(19)
(11)EP 2 439 227 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
12.06.2013 Bulletin 2013/24

(21)Application number: 11192699.4

(22)Date of filing:  29.07.2008
(51)International Patent Classification (IPC): 
C08J 3/075(2006.01)
A61L 27/52(2006.01)

(54)

Method of forming a multi-polymer hydrogel article

Herstellung eines Gegenstands aus mehrere Polymere enthaltendem Hydrogel

Procédé de préparation d'un article en hydrogel multipolymère


(84)Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

(30)Priority: 03.08.2007 US 833549

(43)Date of publication of application:
11.04.2012 Bulletin 2012/15

(62)Application number of the earlier application in accordance with Art. 76 EPC:
08796762.6 / 2173792

(73)Proprietor: Zimmer, Inc.
Warsaw, IN 46580-2746 (US)

(72)Inventors:
  • Thomas, Brian
    Columbia City, IN Indiana 46725 (US)
  • Zhang, Kai
    Warsaw, IN Indiana 46582 (US)

(74)Representative: Mays, Julie et al
Venner Shipley LLP 200 Aldersgate
London EC1A 4HD
London EC1A 4HD (GB)


(56)References cited: : 
EP-A1- 1 505 093
WO-A-99/67320
WO-A2-2005/035726
EP-A1- 2 011 816
WO-A-2004/064693
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    TECHNICAL FIELD



    [0001] The present invention relates generally to a method of forming multi-polymer hydrogel materials, and specifically to a method of forming multi-polymer hydrogel materials for implantable articles.

    BACKGROUND



    [0002] Hydrogels are water-swellable or water-swollen materials having a structure defined by a crosslinked network of hydrophilic homopolymers or copolymers. The hydrophilic homopolymers or copolymers may or may not be water-soluble in free form, but in a hydrogel are rendered insoluble (but swellable) in water due to covalent, ionic, or physical crosslinking. In the case of physical crosslinking, the linking may take the form of entanglements, crystallites, or hydrogen-bonded structures. The crosslinks in a hydrogel provide structure and physical integrity to the network.

    [0003] Hydrogels have been made from a variety of hydrophilic polymers and copolymers. Poly(ethylene glycol), poly(vinyl pyrrolidone), polyacrylamide, poly(hydroxyethyl methacrylate), and copolymers of the foregoing, are examples of polymers that may be used to make hydrogels. Hydrogels have also been made from biopolymers such as chitosan, agarose, hyaluronic acid and gelatin, in addition from semi-interpenetrating network ("IPN") hydrogels and gelatin crosslinked with poly(ethylene glycol) diacrylate.

    [0004] Poly(vinyl alcohol) ("PVA") has been studied extensively for potential biomedical applications. PVA hydrogels can be produced, for example, from an aqueous solution via repeated freezing and thawing cycles that increase the order of the crystals, changing the dissolution properties, mesh size, and diffusion properties of the polymer.

    [0005] Hydrogels have shown promise in biomedical and pharmaceutical applications, due, in part, to their high water content and rubbery or pliable nature, which may mimic natural tissue and may facilitate the release of bioactive substances at a desired physiological site. For example, hydrogels have been used or proposed for use in a variety of tissue treatment applications, including implants, tissue adhesives, bone grafts as well as in meniscus and articular cartilage replacement. Hydrogels may also act as a carrier for delivering bioactive substances including drugs, peptides, and proteins to a physiological site.

    [0006] However, many biomedical applications require that the implanted article possess different characteristics, such as mechanical and chemical properties, at different locations or surfaces of the article. Thus, there is a need to provide a method of forming hydrogel materials and articles that present different characteristics at different locations of the implanted article.

    SUMMARY OF THE INVENTION



    [0007] The present invention provides a method of forming a multi-polymer hydrogel article comprising a first polymeric, water-swellable material and a second polymeric material. The multi-polymer hydrogel article has a first region that substantially comprises the first polymeric, water-swellable material, a second region adjacent the first region that comprises a mixture of the first polymeric, water-swellable material and the second polymeric material, and a third region adjacent the second region that substantially comprises the second polymeric material. The multi-polymer hydrogel article exhibits an increasing concentration gradient in the second polymeric material moving from the first region, through the second region, to the third region.

    [0008] The inventive method comprises forming a hydrogel structure comprising a first polymeric, water-swellable material. An aerogel structure comprising a plurality of open pores is formed by dehydrating the hydrogel structure. The aerogel structure is then contacted with a second polymeric material. The second polymeric material incorporates into at least a portion of the plurality of open pores in the aerogel structure to form a multi-polymer hydrogel article. The resulting multi-polymer hydrogel article is then rehydrated.

    DETAILED DESCRIPTION



    [0009] The formed multi-polymer hydrogel article comprises a first polymeric, water-swellable material and a second polymeric material. The multi-polymer hydrogel article is organized into a first, second, and third region, wherein the first region substantially comprises the first polymeric, water-swellable material, the second region adjacent the first region comprises a mixture of the first polymeric, water-swellable material and the second polymeric material, and the third region adjacent the second region substantially comprises the second polymeric material. Further, the second polymeric material exhibits an increasing concentration gradient moving from the first region, through the second region, to the third region. In one embodiment, the second polymeric material is a water-swellable material.

