(19)
(11)EP 2 663 688 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
25.10.2017 Bulletin 2017/43

(21)Application number: 12734248.3

(22)Date of filing:  13.01.2012
(51)International Patent Classification (IPC): 
D21D 5/02(2006.01)
B01D 33/067(2006.01)
B01D 33/27(2006.01)
D21D 5/16(2006.01)
B01D 33/11(2006.01)
B01D 33/68(2006.01)
(86)International application number:
PCT/US2012/021161
(87)International publication number:
WO 2012/097202 (19.07.2012 Gazette  2012/29)

(54)

SCREEN BASKET FOR SCREENING STICKIES CONTAINING RECYCLED FIBERS AND METHOD FOR SCREENING RECYCLED PULP

SIEBKORB ZUM SIEBEN VON KLEBSTOFFHALTIGEN RECYCELTEN FASERN UND VERFAHREN ZUM SIEBEN EINER RECYCELTEN FASERSTOFFSUSPENSION

TAMIS POUR TAMISER DES FIBRES RECYCLÉES CONTENANT DES MATIÈRES COLLANTES ET MÉTHODE POUR TAMISER UNE PÂTE RECYCLÉE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 13.01.2011 US 201161461117 P
12.01.2012 US 201213348692

(43)Date of publication of application:
20.11.2013 Bulletin 2013/47

(73)Proprietor: Georgia-Pacific Consumer Products LP
Atlanta GA 30303 (US)

(72)Inventors:
  • WINKLER, Wayne F.
    DePere Wisconsin 54115 (US)
  • LUCAS, Bradley E.
    Menasha Wisconsin 54952 (US)

(74)Representative: Grünecker Patent- und Rechtsanwälte PartG mbB 
Leopoldstraße 4
80802 München
80802 München (DE)


(56)References cited: : 
EP-A1- 0 808 941
WO-A1-00/65151
DE-U1- 9 108 129
US-B1- 6 595 373
WO-A1-00/65151
DE-B3- 10 244 521
US-A- 5 575 395
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    TECHNICAL FIELD



    [0001] Recycling is fast becoming essential for almost every recyclable commodity, yet differences between prices for commodities obtained from nature and those obtained from waste often do not economically justify use of recyclable materials.

    [0002] In the case of fiber obtained from recycle streams of waste paper, it is often quite difficult to render the fiber equivalent in quality to fiber obtained from virgin pulp without incurring costs exceeding the price differential between virgin fiber and the recyclable fiber contained in readily available waste streams.

    BACKGROUND



    [0003] Achieving virgin equivalent quality from recycled paper is increasingly difficult as fiber from lower and lower grade sources is used. Curbside recycled paper is usually considered just about the lowest possible grade of paper being recycled today. One factor which seems to contribute to the difficulty of obtaining fiber having quality equivalent to virgin fiber from curbside recycled paper is the presence of large amounts of "stickies" and other contaminants in the paper; but industrial/commercial waste papers are also becoming increasingly contaminated, especially with troublesome adhesives. Stickies commonly result from pressure sensitive labels in the waste paper but can be created by other adhesives, plastic window envelopes and the like. During the papermaking process, stickies in the furnish cause problems both by precipitating out of the furnish onto machine parts as well as by remaining in the web where they contribute to dense spots of adhesive, ink, plastic, fiber and a host of other contaminants. Stickies are especially problematic when recycle fiber is being used for tissue products as, in bath and facial tissue, each ply of tissue may only have a thickness equivalent to perhaps seven to ten layers of fiber, so the dark dense spot resulting from a stickie which finds its way into the finished sheet detracts both from the aesthetic appearance of the sheet and its functional integrity. Stickies that deposit out on machine clothing interfere with the proper movement of water and/or air through the fabric, again potentially contributing to defects in the finished product.

    [0004] As waste paper is converted into pulp which is usable in making tissue and towel products, it is subjected to many of the same processes used with virgin pulp. In fact many mills will use a combination of virgin and recycle pulp to "dial-in" quality. This can lead to difficulties in fiber processing as many of these procedures are relatively sensitive to throughput variations. An especially important process is "screening" in which pulp is fed through a "screen" to remove dirt and other contaminants. Virtually all of the pulp fed to a papermachine will pass through a series of screens, each configured to remove contaminants progressively smaller in size than the screen before. Each screen will typically also have some means for removing contaminants lodged on the screen so that the screen does not become blocked. A screen cylinder formed from discrete elements is known for instance from WO 00/65151 A1, wherein said screen cylinder is constructed to simulate the form of a substantially sharp edge milled screen cylinder having substantially the same contour. The term "screen" is often used both to refer to the overall apparatus used for removing impurities from pulp and for the actual perforate structure which forms the heart of that apparatus. In this application, the aggregate of those structures that form the removable perforate structure are typically referred to as the screen basket. This application relates to the perforate screen structure and more particularly to the shape of the surface of the screen structure which contacts the fiber suspension from which impurities are to be removed. Typically, foils moving relative to the screen basket are used for this purpose. These foils are hypothesized to induce negative pressure pulses that clear debris off of the screen basket so that it can pass out of the screen through a reject line.

    SUMMARY OF THE INVENTION



    [0005] This invention relates to a method for screening recycled pulp according to claim 1 and to a metallic screen basket according to claim 8, and in particular to a screen structure which is unusually effective at removing stickies from recyclable fiber but is tolerant of substantial swings in throughput which result in variations in the flow velocity through the screen - slot velocity.

    [0006] In modern screens, a great deal of attention is paid both to the hydrodynamics of the flow system as it passes over the screen structure but also to the stresses imposed on the screen as it is subjected to alternating pressure pulses which temporarily induce backflow through the openings in the screen which ideally remove debris which might otherwise occlude the screen and thereby reduce the screening systems capacity. There are two primary techniques used for constructing screens. In the first, a web structure, typically a sheet of stainless steel, has a variety of inter-cooperating grooves, channels, perforations and slits formed in both of its surfaces. The sheet is then rolled into a cylindrical shape and incorporated into the screen system. In the second, a plurality of vanes are formed, often each vane will have a quite complex shape possibly including tapers, grooves, lands, relieved regions and dressed away areas so that when the vanes are assembled into a cylindrical array, precisely shaped slits are formed through the resulting cylindrical shell formed by the multitude of vanes.

    [0007] There are advantages to each method of construction; but, in screens formed by either technique, the goal is to precisely form a surface joined to slits in parallel in which the flow of water will efficiently conduct fibers through the slits while rejecting contaminants without occluding the surface of the screen. The present invention is thought to be most easily practiced by forming a very large number of similarly shaped vanes then locking them into a ring structure to form a cylindrical screen basket but equivalent surface configurations can also be formed into sheet stock although the manufacturing cost may be higher due to the difficulties involved in forming precise slits, channels, grooves and contours in the required size.

    [0008] While large stickies are especially problematic when they find their way into the sheet and the effect of very small stickies in the sheet itself can be difficult to detect, it is not sufficient to remove only the larger stickies at the screens as the adhesives, particularly the pressure sensitive adhesives, tend to aggregate during the papermaking process and grow into larger stickies. Accordingly, one common way of measuring the effectiveness of screening is to separately measure the total area of stickies removed in several size ranges. We prefer to analyze stickies contents in terms of the stickies content by total area in the ranges of 0.001 - 0.04 mm2, 0.04 - 0.3 mm2 and over 0.3 mm2. In addition, it is sometimes useful to aggregate the 0.04 to 0.3 mm2 and over 0.3 mm2 ranges into a single category of over 0.04 mm2. Typically, most well designed screens are reasonably effective for stickies over ∼ 0.3 mm2 in area but will have more difficulty with stickies in the two smaller ranges of 0.001 - 0.04 mm2 and 0.04 - 0.3 mm2. Further, it is generally thought that there is a tradeoff between designing screens to be effective on the smaller size ranges of stickies and the amount of fiber that can be effectively cleaned by that screen in a given period. We have found that the screens of the present invention have surprising effectiveness with smaller stickies removal coupled with the ability to process large quantities of fiber over a wide range of slot velocities. It is considered quite surprising that these screens could combine the ability to both remove large fractions of the smaller stickies and process large amounts of fiber over a wide range of slot velocities. Effective removal of large stickies is, however, the sine qua non of screen design. A screen design which is not extremely effective in removing large stickies can only be employed in special circumstances.

