 185 159
US-B1- 6 267 183
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND



    [0001] There are a variety of fire suppression systems. Many utilize sprinkler heads or nozzles mounted near a ceiling in various positions in a room. Some such systems are known as deluge systems. These release a relatively large amount of water responsive to a fire condition to douse a fire and saturate objects in the room to prevent them from igniting.

    [0002] Other sprinkler-based fire suppression systems release a fine mist into a room responsive to a fire condition. One advantage to such systems over deluge systems is that they use less water. On the other hand, some misting systems require relatively high pressure to achieve the desired discharge of fire suppressing fluid. Typical misting systems use pressurized gas to shear the fluid as it is dispersed from the nozzles.

    [0003] Most mist-based fire suppression systems include a pump to achieve the pressures necessary for system operation. Water-based systems, for example, require an operating pressure that is higher than the typical pressure available from a municipal water supply. The pump is often one of the most expensive components of the system, which hinders an ability to reduce the cost of the system. Some systems also include pressurized gas tanks that pressurize the fluid lines that deliver the fluid to the sprinkler nozzles.

    [0004] US 2010/175897 A1 discloses a self-sustaining compressed air foam system that utilizes a vacuum proportioning blending console, delivering pre-determined amounts of fire pre-suppressant/suppressant foam concentrate with ratios from 0.01% to 6% and water when used in concert with a vacuum dispensing closure for tight head pails dispensing said foam concentrate that is plumbed to either an air operated pump or solar powered electric pump on the inlet side producing a pre-suppressant foam solution.

    [0005] US 2008/185159 A1 discloses an apparatus for foam suppression of fire which is configured for use in new or preciously existing structures and which uses a non-fire-suppression-dedicated water supply.

    [0006] US 5 738 174 A discloses a method of fighting a fire which drives a first fire-extinguishing liquid from at least one spray head or sprinkler at a fire with a low-pressure pump. Thereafter it drives a second fire-extinguishing liquid from a liquid container and the spray head or sprinkler at the fire with a first propellant gas from at least one gas container, at least some of the first propellent gas remaining in the gas container after all of the second fire-extinguishing liquid has been driven from the liquid container. Still thereafter it again drives the first fire-extinguishing liquid from the spray head or sprinkler at the fire with the low-pressure pump, the low-pressure pump being driven by the first propellant gas that was remaining in the gas container.

    [0007] US 3 337 195 A discloses a foam generating apparatus having a compressed air driven pump connected via a gas conduit to a compressed air source, the pump outlet being connected to a mixing means where liquid pumped is mixed with compressed air. Then foam form the mixing means is fed to a foam applying conduit which is connected to the gas conduit for controlling the air flow to the pump.

    [0008] US 6 267 183 B1 deals with fire suppressant foam generation and discloses a corresponding application apparatus comprising a backpack mounted unit that produces a low moisture content fire suppressant foam for use in fire fighting applications. The apparatus draws fire suppressant foam concentrate from a reservoir mounted on the backpack and injects pressurized gas into the flow of the fire fighting foam concentrate to create the fire suppressant foam.

    [0009] US 6 155 351 A discloses a foam based product solution delivery apparatus which makes use of pressurized gas to power a pressure operated pump to draw the water/foam-concentrate/product(s) from supply tank(s) and propel the resultant solution (foam fluid), with pressurized gas injected therein, through an agitation apparatus that mechanically agitates the water/foam/product(s) solution to create the foam based product solution for transmission to the foam delivery apparatus.

    SUMMARY



    [0010] A sprinkler system is provided according to claim 1.

    [0011] A method is provided according to claim 7.

    [0012] The various features and advantages of the invention will become apparent to those skilled in the art from the following detailed description. The drawings that accompany the detailed description can be briefly described as follows.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0013] 

    Figure 1 schematically illustrates selected portions of a fire suppression system designed according to an embodiment of this invention.

    Figure 2 schematically illustrates another example embodiment.