    [0010] As used in this specification, the terms "water-swellable" or "hydrogel" indicate that the article is able to take on and retain water within a network of polymers.

    [0011] Suitable water-swellable materials include at least one of a hydrophilic polymer, a homopolymer, a combination of a hydrophilic polymer and a hydrophobic polymer, a blend of polymers, a copolymer, or a thermoplastic material, or combinations thereof. The first polymeric, water-swellable material is selected from the group consisting of polymers and copolymers of polyvinyl alcohol, polyglycols, polyethylene glycol dimethacrylate, polyethylene glycol diacrylate, polyhydroxyethyl methacrylate, polyvinyl pyrrolidone, polyacrylamide, polyacrylic acid, hydrolyzed polyacrylonitrile, polyethyleneimine, ethoxylated polyethyleneimine, polyallyl alcohol, and polyallylamine, and combinations thereof.

    [0012] In some embodiments, the second polymeric material is a polyurethane elastomer, silicone elastomer, hydrogel, or lyogel, or combinations thereof. In one embodiment, the first polymeric, water-swellable material and the second polymeric material comprise a common monomer. The second polymeric material may also be water-swellable, with the first and second water-swellable materials being different, with a common monomer or without a common monomer. For example, in one embodiment, the first polymeric, water-swellable material is a polyvinyl alcohol (PVA)/polyethylene-co-vinyl alcohol (EVAL) copolymer and the second polymeric material is polyvinyl alcohol (PVA). In some embodiments, the first polymeric, water-swellable material, the second polymeric material, the aerogel structure, and/or the multi-polymer hydrogel article is thermoplastic. Further examples of suitable materials to be used as the first polymeric, water-swellable material and/or the second polymeric material can be found in U.S. Patent Application No. 11/614,389.

    [0013] The organization of the multi-polymer hydrogel article is such that the first region extends from a first point to a first interface with the second region, the second region extends from the first interface to a second interface with the third region, and the third region extends from the second interface to a second point. Further, the percent volume ratio of the first polymeric, water-swellable material to the second polymeric material is about 100:0 at the first point and about 0:100 at the second point and continuously changes from 100:0 at the first point to 0:100 at the second point. Each of the first and second points may reside at exterior surfaces of the article, or may reside interiorly within the respective first and third regions.

    [0014] The present invention provides a method of forming a multi-polymer hydrogel article. The method comprises (a) forming a hydrogel structure comprising a first polymeric, water-swellable material, (b) creating an aerogel structure comprising a plurality of open pores by dehydrating the hydrogel structure, (c) contacting the aerogel structure with a second polymeric material to incorporate the second polymeric material into at least a portion of the plurality of open pores to form a multi-polymer hydrogel article, and (d) rehydrating the multi-polymer hydrogel article.

    [0015] The method of the present invention may be used to impart desireable characteristics in a hydrogel material or device, such as reinforcing particular areas, providing hoop stress support, creating transition zones between different materials, and/or changing mechanical properties, e.g., compressive modulus, tensile strength, etc.

    [0016] In one embodiment, forming the hydrogel structure comprises casting, injection molding, or compression molding the first polymeric, water-swellable material into a shape. In another embodiment, forming the hydrogel structure further comprises dip coating, casting or molding the first polymeric, water-swellable material at least partially encompassing a third sacrificial material. In some embodiments, the third sacrificial material is soluble in an aqueous solution. The third sacrificial material may comprise a variety of materials including sugars, waxes, gelatins, salts, low molecular weight water-soluble polymers, ice, and biodegradable polymers, and combinations thereof.

    [0017] In one embodiment of the present method, the third sacrificial material is dissolved to form a void at least partially encompassed by the first polymeric, water-swellable material. In various embdoiments, the third sacrificial material is dissolved in vivo. In one embodiment, the void is limited at its periphery by the first polymeric, water-swellable material such that the first polymeric, water-swellable material substantially surrounds the void. In some embodiments, the first polymeric, water-swellable material forms a ballon or a bubble. The void and/or the hydrogel structure may be tailored to any desired shape and size. In some embodiments, the void created by the third sacrificial material may be at least partially filled with a second polymeric material that is in liquid form. The liquid polymer may be injected by a needle or cannula into the void formed by the third sacrificial material.

    [0018] In another embodiment, the third sacrifical material is included in the first polymeric, water-swellable material such that when the third sacrifical material is dissolved, open pores are formed in addition to those formed when creating the aerogel structure. In some embodiments, the third sacrificial material is soluble in an aqueous solution. The third sacrificial material may comprise a variety of materials including sugars, waxes, gelatins, salts, low molecular weight water-soluble polymers, ice, and biodegradable polymers, and combinations thereof.