    [0009] We have found that surprisingly effective removal of stickies from recyclable waste can be achieved by passing pulp derived from industrial, commercial and post-consumer waste through a metallic screen basket having an accepts contacting surface approximating that of a right circular cylinder having an axis "A", a circumference "C" and a diameter "D", said surface comprising a plurality of sequences of facets, each sequence comprising a generally circumferentially extending facet, an upstream generally diametrally extending facet adjacent thereto, and a downstream generally diametrally extending facet adjacent thereto, each said generally circumferential facet being generally parallel to the axis "A" of the cylinder and having a leading edge and a trailing edge, each said leading edge and trailing edge as well as each said upstream generally diametrally extending facet and each said downstream generally diametrally extending facet being generally parallel to the axis "A" of the cylinder, each said leading edge being located upon a cylindrical surface S1, and each said trailing edge being located upon a cylindrical surface S2, the diametral difference "δ" between the distance from the axis "A" of the cylindrical surface S1 from the diametral distance from the axis "A" of the cylindrical surface S2 being between about 0.4 mm to about 0.6 mm, the normal direction to the surface of each said generally circumferential facet in each sequence of facets having a component directed toward the adjacent trailing edge of an adjacent generally circumferential facet in an adjacent sequence of facets, the angle "α" between each said generally circumferential facet and the diametral direction of said right circular cylinder being between about 80° and 76°, the distance "t" from the leading edge to the trailing edge of each said generally circumferential facet being between about 2.3 mm and 2.5 mm, the upstream generally diametrally extending facet of each sequence adjoining the leading edge of a generally circumferential facet and the downstream generally diametrally extending facet of each sequence adjoining the trailing edge, the distance between the upstream generally diametrally extending facet of each sequence and the downstream generally diametrally extending facet of the next adjacent sequence "w" being between about 0.11 and 0.14 mm, a relieved channel leading from the accepts side to the rejects side of said screen being defined between the upstream generally diametrally extending facet of each sequence and the downstream generally diametrally extending facet of the next adjacent sequence.

    [0010] In some embodiments, the screen basket is formed from at least one unitary metallic sheet, usually of stainless steel, each sheet having a plurality of trenches formed into its surfaces and a plurality of slits formed therethrough.

    [0011] In other embodiments, a corrosion resistant hardened surface is disposed upon said screen basket; preferably said corrosion resistant hardened surface comprises a major proportion of chromium having hardness of at least about 65 on the Rockwell C scale in a thickness of at least 5.08 µm (0.2 mils) up to about 25.4 µm (1.0 mils).

    [0012] Still yet other features and advantages of the invention will become apparent from the following description and appended Figures.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0013] The invention is described in detail below with reference to the drawings wherein like numerals designate similar parts and wherein:

    Figure 1 is a partially cut away perspective of a known construction of a screen basket which is suitable to be adapted for practice of the present invention by replacement of the vanes therein by vanes having the configuration described herein.

    Figure 2 is a schematic illustration of the geometry of the supply side of a screen basket constructed from a large number of vanes.

    Figure 3 is a schematic illustration of a foil in relation to several vanes of a screen basket.

    Figure 4 is a schematic illustration of the theorized flow pattern in the neighborhood of the slits in a screen basket of the present invention.

    Figure 5 illustrates the distribution of stickies by size in the supply streams used in experiments conducted to determine the effectiveness of several screen baskets.

    Figure 6 illustrates the distribution of stickies by size in the accepts streams obtained in experiments conducted to determine the effectiveness of several screen baskets.

    Figure 7 illustrates the Average Cleanliness Efficiencies obtained for the various size ranges of stickies obtained in experiments conducted to determine the effectiveness of several screen baskets.

    Figure 8 illustrates the relationship between the Average Cleanliness Efficiencies obtained for the various size ranges of stickies and the slot widths of the screens used in experiments conducted to determine the effectiveness of several screen baskets.

    Figure 9 illustrates the relationship between the Average Cleanliness Efficiencies obtained for the various size ranges of stickies and the profile heights of the screens used in experiments conducted to determine the effectiveness of several screen baskets.

    Figure 10 illustrates the relationship between the Overall Average Cleanliness Efficiencies obtained and the slot width of the screens used in experiments conducted to determine the effectiveness of several screen baskets.

    Figure 11 illustrates the correlation obtained between the Overall Average Cleanliness Efficiencies and the slot widths and profile heights of the screens used in experiments conducted to determine the effectiveness of several screen baskets.

    Figure 12 sets forth both the Area % of total stickies removed and the total mass flow of the accepts streams for each of the screens evaluated with profile height being indicated for each data point.

    Figure 13 sets forth both the Area % of total stickies removed and the total mass flow of the accepts streams for each of the screens evaluated with accepts tonnage being indicated for each data point.

    Figure 14 sets forth the Area % of total stickies removed in the size range of 0.001 to 0.04 mm2 on a grid of the slot width and profile height for each of the screens evaluated.

    Figure 15 sets forth the Area % of total stickies removed in the size range of 0.04 to 0.3 mm2 on a grid of the slot width and profile height for each of the screens evaluated.

    Figure 16 sets forth the Area % of total stickies removed in the size range of greater than 0.04 mm2 on a grid of the slot width and profile height for each of the screens evaluated.

    Figure 17 sets forth the Area % of total stickies removed in the size range of greater than 0.3 mm2 on a grid of the slot width and profile height for each of the screens evaluated.

    Figure 18 illustrates the wide variations in Cleanliness Efficiencies resulting for each of the several size ranges of stickies as slot velocity was varied for a screen basket with 0.19 mm slots and a profile height of 0.6 mm.

    Figure 19 illustrates the significant reductions in the variations in Cleanliness Efficiencies resulting for each of the several size ranges of stickies as slot velocity was varied for a screen basket with 0.14 mm slots and a profile height of 0.51 mm.

    Figures 20-24 illustrate the performance of a variety of screen designs on various size ranges of stickies as slot velocity is varied.


    DETAILED DESCRIPTION



    [0014] The invention is described below with reference to a preferred embodiment. Such discussion is for purposes of illustration only. Terminology used herein is given its ordinary meaning unless otherwise indicated.

    [0015] Figure 1 illustrates a screen basket 30 comprised of a very large number of longitudinally extending vanes 32 defining longitudinally extending slits 34 therebetween, vanes 32 being held between flanges 36 joined by longitudinally extending rods 38. Vanes 32 are reinforced by circumferential ribs 40. This overall method of construction is known from United States Patent No. RE 38,738 E and is well suited to receive and retain vanes 32 as described herein.

    [0016] Figure 2 (with periodic reference to Figures 1 and 3) illustrates the cross-section of several vanes 32 of the present invention. Each vane 32 has three facets: downstream generally diametrally extending facet 42, generally circumferentially extending facet 44 and upstream generally diametrally extending facet 46. Upstream generally diametrally extending facet 46 adjoins generally circumferentially extending facet 44 at leading edge 48 while downstream generally diametrally extending facet 42 adjoins generally circumferentially extending facet 44 at trailing edge 50 which preferably has a radius of curvature of about 0.6 mm. On each vane 32, centerline

    extends toward geometrical axis "A" of screen basket 30. Leading edge 48 of each vane 32 lies upon imaginary cylindrical surface S1 while each trailing edge 50 lies upon imaginary cylindrical surface S2, spaced a distance "δ" of between 0.4 mm and 0.6 mm from imaginary cylindrical surface S1, this distance being referred to as the profile height. Each generally circumferentially extending facet 44 has a thickness "t" of between about 2.3 and 2.5 mm and is inclined toward the upstream at an angle "α" of between about 76° and 80° its respective diametrally extending centerline

    . Slit 52 having a width "w" of between about 0.11 mm and 0.145 mm is defined between upstream generally diametrally extending facet 46 of each vane 32 and downstream generally diametrally extending facet 42 of the next vane upstream therefrom. Together the downstream generally diametrally extending facet 42, trailing edge 50, generally circumferentially extending facet 44 and upstream generally diametrally extending facet 46 collectively define the supply contacting surface 54 of screen basket 30.

    [0017] Figure 3 illustrates foil 56 having leading edge 58 and trailing edge 60 defined thereupon. As leading edge 58 of foil 56 passes over each slit 52, it is theorized that it introduces a negative pressure upon the slit it is passing over tending to clear the slit of stickies and other debris that may be deposited there, while the positive pressure resulting after trailing edge 60 of foil 56 passes over slit 52 tends to drag fiber therethrough while incidentally forcing stickies and other debris against rejects supply contacting surface 54 of screen basket 30 (Figure 1), there to remain until passage of a successive foil 56 induces negative pressure to dislodge stickies and debris. In conventional practice, the clearance between the supply contacting surface 54 and foil 56 is a small fraction of an inch or just a few millimeters.

    [0018] Figure 4 illustrates the hypothetical formation of vortices 62 as flow passes over trailing edge 50 of each vane 32. Some have theorized that proper formation of vortices 62 helps to align fibers with slit 52 easing the passage of longer fibers through slit 52. Others have hypothesized that proper formation of vortices ameliorates the formation of deposits between the slits of the screen.