    DETAILED DESCRIPTION



    [0014] Figure 1 schematically shows selected portions of a fire suppression system 20. An example sprinkler nozzle 22 is positioned to discharge a fire suppressing fluid into an area responsive to a fire condition. The nozzle 22 is connected to a conduit 24. The nozzle 22 and the conduit 24 establish a discharge path. A pump 26 causes fluid from a source 28 to flow through the conduit to the nozzle 22. In one example the fluid comprises water and the source 28 is a municipal water supply. In another example, the fluid source 28 is a reservoir of a selected fluid such as water. In one example the fluid reservoir is at ambient pressure.

    [0015] The pump 26 in this example is a pneumatically driven hydraulic pump. The pump 26 delivers the fluid (e.g., water) to the nozzle 22 through the conduit 24 when the pump 26 is driven by pressurized gas. The illustrated example includes a pressurized gas source 30 that provides pressurized gas through a supply line 32. In one example the gas source 30 comprises a rotary compressor. In another example, the gas source 30 comprises at least one pressurized tank. The gas may be air or carbon dioxide or nitrogen for example.

    [0016] One branch 34 of the supply line 32 delivers pressurized gas to the pump 26 to drive the pump 26 for delivering the fluid from the supply 28 to the nozzle 22. Another branch 36 of the supply line 32 delivers the gas to the discharge path (i.e., at least one of the nozzle 22 or the conduit 24) at some point (e.g., upstream of the nozzle 22 or at the nozzle 22) to achieve a desired discharge of the fire suppressing fluid from the nozzle 22. The particular location at which the gas is introduced for achieving the desired discharge will depend on the particular design of the system 20, the nozzle 22 or both. For example, a system that relies upon mixing gas and liquid upstream of the nozzle 22 will include a branch 36 that provides the pressurized gas into the conduit 24 at a suitable location. Another system that relies upon mixing gas and liquid within the nozzle 22 will include the branch 36 coupled to a suitable inlet of the nozzle 22.

    [0017] Given this description and a chosen system or nozzle configuration, those skilled in the art will be able to determine the best location for introducing the gas for achieving the desired discharge.

    [0018] One feature of the illustrated example is that the same gas source 30 provides pressurized gas for driving the pump 26 and pressurized gas to achieve the desired discharge from the nozzle 22.

    [0019] This example eliminates a separate electrical connection for the pump 26. For systems 20 that include pressurized cylinders as the gas source 30, no electrical connection is required for the entire system. Another feature of the illustrated example is that it reduces the footprint (or occupied space) of the pump compared to other systems that do not include such a pump. It also utilizes the gas source 30 for the dual purpose of supplying gas to the system 20 to achieve a desired discharge from the nozzle 22 and to drive the pump 26. This provides a lower cost arrangement for a supply of liquid and gas (e.g., water and air) that provides the desired pressure of each for the system 20.

    [0020] The illustrated example system 20 includes a controller 40 that controls the operation of regulators 42 and 44, respectively. The controller 40 selectively varies the pressure or amount of gas that flows to the pump 26 by controlling the regulator 42. The controller 40 selectively varies the pressure or amount of gas that flows to the nozzle 22 or conduit 24 by controlling the regulator 44. By controlling at least one of the gases provided to the pump 26 or the gas provided to the nozzle 22, the discharge from the nozzle can be selectively controlled.

    [0021] In one example, the controller 40 is programmed to selectively vary the gas provided to at least one of the pump 26 or the nozzle 22 over time to achieve different discharges from the nozzle 22. In one such example, the discharge from the nozzle 22 depends, at least in part, on the ratio of the gas to the liquid provided to the nozzle 22. Controlling the gas provided to the pump 26 or the nozzle 22 controls the gas-to-liquid mass flow ratio and, thereby controls the discharge from the nozzle.

    [0022] For example, less gas provided to the pump 26 can decrease the rate that the pump 26 delivers liquid to the conduit 24. To increase the gas-to-liquid ratio in one example, the controller 40 causes the regulator 42 to decrease the amount of gas or the pressure of the gas provided to the pump 26. In another example, the controller 40 causes the regulator 44 to increase the amount of gas or the pressure of the gas provided to the nozzle 22 (or the conduit 24). Another example includes controlling both regulators 42 and 44 to increase the gas-to-liquid ratio by increasing the gas provided through the regulator 44 and decreasing the gas provided through the regulator 42.