    [0019] Six different screen baskets having the general configuration illustrated in Figure 1 were evaluated with recycled fiber samples collected from industrial, commercial and post-consumer waste pulp recycling operations. The slot width and profile height for each of the screen baskets, as reported by the manufacturers, are set forth in Table 1. Upon microscopic inspection, it was determined that the geometry of the screen baskets varied considerably from that stated by the manufacturer in several cases. Table 1 compares the Actual Screen Basket Geometry to that reported by the manufacturers.
    Table 1
     Reported Screen Basket SpecificationsActual Screen Basket Geometry
    Screen Basket LabelSlot Width, mmProfile Height, mmSlot Width, mmProfile Height, mm
    A 0.10 0.9 0.11 0.90
    V-1 0.11 0.7 0.11 0.70
    V-2 0.12 0.5 0.13 0.50
    V-3 0.15 0.7 0.16 0.67
    V-4 0.15 0.7 0.14 0.51
    V-5 0.15 0.7 0.19 0.62


    [0020] Over a period of several months, the screen baskets were evaluated with pulp samples having average stickies contents and size variations as set forth in Table 2.
    Table 2
     Supply Stickies (per 100 OD g basis)
    0.001-0.04 mm2>0.04 mm20.04-0.3 mm2>0.3 mm2
    CountAreaCountAreaCountAreaCountArea
    A 3,571 28.5 1,859 474.7 1,494 185.3 365 289.4
    V-1 2,076 16.9 1,152 305.6 936 117.3 216 188.3
    V-2 4,674 40.0 2,830 739.2 2,262 282.1 568 457.1
    V-3 2,650 43.2 2,957 680.2 2,448 305.5 509 374.7
    V-4 3,805 30.6 1,997 473.2 1,672 208.2 325 265.0
    V-5 5,090 20.5 1,355 381.5 1,064 135.5 291 246.0


    [0021] On a gross basis the results obtained are set forth in the two parts of Table 3.
    Table 3 (part 1)
     Reject RatioSupplyAcceptsRejectsMass Flow (ODSTPD)Production
    % TSS% Ash% ConsGPM% TSS% Ash% ConsGPM% TSS% Ash% ConsAcceptRejectsSupplyODSTPD
    A 0.16 1.10 6.88 1.02 3,466 0.99 7.39 0.94 565 1.51 5.66 1.40 213 50 263 373
    V-1 0.14 1.08 6.95 1.01 3,527 1.01 7.42 0.94 494 1.41 5.67 1.33 214 42 256 366
    V-2 0.20 1.17 7.41 1.09 3,536 1.10 7.58 1.02 704 1.51 5.98 1.42 235 64 299 393
    V-3 0.14 1.05 5.82 0.99 3,665 1.00 6.07 0.94 512 1.49 4.64 1.42 220 46 266 386
    V-4 0.14 1.09 7.29 1.01 3,716 1.03 7.45 0.95 520 1.45 6.06 1.36 230 45 275 393
    V-5 0.14 1.08 7.39 1.00 3,574 1.04 7.52 0.96 501 1.35 6.26 1.26 224 41 265 375
    Table 3 (part 2)
     Thickening FactorVol. Reject Rate, %OD Reject Rate, %Slot Vel. m/s
    A 1.36 14.0 19.0 1.29
    V-1 1.31 12.3 16.4 1.38
    V-2 1.29 16.6 21.5 1.52
    V-3 1.42 12.3 17.3 1.58
    V-4 1.33 12.3 16.5 1.60
    V-5 1.25 12.3 15.4 1.54


    [0022] The accepts stream samples from the screen were evaluated for stickies content with average results as set forth in Table 4.
    Table 4
     Accepts Stickies (per 100 OD g basis)
    0.001-0.04 mm2>0.04 mm20.04-0.3 mm2>0.3 mm2
    CountAreaCountAreaCountAreaCountArea
    A 1,973 16.7 969 123.7 927 105.2 42 18.5
    V-1 1,388 10.2 493 59.1 476 52.2 17 6.8
    V-2 1,734 16.4 896 103.0 876 91.2 20 11.8
    V-3 2,717 24.9 1,520 172.0 1,490 160.5 30 11.5
    V-4 1,537 12.1 632 72.5 619 66.4 12 6.1
    V-5 1,595 13.0 854 120.6 801 98.1 54 22.5


    [0023] From these results, cleanliness efficiencies were obtained on both a number basis and an area basis as set forth in the three parts of Table 5. These results are also presented graphically in Figures 5-10 while Figure 11 presents a correlation between slot width, profile height and average cleanliness efficiency.
    Table 5 (part 1)
     Cleanliness Efficiency (Area)Cleanliness Efficiency (Count)
    >0.04 mm2, %0.04-0.3 mm2, %>0.3 mm2, %>0.04 mm2, %0.04-0.3 mm2, %>0.3 mm2, %
    A 74.4 40 94 49.1 39 89
    V-1 81.6 50 96 58.7 50 93
    V-2 85.1 59 97 66.8 59 96
    V-3 75.0 49 97 49.7 41 94
    V-4 84.6 67 98 68.2 63 96
    V-5 68.5 28 91 37.7 25 83
    Table 5 (part 2)
    ScreenCapacityStickiesCleanliness Efficiency (Area)
     Slot Width, mmProfile Height, mmTons per day in Accept StreamTons per day in Supply StreamTotal area of Stickies in SupplyArea % Stickies Removal Efficiency>0.04 mm2, %0.04-0.3 mm2, %>0.3 mm2, %
    A-1 0.11 0.90 213 263 688.6 61.7 74.4 40 94
    V-1 0.11 0.70 214 256 439.7 70.8 81.6 50 96
    V-2 0.13 0.50 235 299 1061.3 79.0 85.1 59 97
    V-3 0.16 0.67 220 266 1028.9 64.1 75 49 97
    V-4 0.14 0.51 230 275 712.0 77.9 84.6 67 98
    V-5 0.19 0.62 224 265 537.4 527 68.5 28 91


    [0024] Figures 12-17 graphically present relationships between slot width, profile height and stickies removal with tonnage production being noted for each case.
    Table 5 (part 3)
    ScreenStickies 
     Slot Width, mmProfile Height, mmTotal area of Stickies in Supply 0.001 - 0.04 mm2Total area of Stickies in Accepts 0.001 - 0.04 mm2Area % Stickies Removal Efficiency 0.001 - 0.04 mm2
    A-1 0.11 0.90 28.5 16.7 41.4%
    V-1 0.11 0.70 16.9 10.2 39.6%
    V-2 0.13 0.50 40.0 16.4 59%
    V-3 0.16 0.67 43.2 24.9 42.4%
    V-4 0.14 0.51 30.6 12.1 60.5%
    V-5 0.19 0.62 20.5 13.0 36.6%


    [0025] As the demand on the fiber processing lines typically varies from time to time depending upon the paper machine needs, it is quite advantageous for a screen design to be able to provide a relatively consistent output over a range of throughputs. To demonstrate the ability of screen designs of the present invention to handle variations in throughputs, during the series of trials above, the performance of the screen was recorded as the slot velocity was varied. The following tables (Tables 6 - 11) record the Cleanliness Efficiencies of the several screen designs set forth over a range of slot velocities.

    Example 1 (Comparative)



    [0026] Table 6 describes the performance of a screen, not of the present invention, in the above-described evaluation. Figure 18 sets forth those results graphically. It can be appreciated that not only are the efficiencies rather low but that they vary widely as slot velocity is varied, making it quite difficult to reliably control the input to the papermaking process as demand for fiber is varied. (Throughout the Examples, where the last line of a table is separated from the lines above it by a heavy horizontal line, the values in that last line are averages of the figures above in that table.)
    Table 6
    Screen Basket V-5 - Slot Width 0.19 mm/ Profile Height 0.62 mm
    Slot velocity (m/s)Cleanliness Efficiencies (%)
    Stickies Area Size Ranges
    >0.04 mm20.04-0.3 mm2>0.3 mm2
    1.28 67.3 33.3 91.7
    1.27 69.5 35.3 95.4
    1.28 68.7 5.2 95.1
    1.29 75.5 24.1 93.9
    1.28 74.6 40.0 90.2
    1.28 77.3 38.7 93.8
    1.16 76.5 44.3 93.3
    1.16 58.5 16.4 86.0
    1.19 43.6 -5.0 82.7
    1.20 69.1 27.7 91.5
    1.20 65.0 25.6 82.8
    1.20 51.9 31.2 65.7
    1.16 49.5 23.0 84.8
    1.16 70.3 7.2 95.5
    1.18 76.5 45.2 91.1
    1.17 66.0 18.0 88.0
    1.17 76.2 27.0 94.0
    1.17 72.1 43.4 93.2
    1.15 79.6 33.4 96.4
    1.22 58.9 29.3 80.6
    1.16 72.0 -2.3 95.4
    1.16 68.2 13.8 92.6
    1.19 75.1 37.2 91.8
    Screen Basket V-5 - Slot width 0.19 mm/ Profile Height 0.62 mm
    Slot velocity (m/s)Cleanliness Efficiencies (%)
    Stickies Area Size Ranges
    >0.04 mm20.04-0.3 mm2>0.3 mm2
    1.19 80.5 43.3 92.9
    1.29 71.1 45.3 97.1
    1.28 68.2 33.9 90.3
    1.15 62.1 8.9 92.9
    1.16 56.0 16.7 87.0
    1.23 47.9 4.3 81.2
    1.22 52.5 7.4 87.2
    1.19 68.6 48.7 90.8
    1.20 52.1 32.5 79.9
    1.22 79.3 56.0 93.3
    1.22 79.0 45.7 96.6
    1.28 83.8 23.5 98.4
    1.29 75.2 44.9 89.5
    1.16 62.3 7.8 96.2
    1.16 86.0 42.9 98.3
    1.18 78.0 57.4 92.7
    1.17 74.0 19.8 95.3
    1.32 78.3 39.3 95.1
    1.33 69.1 46.2 93.9
    1.34 66.7 23.9 91.5
    1.35 59.5 9.7 88.9
    1.22 68.5 28.4 90.8

    Example 2



    [0027] Table 7 sets forth results obtained with a screen which was found to be performing exceptionally well for unknown reasons. Upon close examination, it was determined that not only did it not match the specifications from the factory but it appeared that it had most likely worn considerably from its initial configuration. As the slot width was narrower than manufacturer's specification, it was considered apparent however that not all of the variation could be due to wear. Figure 19 presents the results obtained with this screen graphically. It can be appreciated that the average efficiencies are not only very high but the results remain quite consistent over a wide range of slot velocities. These results led the present inventors to determine whether the outstanding and unexplained performance of this screen could be duplicated by manufacturing a screen with the same slot width and profile height.
    Table 7
    Screen Basket V-4 - Slot Width 0.14 mm/ Profile Height 0.51 mm
    Slot Velocity (m/s)Cleanliness Efficiencies (%)
    Stickies Area Size Ranges
    >0.04 mm20.04-0.3 mm2>0.3 mm2
    1.74 80.8 56.8 98.5
    1.73 80.5 50.4 98.7
    1.75 81.6 50.8 96.8
    1.74 94.6 73.5 99.0
    1.75 88.3 68.3 98.3
    1.75 90.9 75.7 95.3
    1.58 93.8 83.2 100.0
    1.58 85.6 70.1 99.0
    1.61 89.5 76.4 96.3
    1.61 92.6 78.4 99.5
    1.60 81.3 42.7 99.4
    1.63 82.9 63.4 100.0
    1.58 85.7 63.8 97.1
    1.58 88.7 73.7 96.9
    1.68 86.7 71.8 97.4
    1.67 89.5 71.3 99.7
    1.85 84.8 78.4 98.6
    1.85 86.2 76.1 99.4
    1.86 81.3 71.6 99.1
    1.86 81.8 66.6 97.0
    1.67 87.1 69.3 100.0
    1.67 82.2 65.2 99.4
    1.67 78.9 67.7 97.6
    1.67 83.5 73.3 95.7
    2.04 83.6 68.9 97.1
    2.04 50.0 30.0 79.8
    2.03 80.4 66.6 96.4
    2.05 87.7 75.3 98.6
    1.58 86.6 65.1 98.4
    1.58 86.6 68.6 98.6
    1.58 86.3 73.0 98.4
    1.57 85.7 68.9 99.0
    1.72 84.6 67.3 97.7

    Example 3



    [0028] Table 8 presents the results obtained with a screen of the present invention, V-2 which attempted to achieve the same slot width and profile as found in screen V-4. The results obtained are presented graphically in Figure 20. From these results, it can be appreciated that screen V-2 largely replicates the benefits of screen V-4.
    Table 8
    Screen Basket V-2 - Slot Width 0.13 mm/ Profile Height 0.5 mm
    Slot Velocity (m/s)Cleanliness Efficiencies (%)
    Stickies Area Size Ranges
    >0.04 mm20.04-0.3 mm2>0.3 mm2
    1.34 88.3 65.6 98.6
    1.35 84.1 65.5 99.4
    1.38 75.5 35.1 98.9
    1.44 80.2 36.0 100.0
    1.35 88.7 57.9 98.7
    1.35 91.7 74.4 98.4
    1.45 77.6 40.2 97.3
    1.48 86.0 67.1 99.2
    1.42 82.9 57.8 90.1
    1.41 85.1 62.9 92.6
    1.40 87.0 71.3 99.5
    1.30 89.9 71.6 98.5
    1.44 88.0 61.6 98.8
    1.45 91.0 65.8 100.0
    1.44 78.5 46.4 95.2
    1.55 88.8 73.7 97.9
    1.35 89.6 62.3 98.1
    1.35 79.5 54.4 92.0
    1.40 85.1 59.4 97.4

    Example 4 (Comparative)



    [0029] Table 9 sets forth the results obtained with another screen V-1, not of the invention, while those results are presented graphically in Figure 21. While the results are somewhat consistent with slot velocity, it can be appreciated from Figure 21, that the efficiency of Screen V-1 is far inferior to screens of the present invention.
    Table 9
    Screen Basket V-1 - Slot Width 0.11 mm/ Profile Height 0.7mm
    Slot Velocity (m/s)Cleanliness Efficiencies (%)
    Stickies Area Size Ranges
    >0.04 mm20.04-0.3 mm2>0.3 mm2
    1.33 80.5 47.9 96.6
    1.33 74.6 37.1 90.3
    1.40 73.4 49.9 92.2
    1.41 64.3 36.6 89.0
    1.37 91.0 66.2 100.0
    1.38 73.8 45.9 96.0
    1.41 85.5 55.4 97.1
    1.41 84.1 55.0 96.1
    1.47 88.7 62.5 96.9
    1.47 88.5 52.8 100.0
    1.33 92.5 59.5 100.0
    1.33 78.7 30.1 98.8
    1.36 80.4 50.1 96.1
    1.34 86.1 52.9 98.9
    1.38 81.6 50.1 96.3

    Example 5 (Comparative)



    [0030] Table 10 presents the results obtained on another screen, V-3 not of the invention, while those results are presented graphically in Figure 22. While the results are somewhat consistent with slot velocity, it can be appreciated from Figure 22, that the efficiency of Screen V-3 is inferior to screens of the present invention.
    Table 10
    Screen Basket V-3 - Slot Width 0.16 mm/ Profile Height 0.67 mm
    Slot Velocity (m/s)Cleanliness Efficiencies (%)
    Stickies Area Size Ranges
    >0.04 mm20.04-0.3 mm2>0.3 mm2
    1.53 79.1 63.3 96.0
    1.52 80.0 47.1 98.0
    1.52 74.0 52.1 93.9
    1.53 75.9 56.4 98.0
    1.45 82.3 58.9 96.9
    1.45 75.7 52.6 96.1
    1.45 72.2 48.0 95.5
    1.45 65.7 41.2 92.5
    1.62 75.8 38.3 97.8
    1.62 69.3 40.2 97.0
    1.61 78.8 53.4 95.9
    1.61 73.2 48.6 95.1
    1.38 75.5 46.0 97.3
    1.39 72.2 41.6 97.1
    1.39 73.2 49.3 96.1
    1.39 70.3 40.0 97.2
    1.44 75.2 46.0 98.8
    1.43 81.3 52.6 99.0
    1.44 74.8 47.0 98.5
    1.43 76.0 53.3 98.7
    1.48 75.0 48.8 96.8

    Example 6 (Comparative)