    [0023] The controller 40 can also decrease the gas-to-liquid ratio by increasing the amount of gas that flows through the regulator 42 or the pressure of the gas through the regulator 42 for driving the pump 26. Increasing the output of the pump 26 by increasing the pressure or amount of gas used to drive the pump without changing the gas flow provided to the conduit 24 or nozzle 22 will decrease the gas-to-liquid ratio used for achieving a desired discharge from the nozzle 22. In another example, the controller 40 decreases the amount of gas provided to the conduit 24 or the nozzle 22. One example includes decreasing the gas provided to the nozzle 22 while increasing the gas provided to drive the pump 26 to achieve a desired, decreased gas-to-liquid ratio.

    [0024] Whether the amount or pressure through either regulator changes may depend on the configuration of the regulator. For example, the regulator may comprise an expansion valve. By increasing the opening size of the expansion valve, a different resulting pressure of gas provided for driving the pump 26 will be realized. Another example regulator comprises a valve having a variable flow-through opening. By increasing the opening of the valve, an increased amount of gas provided to the pump 26 may be realized. Given this description, those skilled in the art will be able to select appropriate pump and regulator components and to control the gas provided to the particular pump they select in a manner that meets the needs of their particular situation.

    [0025] Selectively varying the gas provided to the pump 26 or the nozzle 22 allows for selectively varying the gas-to-liquid ratio and, consequently, to vary the discharge from the nozzle 22. Varying the air-to-liquid ratio achieves different performance characteristics of the system 20. For example, different droplet size of a misting nozzle 22 may be achieved depending on the gas-to-liquid ratio. The velocity of discharge from the nozzle 22 also can be selectively controlled. The discharge pressure or discharge distance may also vary depending on the air-to-liquid ratio.

    [0026] The illustrated example includes the controller 40 selectively varying the amount of gas used for driving the pump 26 or provided to the nozzle 22 for achieving at least two different performance characteristics each associated with the discharge from the nozzle 22. Taking droplet size as an example performance characteristic, the controller 40 controls the gas provided for driving the pump 26 or provided to the nozzle 22 to achieve two different droplet sizes discharged from the nozzle 22. Each performance characteristic or droplet size provides a different effect for fire suppression.

    [0027] By selectively varying the gas-to-liquid ratio to achieve different discharge effects from the nozzle 22, the illustrated example allows for addressing different types of fire situations from a single system, for example. Some fire conditions may require a higher concentration of fire suppressing fluid directly beneath a nozzle while others may require a more widely dispersed discharge of the fire suppressing fluid. Utilizing different discharge pressures, velocities, droplet sizes or a combination of these during a single activation of the system 20 allows for addressing these different types of fire conditions using the single system. This feature enhances the overall capabilities of the system 20 compared to a system that only provides one type of nozzle discharge during system activation. The controller 40 in the illustrated example selectively varies the gas provided to the pump 26 or the gas provided to the nozzle 22 to achieve more than one performance characteristic during a single activation of the system 20. Not only does the varying performance characteristic allow for addressing different types of fire situations but it may enhance the ability to more quickly address a particular type of fire condition.

    [0028] In one example, the controller 40 continuously varies the gas-to-liquid ratio by varying at least one of the gas provided for driving the pump 26 or the gas provided to the nozzle 22 between selected maximum and minimum values. In one example a sinusoidal pattern for varying the gas allows for a smooth, continuous transition over time. This allows for a relatively continuous variation in the discharge from the nozzle 22 and a cycling back-and-forth between selected extremes (e.g., maximum and minimum droplet size).

    [0029] Another example includes the controller 40 varying the gas provided to the pump 26 or to the nozzle 22 intermittently between selected values. In one such example, the controller 40 effectively follows a square wave pattern between a high and low value of the varied amount of gas. This allows for pulsing the discharge from the system, for example.

    [0030] In one example, the variation has a frequency between 0.01 Hz and 1.0 Hz such that the discharge from the nozzle 22 varies between two selected extremes at an interval in a range between every second and every ten seconds.

    [0031] One example includes the controller 40 monitoring an amount of fluid provided to the pump 26 from the source 28. In some cases, the amount of fluid available may vary over time. To achieve a consistent or desired discharge from the nozzle 22, the controller 40 adjusts the gas provided for driving the pump 26, to the nozzle 22 or both to ensure that the desired discharge from the nozzle 22 is achieved even when there may be a variation in the amount of fluid available for the pump 26 to provide to the nozzle 22. In one such example, the discharge from the nozzle 22 does not change over time even though the gas-to-liquid ratio is changed by the controller 40.

    [0032] Figure 2 illustrates another example embodiment of a fire suppression system 20. In this example, the amount of gas provided along the branch 36 to the conduit 24 or the nozzle 22 does not vary. This example includes a high level regulator 50 and a low level regulator 52 between the gas supply line 32 and the pump 26. A valve 54 controlled by the controller 40 switches between the regulators 50 and 52 depending on whether more or less gas for driving the pump 26 is desired. The illustrated example includes a solenoid valve 54 for this purpose. This example allows for varying the water pressure or the amount of water supplied by the pump 26 to the nozzle 22 (when water is the selected fire suppressing fluid). Varying the amount of gas for driving the pump 26 allows for achieving different gas-to-liquid ratios at the nozzle 22 and, consequently, achieving different discharge from the nozzle 22.

    [0033] One feature of the illustrated examples is that relatively simple component design can be incorporated into the system 20, which minimizes complexity and cost. For example, the nozzle 22 need not have any switching components for purposes of varying the flow from or discharge from the nozzle 22. Instead, the controller 40 selectively controls the gas-to-liquid ratio for purposes of selectively varying the discharge from the nozzle 22. Eliminating moving parts within the nozzle 22 simplifies the design and provides a more reliable system, for example.

    [0034] The preceding description is exemplary rather than limiting in nature. Variations and modifications to the disclosed examples may become apparent to those skilled in the art that do not necessarily depart from the essence of this invention. The scope of legal protection given to this invention can only be determined by studying the following claims.


    Claims

    1. A sprinkler system (20), comprising:

    a sprinkler nozzle (22);

    at least one conduit (24) connected with the nozzle (22) for delivering at least a fire extinguishing fluid to the nozzle (22), the nozzle (22) and the conduit (24) establishing a discharge path;

    a pneumatically driven pump (26) connected with the conduit (24) for pumping fluid into the conduit (24);

    a gas source (30) providing pressurized gas to the pump (26) for driving the pump (26), the gas source (30) providing the gas to the discharge path to achieve a desired discharge of extinguishing fluid from the nozzle (22); and

    a controller (40) that is adapted to selectively control an operation of two regulators (42, 44), wherein

    (i) the controller (40) is adapted to vary the pressure or amount of gas that flows to the pump (26) by controlling the first regulator (42), and

    (ii) the controller (40) is further adapted to selectively vary the pressure or amount of gas that flows to the nozzle (22) or conduit (24) by controlling the second regulator (44),

    wherein the controller (40) varies at least one of (i) and (ii) between selected values in at least one of a cyclical, continuous or intermittent manner,

    characterized in that

    the controller (40) is configured to determine at least one of a volume or a pressure of the fluid provided to the pump (26) and responsively adjusts at least one of (i) or (ii) to achieve a desired discharge of the fluid from the nozzle (22).


     
    2. The sprinkler system (20) of claim 1, wherein the controller (40) varies at least one of (i) and (ii) to achieve at least two different performance characteristics of the system (20).
     
    3. The sprinkler system (20) of claim 2, wherein the performance characteristics of the system (20) are realized during a single activation of the system (20).
     
    4. The sprinkler system (20) of claim 2, wherein the different performance characteristics comprise at least two different discharge pressures, at least two different discharge distances, at least two different droplet sizes, or at least two different discharge velocities.
     