    [0031] Table 11 presents the results obtained on another screen, A-1 not of the invention, while those results are presented graphically in Figure 23. It can be appreciated that the results are somewhat inconsistent with slot velocity. It can also be appreciated from Figure 23, that the efficiency of Screen A-1 is quite low for this type of fiber.
    Table 11
    Screen Basket A-1 - Slot Width 0.11 mm/ Profile Height 0.9 mm
    Slot Velocity (m/s)Cleanliness Efficiencies (%)
    Stickies Area Size Ranges
    >0.04 mm20.04-0.3 mm2>0.3 mm2
    1.16 80.4 46.1 97.3
    1.15 77.6 39.0 96.8
    1.18 63.8 29.1 82.9
    1.19 62.2 32.0 87.1
    1.20 78.7 37.2 96.4
    1.20 70.9 32.2 94.8
    1.15 65.7 50.0 88.2
    1.15 87.0 54.9 99.2
    1.17 83.3 53.2 95.4
    1.17 76.8 51.0 95.0
    1.16 75.3 52.5 96.1
    1.16 88.0 64.6 98.0
    1.15 84.6 61.1 98.7
    1.22 80.6 45.6 97.1
    1.15 84.2 63.3 98.2
    1.15 65.9 41.3 85.2
    1.18 83.0 62.4 93.9
    1.18 87.1 53.7 99.1
    1.28 73.8 38.2 95.4
    1.27 80.3 56.2 95.6
    0.98 86.7 56.0 100.0
    0.98 83.0 65.7 96.5
    0.98 81.2 41.1 97.1
    0.98 75.6 33.2 98.5
    1.15 83.8 67.7 97.7
    1.15 75.4 44.4 96.4
    1.17 84.3 63.9 98.7
    1.18 81.3 42.7 99.4
    1.17 74.9 38.8 98.8
    1.18 66.5 38.1 95.4
    1.15 67.9 27.4 92.9
    1.16 65.7 20.0 95.4
    1.21 64.3 29.0 93.1
    1.21 79.2 45.2 95.8
    1.14 73.1 29.2 94.1
    1.15 48.8 15.6 85.6
    1.28 74.4 31.8 95.4
    1.26 74.9 42.0 98.0
    1.14 68.4 17.1 93.1
    1.15 43.8 -32.1 77.4
    1.24 64.7 26.9 94.8
    1.23 68.1 34.6 95.9
    1.27 76.5 40.4 92.6
    1.27 81.7 46.2 96.6
    1.22 72.5 43.5 96.0
    1.16 76.1 27.6 96.4
    1.14 74.1 22.4 94.4
    1.28 83.0 51.6 97.1
    1.28 65.9 27.0 88.6
    1.26 73.8 45.5 91.1
    1.15 76.2 35.1 92.4
    1.16 55.6 3.4 81.7
    1.17 74.4 40.1 94.4


    [0032] The results of the preceding Examples 1-6 can be summarized in the following set of Tables 12-17 which are graphically represented in Figure 24.
    Table 12 : Example 1 (Comparative)
    Averages from Table 6
    Screen Basket V-5 - Slot Width 0.19 mm/ Profile Height 0.62 mm
    Slot Velocity (m/s)Cleanliness Efficiencies (%)
    Stickies Area Size Ranges
    >0.04 mm20.04-0.3 mm2>0.3 mm2
    1.22 68.5 28.4 90.8
    Table 13 : Example 2
    Averages from Table 7
    Screen Basket V-4 - Slot Width 0.14 mm/ Profile Height 0.51 mm
    Slot Velocity (m/s)Cleanliness Efficiencies (%)
    Stickies Area Size Ranges
    >0.04 mm20.04-0.3 mm2>0.3 mm2
    1.72 84.6 67.3 97.7
    Table 14 : Example 3
    Averages from Table 8
    Screen Basket V-2 - Slot width 0.13 mm/ Profile Height 0.5 mm
    Slot velocity (m/s)Cleanliness Efficiencies (%)
    Stickies Area Size Ranges
    >0.04 mm20.04-0.3 mm2>0.3 mm2
    1.40 85.1 59.4 97.4
    Table 15 : Example 4 (Comparative)
    Averages from Table 9
    Screen Basket V-1 - Slot Width 0.11 mm/ Profile Height 0.7mm
    Slot Velocity (m/s)Cleanliness Efficiencies (%)
    Stickies Area Size Ranges
    >0.04 mm20.04-0.3 mm2>0.3 mm2
    1.38 81.6 50.1 96.3
    Table 16 : Example 5 (Comparative)
    Averages from Table 10
    Screen Basket V-3 - Slot Width 0.16 mm/ Profile Height 0.67 mm
    Slot Velocity (m/s)Cleanliness Efficiencies (%)
    Stickies Area Size Ranges
    >0.04 mm20.04-0.3 mm2>0.3 mm2
    1.48 75.0 48.8 96.8
    Table 17 : Example 6 (Comparative)
    Averages from Table 11
    Screen Basket A-1 - Slot width 0.11 mm/ Profile Height 0.9 mm
    Slot velocity (m/s)Cleanliness Efficiencies (%)
    Stickies Area Size Ranges
    >0.04 mm20.04-0.3 mm2>0.3 mm2
    1.17 74.4 40.1 94.4


    [0033] It can be appreciated from Tables 12-17 and Figure 24 that the cleanliness efficiencies for stickies are quite sensitive to even small variations in slot width and profile height.


    Claims

    1. A method for screening recycled pulp comprising the steps of:

    fiberizing and suspending the pulp in an aqueous liquid;

    pressurizing said aqueous liquid;

    passing said aqueous liquid containing said fiberized and suspended pulp to one screen having:

    a metallic screen basket (30) for screening of stickies having a supply side surface (54) approximating that of a right circular cylinder having an axis "A", a circumference "C" and a diameter "D", said surface (54) comprising a plurality of sequences of facets (42, 44, 46), each sequence comprising a generally circumferentially extending facet (44), an upstream generally diametrally extending facet (46) adjacent thereto, and a downstream generally diametrally extending facet (42) adjacent thereto, each said generally circumferential facet (44) being generally parallel to the axis "A" of the cylinder and having a leading edge (48) and a trailing edge (50), each said leading edge (48) and trailing edge (50) as well as each said upstream generally diametrally extending facet (46) and each said downstream generally diametrally extending facet (42) being generally parallel to the axis "A" of the cylinder, each said leading edge (48) being located upon a cylindrical surface S1, and each said trailing edge (50) being located upon a cylindrical surface S2, the diametral difference "δ" between the distance from the axis "A" to the cylindrical surface S1 and the diametral distance from the axis "A" to the cylindrical surface S2 being between about 0.35 mm to about 0.6 mm, the normal direction to the surface of each said generally circumferential facet (44) in each sequence of facets (42, 44, 46) having a component directed toward the adjacent trailing edge (50) of an adjacent generally circumferential facet (44) in an adjacent sequence of facets (42, 44, 46), the angle "α" between each said generally circumferential facet (44) and the diametral direction of said right circular cylinder being between about 80° and 76°, the distance "t" from the leading edge (48) to the trailing edge (50) of each said generally circumferential facet (44) being between about 2.3 mm and 2.5 mm, the upstream generally diametrally extending facet (46) of each sequence adjoining the leading edge (48) of a generally circumferential facet (44) and the downstream generally diametrally extending facet (42) of each sequence adjoining the trailing edge (50), the distance "w" between the upstream generally diametrally extending facet (46) of each sequence and the downstream generally diametrally extending facet (42) of the next adjacent sequence being between about 0.11 mm and 0.145 mm, a channel leading from the supply side to the accepts side of said screen (30) being defined between the upstream generally diametrally extending facet (46) of each sequence and the downstream generally diametrally extending facet (42) of the next adjacent sequence;

    a plurality of foils (56) deployed adjacent said supply surface (54), each said foil (56) being adapted to induce flow past said accepts surface of said screen basket (30) and thereby periodically induce backflow through said channels against the pressure applied to said aqueous liquid, forward flow responsive to the pressure applied to said aqueous liquid occurring during periods between said periodic backflow;

    conducting forward flow passing though said channels as an accepts flow to a papermaking operation;

    passing rejects flow from said supply side of said screen basket (30) to another screen; and

    recycling accepts from said other screen back to the supply to said one screen (30).


     
    2. The method of claim 1, wherein the screen basket (30) is comprised of a plurality of metallic faceted vanes (32).
     
    3. The method of claim 1, wherein the screen basket (30) is formed from at least one unitary metallic sheet, each sheet having a plurality of trenches formed into its surfaces and a plurality of slits formed therethrough.
     
    4. The method of claim 1 wherein the screen basket (30) comprises stainless steel.
     
    5. The method of any preceding claim wherein a corrosion resistant hardened surface is disposed upon the screen basket (30).
     
    6. The method of claim 1 wherein the screen basket (30) is plated with chromium.
     
    7. The method of claim 6 wherein the screen basket (30) bears a hard plating comprising a major proportion of chromium having hardness of at least about 65 on the Rockwell C scale in a thickness of at least 5.08 µm (0.2 mils) up to about 25.4 µm (1.0 mils).
     