    5. The sprinkler system (20) of claim 1, wherein the gas source (30) delivers the gas to the conduit (24).
     
    6. The sprinkler system (20) of claim 1, wherein the gas source (30) delivers the gas to the nozzle (22).
     
    7. A method of suppressing fire, using the sprinkler system of any one of the claims 1 to 6, the method comprising the steps of:

    providing pressurized gas to a pneumatically driven pump (26) that is connected with a conduit (24) having a nozzle (22) near an end of the conduit (24), the gas driving the pump (26) for pumping fluid into the conduit (24), the conduit (24) and the nozzle (22) establishing a discharge path;

    providing the gas to the discharge path for achieving a desired discharge of extinguishing fluid from the nozzle (22); and

    selectively controlling an operation of two regulators (42, 44), wherein

    (i) the pressure or amount of gas that flows to the pump (26) is varied by controlling the first regulator (42), and

    (ii) the pressure or amount of gas that flows to the nozzle (22) or conduit (24) is varied selectively by controlling the second regulator (44),

    by varying at least one of (i) and (ii) between selected values in at least one of a cyclical, intermittent or continuous manner,

    characterized in that

    the controller (40) determines at least one of a volume or a pressure of the fluid provided to the pump (26) and responsively adjusts at least one of (i) or (ii) to achieve a desired discharge of the fluid from the nozzle (22).


     
    8. The method of claim 7, comprising
    delivering the gas to the conduit (24).
     
    9. The method of claim 7, comprising
    delivering the gas to the nozzle (22).
     
    10. The method of claim 7, comprising
    varying at least one of (i) and (ii) to achieve at least two different performance characteristics of the system (20).
     
    11. The method of claim 10, comprising
    achieving the different system performance characteristics during a single activation of the system (20).
     
    12. The method of claim 10, comprising
    achieving at least two different discharge pressures, at least two different discharge distances, at least two different droplet sizes, or at least two different discharge velocities.
     


    Ansprüche

    1. Sprinklersystem (20), umfassend:

    eine Sprinklerdüse (22);

    zumindest eine Leitung (24), die mit der Düse (22) verbunden ist, um zumindest ein Brandlöschfluid an die Düse (22) zu liefern, wobei die Düse (22) und die Leitung (24) einen Ausgabeweg bilden;

    eine pneumatisch angetriebene Pumpe (26), die mit der Leitung (24) verbunden ist, um Fluid in die Leitung (24) zu pumpen;

    eine Gasquelle (30), die der Pumpe (26) Druckgas bereitstellt, um die Pumpe (26) anzutreiben, wobei die Gasquelle (30) das Gas in den Ausgabeweg liefert, um eine gewünschte Entladung von Löschfluid aus der Düse (22) zu erreichen; und

    eine Steuerung (40), die ausgelegt ist, um einen Betrieb von zwei Regulatoren (42, 44) selektiv zu steuern, wobei

    (i) die Steuerung(40) ausgelegt ist, um den Druck oder die Menge von Gas, das zu der Pumpe (26) strömt, durch Steuern des ersten Regulators (42) zu variieren, und

    (ii) die Steuerung (40) ferner ausgelegt ist, um den Druck oder die Menge von Gas, das zu der Düse (22) oder Leitung (24) strömt, durch Steuern des zweiten Regulators (44) selektiv zu variieren,

    wobei die Steuerung (40) zumindest eines von (i) und (ii) zwischen ausgewählten Werten auf zumindest eines von einer zyklischen, kontinuierlichen oder intermittierenden Weise variiert,

    dadurch gekennzeichnet, dass

    die Steuerung (40) konfiguriert ist, um zumindest eines von einem Volumen oder einem Druck des Fluids, das der Pumpe (26) zugeführt wird, zu bestimmen, und als Reaktion zumindest eines von (i) oder (ii) einstellt, um eine gewünschte Entladung des Fluids aus der Düse (22) zu erreichen.


     
    2. Sprinklersystem (20) nach Anspruch 1, wobei die Steuerung (40) zumindest eines von (i) und (ii) variiert, um zumindest zwei unterschiedliche Leistungsmerkmale des Systems (20) zu erreichen.
     
    3. Sprinklersystem (20) nach Anspruch 2, wobei die Leistungsmerkmale des Systems (20) während einer einzelnen Aktivierung des Systems (20) umgesetzt werden.
     
    4. Sprinklersystem (20) nach Anspruch 2, wobei die unterschiedlichen Leistungsmerkmale zumindest zwei unterschiedliche Ausgabedrücke, zumindest zwei unterschiedliche Ausgabedistanzen, zumindest zwei unterschiedliche Tröpfchengrößen oder zumindest zwei unterschiedliche Ausgabegeschwindigkeiten umfassen.
     
    5. Sprinklersystem (20) nach Anspruch 1, wobei die Gasquelle (30) das Gas an die Leitung (24) liefert.
     
    6. Sprinklersystem (20) nach Anspruch 1, wobei die Gasquelle (30) das Gas an die Düse (22) liefert.
     
    7. Verfahren zur Brandlöschung unter Verwendung des Sprinklersystems nach einem der Ansprüche 1 bis 6, wobei das Verfahren die folgenden Schritte umfasst:

    Bereitstellen von Druckgas an eine pneumatisch angetriebene Pumpe (26), die mit einer Leitung (24) verbunden ist, die eine Düse (22) nahe einem Ende der Leitung (24) aufweist, wobei das Gas die Pumpe (26) antreibt, um Fluid in die Leitung (24) zu pumpen, wobei die Leitung (24) und die Düse (22) einen Ausgabeweg bilden;

    Bereitstellen des Gases an den Ausgabeweg, um eine gewünschte Entladung von Löschfluid aus der Düse (22) zu erreichen; und

    selektives Steuern eines Betriebs von zwei Regulatoren (42, 44), wobei

    (i) der Druck oder die Menge an Gas, das zu der Pumpe (26) strömt, variiert wird, indem der erste Regulator (42) gesteuert wird, und

    (ii) der Druck oder die Menge an Gas, das zu der Düse (22) oder Leitung (24) strömt, selektiv variiert wird, indem der zweite Regulator (44) gesteuert wird,

    indem zumindest eines von (i) und (ii) zwischen ausgewählten Werten auf zumindest eines von einer zylindrischen, intermittierenden oder durchgehenden Weise variiert wird,

    dadurch gekennzeichnet, dass

    die Steuerung (40) zumindest eines von einem Volumen oder einem Druck des Fluids, das der Pumpe (26) bereitgestellt wird, bestimmt, und als Reaktion zumindest eines von (i) oder (ii) einstellt, um eine gewünschte Entladung des Fluids aus der Düse (22) zu erreichen.


     
    8. Verfahren nach Anspruch 7, umfassend
    Liefern des Gases an die Leitung (24).
     
    9. Verfahren nach Anspruch 7, umfassend
    Liefern des Gases an die Düse (22).
     
    10. Verfahren nach Anspruch 7, umfassend
    Variieren von zumindest einem von (i) und (ii), um zumindest zwei unterschiedliche Leistungsmerkmale des Systems (20) zu erreichen.
     
    11. Verfahren nach Anspruch 10, umfassend
    Erreichen der unterschiedlichen Systemleistungsmerkmale während einer einzelnen Aktivierung des Systems (20).
     
    12. Verfahren nach Anspruch 10, umfassend
    Erreichen von zumindest zwei unterschiedlichen Ausgabedrücken, zumindest zwei unterschiedlichen Ausgabedistanzen, zumindest zwei unterschiedlichen Tröpfchengrößen oder zumindest zwei unterschiedlichen Ausgabegeschwindigkeiten.
     


    Revendications

    1. Système de gicleurs (20), comprenant :

    une buse de gicleur (22) ;

    au moins un conduit (24) raccordé à la buse (22) pour fournir au moins un fluide d'extinction d'incendie à la buse (22), la buse (22) et le conduit (24) créant un chemin de sortie ;

    une pompe pneumatique (26) raccordée au conduit (24) pour pomper du fluide dans le conduit (24) ;

    une source de gaz (30) fournissant du gaz sous pression à la pompe (26) pour entraîner la pompe (26), la source de gaz (30) fournissant du gaz au chemin de sortie pour réaliser une sortie souhaitée du fluide d'extinction depuis la buse (22) ; et

    un dispositif de commande (40) qui est conçu pour commander sélectivement le fonctionnement de deux régulateurs (42, 44), dans lequel