    8. A metallic screen basket (30) for screening stickies containing recycled fibers, having a supply side surface (54) approximating that of a right circular cylinder having an axis "A", a circumference "C" and a diameter "D", said surface (54) comprising a plurality of sequences of facets (42, 44, 46), each sequence comprising a generally circumferentially extending facet (44), an upstream generally diametrally extending facet (46) adjacent thereto, and a downstream generally diametrally extending facet (42) adjacent thereto, each said generally circumferential facet (44) being generally parallel to the axis "A" of the cylinder and having a leading edge (48) and a trailing edge (50), each said leading edge (48) and trailing edge (50) as well as each said upstream generally diametrally extending facet (46) and each said downstream generally diametrally extending facet (42) being generally parallel to the axis "A" of the cylinder, each said leading edge (48) being located upon a cylindrical surface S1, and each said trailing edge (50) being located upon a cylindrical surface S2, the diametral difference "d" between the distance from the axis "A" to the cylindrical surface S1 and the diametral distance from the axis "A" to the cylindrical surface S2 being between about 0.35 mm to about 0.60 mm, the normal direction to the surface of each said generally circumferential facet (44) in each sequence of facets (42, 44, 46) having a component directed toward the adjacent trailing edge (50) of an adjacent generally circumferential facet (44) in an adjacent sequence of facets (42, 44, 46), the angle "α" between each said generally circumferential facet (44) and the diametral direction of said right circular cylinder being between about 80° and 76°, the distance "t" from the leading edge (48) to the trailing edge (50) of each said generally circumferential facet (44) being between about 2.30 mm and 2.5 mm, the upstream generally diametrally extending facet (46) of each sequence adjoining the leading edge (48) of a generally circumferential facet (44) and the downstream generally diametrally extending facet (42) of each sequence adjoining the trailing edge (50), the distance between the upstream generally diametrally extending facet (46) of each sequence and the downstream generally diametrally extending facet (42) of the next adjacent sequence being between about 0.11 mm and 0.145 mm, a channel leading from the supply side to the accepts side of said screen (30) being defined between the upstream generally diametrally extending facet (46) of each sequence and the downstream generally diametrally extending facet (42) of the next adjacent sequence.
     
    9. The screen basket (30) of claim 8, wherein the screen basket (30) is comprised of a plurality of metallic faceted vanes (32).
     
    10. The screen basket (30) of claim 8, wherein the screen basket (30) is formed from at least one unitary metallic sheet, each sheet having a plurality of trenches formed into its surfaces and a plurality of slits formed therethrough.
     
    11. The screen basket (30) of any of claims 8 to 10, wherein the screen basket (30) comprises stainless steel.
     
    12. The screen basket (30) of any of claims 8 to 10, wherein a corrosion resistant hardened surface is disposed upon the screen basket (30).
     
    13. The screen basket (30) of any of claims 8 to 10, wherein the screen basket (30) is plated with chromium.
     
    14. The screen basket (30) of claim 8, wherein the screen basket (30) bears a hard plating comprising a major proportion of chromium having hardness of at least about 65 on the Rockwell C scale in a thickness of at least 5.08 µm (0.2 mils) up to about 25.4 µm (1.0 mils).
     
    15. A screen for separating a supply stream comprising an aqueous dispersion of papermaking fibers contaminated with adhesives into an accepts stream enriched in fibers and depleted in adhesive relative to said supply stream and a rejects stream enriched in adhesive and depleted in fiber relative to said supply stream, said screen comprising:

    - a housing;

    - a screen basket (30) according to any of claims 8-14 disposed within said housing, defining an accepts region exterior to said screen basket (30);

    - a supply duct issuing into said screen basket (30) within said housing;

    - an accepts duct leading from said accepts region in said housing; and

    - a rejects duct adapted to receive aqueous dispersion not passing through said screen basket (30).


     


    Ansprüche

    1. Verfahren zum Sieben von wiederzugeführter Pulpe, umfassend die Schritte:

    Zerfasern und Suspendieren der Pulpe in einer wässrigen Lösung;

    Druckbeaufschlagen der wässrigen Lösung;

    Leiten der wässrigen Lösung, die die zerfaserte und suspendierte Pulpe beinhaltet, zu einem Sieb, das aufweist:

    einen metallischen Siebkorb (30) zum Sieben von klebenden Verunreinigungen, der eine zuführungsseitige Oberfläche (54) aufweist, der die eines rechten Kreiszylinders annähert, der eine Achse "A", einen Umfang "C" und einen Durchmesser "D" aufweist, wobei die Oberfläche (54) eine Vielzahl Facettenabfolgen (42, 44, 46) umfasst, jede Abfolge eine sich im Allgemeinen in Umfangsrichtung erstreckende Facette (44), dazu benachbart eine stromaufwärtige, sich im Allgemeinen diametral erstreckende Facette (46), und dazu benachbart eine stromabwärtige, sich im Allgemeinen diametral erstreckende Facette (42) umfasst, jede im Allgemeinen umfängliche Facette (44) im Allgemeinen parallel zu der Achse "A" des Zylinders ist und eine vorauslaufende Kante (48) und eine nachlaufende Kante (50) aufweist, jede vorauslaufende Kante (48) und nachlaufende Kante (50) wie auch jede stromaufwärtige, sich im Allgemeinen diametral erstreckende Facette (46) und jede stromabwärtige, sich im Allgemeinen diametral erstreckende Facette (42) im Allgemeinen parallel zu der Achse "A" des Zylinders ist, jede vorauslaufende Kante (48) auf einer zylindrischen Oberfläche S1 lokalisiert ist und jede nachlaufende Kante (50) auf einer zylindrischen Oberfläche S2 lokalisiert ist, der diametrale Unterschied "δ" zwischen dem Abstand von der Achse "A" zu der zylindrischen Oberfläche S1 und dem diametralen Abstand von der Achse "A" zu der zylindrischen Oberfläche S2 zwischen etwa 0,35 mm bis etwa 0,6 mm beträgt, die Normalenrichtung zu der Oberfläche jeder im Allgemeinen umfänglichen Facette (44) in jeder Facettenabfolge (42, 44, 46) eine Komponente aufweist, die zu der benachbarten nachlaufenden Kante (50) einer benachbarten, im Allgemeinen umfänglichen Facette (44) in einer benachbarten Facettenabfolge (42, 44, 46) gerichtet ist, der Winkel "α" zwischen jeder im Allgemeinen umfänglichen Facette (44) und der diametralen Richtung des rechten Kreiszylinders zwischen etwa 80° und 76° beträgt, der Abstand "t" von der vorauslaufenden Kante (48) zu der nachlaufenden Kante (50) jeder im Allgemeinen umfänglichen Facette (44) zwischen etwa 2,3 mm und 2,5 mm beträgt, die stromaufwärtige, sich im Allgemeinen diametral erstreckende Facette (46) jeder Abfolge an die vorauslaufende Kante (48) einer im Allgemeinen umfänglichen Facette (44) anschließt und die stromabwärtige, sich im Allgemeinen diametral erstreckende Facette (42) jeder Abfolge an die nachlaufende Kante (50) anschließt, der Abstand "w" zwischen der stromaufwärtigen, sich im Allgemeinen diametral erstreckenden Facette (46) jeder Abfolge und der stromabwärtigen, sich im Allgemeinen diametral erstreckenden Facette (42) der nächsten benachbarten Abfolge zwischen etwa 0,11 mm und 0,145 mm beträgt, und ein Kanal, der von der Zuführungsseite zu der Gutstoffseite des Siebs (30) führt, zwischen der stromaufwärtigen, sich im Allgemeinen diametral erstreckenden Facette (46) jeder Abfolge und der stromabwärtigen, sich im Allgemeinen diametral erstreckenden Facette (42) der nächsten benachbarten Abfolge definiert ist;

    eine Vielzahl Flügel (56), die benachbart zu der Zuführungsoberfläche (54) entfaltet sind, wobei jeder Flügel (56) dafür angepasst ist, Strömung vorbei an der Gutstoffoberfläche des Siebkorbs (30) zu induzieren und dadurch periodisch Rückströmung durch die Kanäle entgegen des auf die wässrige Lösung angewandten Drucks zu induzieren, wobei Vorwärtsströmung ansprechend auf den auf die wässrige Lösung angewandten Druck während Perioden zwischen der periodischen Rückströmung stattfindet;

    Leiten von Vorwärtsströmung, die durch die Kanäle hindurchläuft, als einen Gutstoffstrom zu einer Papierherstellung;

    Laufen lassen von Rejektströmung von der Zuführungsseite des Siebkorbs (30) zu einem anderen Sieb; und

    Wiederzuführen von Gutstoff von dem anderen Sieb zu der Zuführung des einen Siebs (30).


     
    2. Verfahren nach Anspruch 1, wobei der Siebkorb (30) eine Vielzahl metallischer facettierter Schaufeln (32) umfasst.
     
    3. Verfahren nach Anspruch 1, wobei der Siebkorb (30) aus mindestens einem einstückigen metallischen Bogen gebildet ist, wobei jeder Bogen eine Vielzahl Rinnen, die in seine Oberfläche hinein gebildet sind, und eine Vielzahl durch diese hindurch gebildeter Schlitze aufweist.
     
    4. Verfahren nach Anspruch 1, wobei der Siebkorb (30) Edelstahl umfasst.
     
    5. Verfahren nach einem der vorstehenden Ansprüche, wobei eine korrosionsbeständige gehärtete Oberfläche auf dem Siebkorb (30) angeordnet ist.
     