    (i) le dispositif de commande (40) est conçu pour faire varier la pression ou la quantité de gaz qui s'écoule vers la pompe (26) en commandant le premier régulateur (42), et

    (ii) le dispositif de commande (40) est en outre conçu pour faire varier sélectivement la pression ou la quantité de gaz qui s'écoule vers la buse (22) ou le conduit (24) en commandant le second régulateur (44),

    dans lequel le dispositif de commande (40) fait varier au moins l'un parmi (i) et (ii) entre des valeurs sélectionnées d'au moins une manière parmi une manière cyclique, continue ou intermittente,

    caractérisé en ce que

    le dispositif de commande (40) est configuré pour déterminer au moins l'un d'un volume ou d'une pression du fluide fourni à la pompe (26) et ajuste en réponse au moins l'un parmi (i) ou (ii) pour obtenir une sortie souhaitée du fluide de la buse (22).


     
    2. Système de gicleurs (20) selon la revendication 1, dans lequel le dispositif de commande (40) fait varier au moins l'un parmi (i) et (ii) pour obtenir au moins deux caractéristiques de performance différentes du système (20).
     
    3. Système de gicleurs (20) selon la revendication 2, dans lequel les caractéristiques de performance du système (20) sont obtenues au cours d'une seule activation du système (20).
     
    4. Système de gicleurs (20) selon la revendication 2, dans lequel les différentes caractéristiques de performance comprennent au moins deux pressions de sortie différentes, au moins deux distances de sortie différentes, au moins deux tailles de gouttelettes différentes, ou au moins deux vitesses de sortie différentes.
     
    5. Système de gicleurs (20) selon la revendication 1, dans lequel la source de gaz (30) fournit le gaz au conduit (24).
     
    6. Système de gicleurs (20) selon la revendication 1, dans lequel la source de gaz (30) fournit le gaz à la buse (22).
     
    7. Procédé d'extinction d'incendie, à l'aide du système de gicleurs selon l'une quelconque des revendications 1 à 6, le procédé comprenant les étapes de :

    fourniture d'un gaz sous pression à une pompe pneumatique (26) qui est raccordée à un conduit (24) ayant une buse (22) près d'une extrémité du conduit (24), le gaz entraînant la pompe (26) pour pomper du fluide dans le conduit (24), le conduit (24) et la buse (22) créant un chemin de sortie;

    fourniture du gaz au chemin de sortie pour obtenir une sortie souhaitée de fluide d'extinction depuis la buse (22) ; et

    commande sélective du fonctionnement de deux régulateurs (42, 44), dans lequel

    (i) la pression ou la quantité de gaz qui s'écoule vers la pompe (26) varie sur la base de la commande du premier régulateur (42), et

    (ii) la pression ou la quantité de gaz qui s'écoule vers la buse (22) ou le conduit (24) varie sélectivement sur la base de la commande du second régulateur (44),

    en faisant varier au moins l'un parmi (i) et (ii) entre des valeurs sélectionnées d'au moins une manière parmi une manière cyclique, intermittente ou continue,

    caractérisé en ce que

    le dispositif de commande (40) détermine au moins l'un d'un volume ou d'une pression du fluide fourni à la pompe (26) et ajuste en réponse au moins l'un parmi (i) ou (ii) pour obtenir une sortie souhaitée du fluide de la buse (22).


     
    8. Procédé selon la revendication 7, comprenant
    la fourniture du gaz au conduit (24).
     
    9. Procédé selon la revendication 7, comprenant
    la fourniture du gaz à la buse (22).
     
    10. Procédé selon la revendication 7, comprenant
    le fait de faire varier au moins l'un parmi (i) et (ii) pour obtenir au moins deux caractéristiques de performance différentes du système (20).
     
    11. Procédé selon la revendication 10, comprenant
    l'obtention des caractéristiques de performance différentes du système au cours d'une seule activation du système (20).
     
    12. Procédé selon la revendication 10, comprenant
    l'obtention d'au moins deux pressions de sortie différentes, d'au moins deux distances de sortie différentes, d'au moins deux tailles de gouttelettes différentes, ou d'au moins deux vitesses de sortie différentes.
     




    Drawing








    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description