    6. Verfahren nach Anspruch 1, wobei der Siebkorb (30) mit Chrom beschichtet ist.
     
    7. Verfahren nach Anspruch 6, wobei der Siebkorb (30) eine Hartbeschichtung trägt, die einen Hauptanteil Chrom umfasst, die eine Härte von mindestens etwa 65 auf der Skala C nach Rockwell mit einer Dicke von mindestens 5,08 µm (0,2 mils) bis hinauf zu etwa 25,4 µm (1,0 mils) aufweist.
     
    8. Metallischer Siebkorb (30) zum Sieben von wiederzugeführten Fasern beinhaltenden klebenden Verunreinigungen, der eine zuführungsseitige Oberfläche (54) aufweist, der die eines rechten Kreiszylinders annähert, der eine Achse "A", einen Umfang "C" und einen Durchmesser "D" aufweist, wobei die Oberfläche (54) eine Vielzahl Facettenabfolgen (42, 44, 46) umfasst, jede Abfolge eine sich im Allgemeinen in Umfangsrichtung erstreckende Facette (44), dazu benachbart eine stromaufwärtige, sich im Allgemeinen diametral erstreckende Facette (46), und dazu benachbart eine stromabwärtige, sich im Allgemeinen diametral erstreckende Facette (42) umfasst, jede im Allgemeinen umfängliche Facette (44) im Allgemeinen parallel zu der Achse "A" des Zylinders ist und eine vorauslaufende Kante (48) und eine nachlaufende Kante (50) aufweist, jede vorauslaufende Kante (48) und nachlaufende Kante (50) wie auch jede stromaufwärtige, sich im Allgemeinen diametral erstreckende Facette (46) und jede stromabwärtige, sich im Allgemeinen diametral erstreckende Facette (42) im Allgemeinen parallel zu der Achse "A" des Zylinders ist, jede vorauslaufende Kante (48) auf einer zylindrischen Oberfläche S1 lokalisiert ist und jede nachlaufende Kante (50) auf einer zylindrischen Oberfläche S2 lokalisiert ist, der diametrale Unterschied "d" zwischen dem Abstand von der Achse "A" zu der zylindrischen Oberfläche S1 und dem diametralen Abstand von der Achse "A" zu der zylindrischen Oberfläche S2 zwischen etwa 0,35 mm bis etwa 0,60 mm beträgt, die Normalenrichtung zu der Oberfläche jeder im Allgemeinen umfänglichen Facette (44) in jeder Facettenabfolge (42, 44, 46) eine Komponente aufweist, die zu der benachbarten nachlaufenden Kante (50) einer benachbarten, im Allgemeinen umfänglichen Facette (44) in einer benachbarten Facettenabfolge (42, 44, 46) gerichtet ist, der Winkel "α" zwischen jeder im Allgemeinen umfänglichen Facette (44) und der diametralen Richtung des rechten Kreiszylinders zwischen etwa 80° und 76° beträgt, der Abstand "t" von der vorauslaufenden Kante (48) zu der nachlaufenden Kante (50) jeder im Allgemeinen umfänglichen Facette (44) zwischen etwa 2,30 mm und 2,5 mm beträgt, die stromaufwärtige, sich im Allgemeinen diametral erstreckende Facette (46) jeder Abfolge an die vorauslaufende Kante (48) einer im Allgemeinen umfänglichen Facette (44) anschließt und die stromabwärtige, sich im Allgemeinen diametral erstreckende Facette (42) jeder Abfolge an die nachlaufende Kante (50) anschließt, der Abstand zwischen der stromaufwärtigen, sich im Allgemeinen diametral erstreckenden Facette (46) jeder Abfolge und der stromabwärtigen, sich im Allgemeinen diametral erstreckenden Facette (42) der nächsten benachbarten Abfolge zwischen etwa 0,11 mm und 0,145 mm beträgt, und ein Kanal, der von der Zuführungsseite zu der Gutstoffseite des Siebs (30) führt, zwischen der stromaufwärtigen, sich im Allgemeinen diametral erstreckenden Facette (46) jeder Abfolge und der stromabwärtigen, sich im Allgemeinen diametral erstreckenden Facette (42) der nächsten benachbarten Abfolge definiert ist.
     
    9. Siebkorb (30) nach Anspruch 8, wobei der Siebkorb (30) eine Vielzahl metallischer facettierter Schaufeln (32) umfasst.
     
    10. Siebkorb (30) nach Anspruch 8, wobei der Siebkorb (30) aus mindestens einem einstückigen metallischen Bogen gebildet ist, wobei jeder Bogen eine Vielzahl Rinnen, die in seine Oberfläche hinein gebildet sind, und eine Vielzahl durch diese hindurch gebildeter Schlitze aufweist.
     
    11. Siebkorb (30) nach einem der Ansprüche 8 bis 10, wobei der Siebkorb (30) Edelstahl umfasst.
     
    12. Siebkorb (30) nach einem der Ansprüche 8 bis 10, wobei eine korrosionsbeständige gehärtete Oberfläche auf dem Siebkorb (30) angeordnet ist.
     
    13. Siebkorb (30) nach einem der Ansprüche 8 bis 10, wobei der Siebkorb (30) mit Chrom beschichtet ist.
     
    14. Siebkorb nach Anspruch 8, wobei der Siebkorb (30) eine Hartbeschichtung trägt, die einen Hauptanteil Chrom umfasst, die eine Härte von mindestens etwa 65 auf der Skala C nach Rockwell mit einer Dicke von mindestens 5,08 µm (0,2 mils) bis hinauf zu etwa 25,4 µm (1,0 mils) aufweist.
     
    15. Sieb zum Separieren eines Zuführungsstroms, der eine wässrige Dispersion von mit Klebstoffen kontaminierten Papierherstellungsfasern umfasst, in einen Gutstoffstrom, der bezogen auf den Zuführungsstrom hinsichtlich Fasern angereichert und hinsichtlich Klebstoffen abgereichert ist, und einen Rejektstrom, der bezogen auf den Zuführungsstrom hinsichtlich Klebstoffen angereichert und hinsichtlich Fasern abgereichert ist, das Sieb umfassend:

    - ein Gehäuse;

    - einen Siebkorb (30) nach einem der Ansprüche 8-14, der innerhalb des Gehäuses angeordnet ist und eine Gutstoffregion außerhalb des Siebkorbs (30) definiert;

    - eine Zuführungsleitung, die in den Siebkorb (30) innerhalb des Gehäuses hinein ausgibt;

    - eine Gutstoffleitung, die aus der Gutstoffregion in dem Gehäuse führt; und

    - eine Rejektleitung, die dafür angepasst ist, wässrige Dispersion, die nicht durch den Siebkorb (30) hindurchläuft, zu empfangen.


     


    Revendications

    1. Procédé pour le classage d'une pâte recyclée, comprenant les étapes consistant à :

    défibrer la pâte et la mettre en suspension dans un liquide aqueux ;

    mettre ledit liquide aqueux sous pression ;

    faire passer ledit liquide aqueux contenant ladite pâte défibrée et mise en suspension en direction d'un classeur possédant :

    un panier de classeur métallique (30) pour le classage des matières collantes, possédant une surface latérale d'alimentation (54), s'approchant de celle d'un cylindre circulaire droit possédant un axe « A », une circonférence « C » et un diamètre « D », ladite surface (54) comprenant une pluralité de séquences de facettes (42, 44, 46), chaque séquence comprenant une facette (44) s'étendant généralement en direction circonférentielle, une facette en amont (46) s'étendant généralement en direction diamétrale, en position adjacente à la première citée, et une facette en aval (42) s'étendant généralement en direction diamétrale, en position adjacente à la deuxième citée, chacune desdites facettes généralement circonférentielles (44) étant généralement parallèle à l'axe « A » du cylindre et possédant un bord avant (48) et un bord arrière (50), chacun desdits bords avant (48) et desdits bords arrière (50), ainsi que chacune desdites facettes en amont (46) s'étendant généralement en direction diamétrale et chacune desdites facettes en aval (42) s'étendant généralement en direction diamétrale étant généralement parallèles à l'axe « A » du cylindre, chacun desdits bords avant (48) étant situé sur une surface cylindrique S1 et chacun desdits bords arrière (50) étant situé sur une surface cylindrique S2, la différence diamétrale « δ » entre la distance s'étendant depuis l'axe « A » jusqu'à la surface cylindrique S1 et la distance diamétrale s'étendant depuis l'axe « A » jusqu'à la surface cylindrique S2 se situant entre environ 0,35 mm et environ 0,6 mm, la distance normale par rapport à la surface de chacune desdites facettes généralement circonférentielles (44) dans chaque séquence de facettes (42, 44, 46) possédant une composante orientée en direction du bord arrière adjacent (50) d'une facette adjacente généralement circonférentielle (44) dans une séquence adjacente de facettes (42, 44, 46), l'angle « α » entre chacune desdites facettes généralement circonférentielles (44) et la direction diamétrale dudit cylindre circulaire droit se situant entre environ 80° et 76°, la distance « t » entre le bord avant (48) et le bord arrière (50) de chacune desdites facettes généralement circonférentielles (44) se situant entre environ 2,3 mm et 2,5 mm, la facette en amont (46) s'étendant généralement en direction diamétrale, de chaque séquence étant adjacente au bord avant (48) d'une facette généralement circonférentielle (44) et la facette en aval (42) s'étendant généralement en direction diamétrale, de chaque séquence étant adjacente au bord arrière (50), la distance « w » entre la facette en amont (46) s'étendant généralement en direction diamétrale, de chaque séquence et la facette en aval (42) s'étendant généralement en direction diamétrale, de la séquence directement adjacente se situant entre environ 0,11 mm et 0,145 mm, un canal menant depuis le côté alimentation jusqu'au côté acceptés dudit classeur (30) étant défini entre la facette en amont (46) s'étendant généralement en direction diamétrale, de chaque séquence et la facette en aval (42) s'étendant généralement en direction diamétrale, de la séquence directement adjacente ;

    une pluralité de racles d'égouttage (56) déployées en position adjacente à ladite surface d'alimentation (54), chacune desdites racles d'égouttage (56) étant conçue pour induire un écoulement le long de ladite surface des acceptés dudit panier de classeur (30) et ainsi induire de manière périodique un courant de retour à travers lesdits canaux à l'encontre de la pression qui s'exerce sur ledit liquide aqueux, un courant d'aller sensible à la pression qui s'exerce sur ledit liquide aqueux se manifestant au cours des périodes s'étendant entre ledit courant de retour périodique ;

    conduire le courant d'aller traversant lesdits canaux à titre de courant d'acceptés en direction d'une opération de fabrication du papier;

    faire passer à un autre classeur le courant des non-acceptés à partir dudit côté alimentation dudit panier de classeur (30) ; et

    recycler les acceptés à partir dudit autre classeur en retour à l'alimentation en direction dudit classeur (30) cité en premier.


     
    2. Procédé selon la revendication 1, dans lequel le panier de classeur (30) comprend une pluralité d'ailettes métalliques à facettes (32).
     
    3. Procédé selon la revendication 1, dans lequel le panier de classeur (30) est réalisé à partir d'au moins une tôle métallique unitaire, une pluralité de sillons étant formés dans les surfaces de chaque tôle et une pluralité de fentes y étant pratiquées.
     
    4. Procédé selon la revendication 1, dans lequel le panier de classeur (30) comprend de l'acier inoxydable.
     
    5. Procédé selon l'une quelconque des revendications précédentes, dans lequel une surface durcie résistant à la corrosion est disposée par-dessus le panier de classeur (30).
     
    6. Procédé selon la revendication 1, dans lequel le panier de classeur (30) est plaqué au chrome.
     
    7. Procédé selon la revendication 6, dans lequel le panier de classeur (30) supporte un revêtement métallique dur comprenant une proportion majeure de chrome dont la dureté s'élève à au moins environ 65 sur l'échelle Rockwell C en une épaisseur d'au moins 5,08 µm (0,2 millième de pouce) jusqu'à environ 25,4 µm (1,0 millième de pouce).
     
    8. Panier de classeur métallique (30) pour le classage de fibres recyclées contenant des matières collantes, possédant une surface latérale d'alimentation (54), s'approchant de celle d'un cylindre circulaire droit possédant un axe « A », une circonférence « C » et un diamètre « D », ladite surface (54) comprenant une pluralité de séquences de facettes (42, 44, 46), chaque séquence comprenant une facette (44) s'étendant généralement en direction circonférentielle, une facette en amont (46) s'étendant généralement en direction diamétrale, en position adjacente à la première citée, et une facette en aval (42) s'étendant généralement en direction diamétrale, en position adjacente à la deuxième citée, chacune desdites facettes généralement circonférentielles (44) étant généralement parallèle à l'axe « A » du cylindre et possédant un bord avant (48) et un bord arrière (50), chacun desdits bords avant (48) et desdits bords arrière (50), ainsi que chacune desdites facettes en amont (46) s'étendant généralement en direction diamétrale et chacune desdites facettes en aval (42) s'étendant généralement en direction diamétrale étant généralement parallèles à l'axe « A » du cylindre, chacun desdits bords avant (48) étant situé sur une surface cylindrique S1 et chacun desdits bords arrière (50) étant situé sur une surface cylindrique S2, la différence diamétrale « δ » entre la distance s'étendant depuis l'axe « A » jusqu'à la surface cylindrique S1 et la distance diamétrale s'étendant depuis l'axe « A » jusqu'à la surface cylindrique S2 se situant entre environ 0,35 mm et environ 0,6 mm, la distance normale par rapport à la surface de chacune desdites facettes généralement circonférentielles (44) dans chaque séquence de facettes (42, 44, 46) possédant une composante orientée en direction du bord arrière adjacent (50) d'une facette adjacente généralement circonférentielle (44) dans une séquence adjacente de facettes (42, 44, 46), l'angle « α » entre chacune desdites facettes généralement circonférentielles (44) et la direction diamétrale dudit cylindre circulaire droit se situant entre environ 80° et 76°, la distance « t » entre le bord avant (48) et le bord arrière (50) de chacune desdites facettes généralement circonférentielles (44) se situant entre environ 2,3 mm et 2,5 mm, la facette en amont (46) s'étendant généralement en direction diamétrale, de chaque séquence étant adjacente au bord avant (48) d'une facette généralement circonférentielle (44) et la facette en aval (42) s'étendant généralement en direction diamétrale, de chaque séquence étant adjacente au bord arrière (50), la distance « w » entre la facette en amont (46) s'étendant généralement en direction diamétrale, de chaque séquence et la facette en aval (42) s'étendant généralement en direction diamétrale, de la séquence directement adjacente se situant entre environ 0,11 mm et 0,145 mm, un canal menant depuis le côté alimentation jusqu'au côté acceptés dudit classeur (30) étant défini entre la facette en amont (46) s'étendant généralement en direction diamétrale, de chaque séquence et la facette en aval (42) s'étendant généralement en direction diamétrale, de la séquence directement adjacente.
     
    9. Panier de classeur (30) selon la revendication 8, dans lequel le panier de classeur (30) comprend plusieurs une pluralité d'ailettes métalliques à facettes (32).
     
    10. Panier de classeur (30) selon la revendication 8, dans lequel le panier de classeur (30) est réalisé à partir d'au moins une tôle métallique unitaire, une pluralité de sillons étant formés dans les surfaces de chaque tôle et une pluralité de fentes y étant pratiquées.
     
    11. Panier de classeur (30) selon l'une quelconque des revendications 8 à 10, dans lequel le panier de classeur (30) comprend de l'acier inoxydable.
     
    12. Panier de classeur (30) selon l'une quelconque des revendications 8 à 10, dans lequel une surface durcie résistant à la corrosion est disposée par-dessus le panier de classeur (30).
     
    13. Panier de classeur (30) selon l'une quelconque des revendications 8 à 10, dans lequel le panier de classeur (30) est plaqué au chrome.
     
    14. Panier de classeur (30) selon la revendication 8, dans lequel le panier de classeur (30) supporte un revêtement métallique dur comprenant une proportion majeure de chrome dont la dureté s'élève à au moins environ 65 sur l'échelle Rockwell C en une épaisseur d'au moins 5,08 µm (0,2 millième de pouce) jusqu'à environ 25,4 µm (1,0 millième de pouce).
     
    15. Classeur pour séparer un courant d'alimentation comprenant une dispersion aqueuse de fibres de fabrication du papier contaminées avec des adhésifs en un courant d'acceptés enrichi en fibres et appauvri en adhésifs par rapport audit courant d'alimentation et un courant de non-acceptés enrichi en adhésifs et appauvri en fibres par rapport audit courant d'alimentation, ledit classeur comprenant :

    - un carter;

    - un panier de classeur (30) selon l'une quelconque des revendications 8 à 14 disposé au sein dudit carter, définissant une zone d'acceptés à l'extérieur dudit panier de classeur (30) ;

    - un conduit d'alimentation débouchant dans ledit panier de classeur (30) au sein dudit carter;

    - un conduit d'acceptés partant de ladite zone d'acceptés dans ledit carter; et

    - un conduit de non-acceptés conçu pour recevoir la dispersion aqueuse qui ne passe pas à travers ledit panier de classeur (30).


     




    Drawing













































































    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description