    [0019] In one embodiment, the formation of the hydrogel structure includes using a surfactant or rapid agitation to create spheres, rods, globules, ellipsoidal shapes, cylindrical shapes, and/or disc-like shapes. In one embodiment, a surfactant is used in the polymerization process to create hydrogel beads, for example, polymerization of hydroxymethylmethacrylate in a surfactant. In another embodiment, the surfactant may be polymerized in a self-emulsifying polymerization to create the hydrogel beads, for example, the polymerization of sodium methacrlate in water. Monomers that may be polymerized in the prescense of surfactants to create hydrogel beads may include glycidyl methacrylate modified hyaluronate, acrylate modified polyethylene glycol, or the polymerization of vinyl acetate followed by post hydrolysis to create polyvinyl alcohol. Suitable surfactants for these polymerizations may include perfluorocarboxlyic acid salts, tetraethylene glycol dodecyl ether, decaethylene glycol hexadecyl ether, carboxylic acid salts, Alkanol®, Merpol®, Brij®, Adogen®, Igepal®, Tergitol®, or Triton®.

    [0020] The aerogel structure is created by dehydrating, e.g. removing water and/or plasticizers, from the hydrogel structure. It may be understood that dehydration includes partial to complete removal of water and/or plasticizers from the hydrogel structure. In various embodiments, the water and/or plasticizer is removed from the hydrogel structure by, for example, heating, evaporating, subjecting to a vacuum, freeze-drying, or solvent exchange, or combinations thereof. In embodiments where the water and/or plasticizer is partially removed from the hydrogel structure, a semiporous material is created. In some embodiments, after dehydrating the hydrogel structure to create the aerogel structure, the aerogel structure is formed into a desired shape. Forming the aerogel structure includes cutting, molding, and/or shaping the aerogel structure. In some embodiments, water-swellable sheets may be dehydrated before creating a desired shape.

    [0021] After formation of the aerogel structure, the aerogel structure is contacted with a second polymeric material. As used herein "contacted" includes filling, pressing, interlocking, impregnating, penetrating or intercalating. Furthermore, the aerogel structure may be contacted by the second polymeric material in a variety of ways including immersing at least a portion of the aerogel structure in the second polymeric material, injecting the second polymeric material into at least a portion of the aerogel structure, compressing the second polymeric material into at least a portion of the aerogel structure, and contacting less than the entire surface area of the aerogel structure with the second polymeric material.

    [0022] In an alternative embodiment, the first polymeric, water-swellable material, absent formation of the aerogel structure, may be contacted with the second polymeric material and introduced into the first polymeric, water-swellable material by solvent bonding techniques. Solvent bonding requires compatible solvents for the first polymeric, water-swellable material and the second polymeric material. The solvent bonding creates an interlocking of the two polymer layers. Compatible solvents may include tetrahydrofuran, toluene, dimethylformamide, dimethylacetamide, acetone, acetonitrile, cyclohexane, cyclopentane, 1,4-dioxane, ethyl acetate, glyme, methyl tert-butyl ether, methyl ethyl ketone, pyridine, water, dimethylsulfoxide, or chlorobenzene, or combination thereof. The subsequent solvent bonded structure formed following contact between the first polymeric, water-swellable material and the second polymeric material is amenable to all the embodiments described herein.

    [0023] The method of the present invention results in the formation of a multi-polymer hydrogel article comprising the first polymeric, water-swellable material and the second polymeric material. The multi-polymer hydrogel article is organized into a first region substantially comprising the first polymeric, water-swellable material, a second region adjacent the first region comprising a mixture of the first polymeric, water-swellable material and the second polymeric material, and a third region adjacent the second region substantially comprising the second polymeric material. Further, the second polymeric material exhibits an increasing concentration gradient moving from the first region, through the second region, to the third region.

    [0024] Additionally, the first region extends from a first point to a first interface with the second region, the second region extends from the first interface to a second interface with the third region and includes therein a second point, and the third region extends from the second interface to a third point. In one embodiment, the multi-polymer hydrogel article formed by the present method has a percent volume ratio of the first polymeric, water-swellable material to the second polymeric material that continuously changes from about 100:0 at the first point, to about 50:50 at the second point, to about 0:100 at the third point. In one embodiment, pore blockers are present during the present method such that some portion of the pores in the aerogel structure are resistant to penetration by the second polymeric material. In embodiments where a pore blocker is present, the second point is moved towards the third point in the multi-polymer hydrogel article. Pore blockers that may be used in the present method include sugars, salts, low molecular weight water-soluble polymers, waxes, liquids, and biodegradable polymers, and combinations thereof.

    [0025] In addition to the incorporation of the second polymeric material into at least a portion of the plurality of open pores in the aerogel structure to form a multi-polymer hydrogel article, in some embodiments, the second polymeric material is also introduced into the void created by dissolving the third sacrificial material such as sugars, salts, or waxes. In another embodiment, a material is introduced into the void created by dissolving the third sacrificial material and may include materials such as lyogels, hydrogels, monomers, beads, urethanes, acrylates, methacrylates, or other injectable polymeric materials or precursors. In various embodiments, the second polymeric material may contact the first polymeric, water-swellable material in situ and/or be cured in situ as part of an implantation procedure or cured ex-vivo before implantation.

    [0026] In one embodiment, the aerogel structure is contacted with the second polymeric material under pressure. Using the previously described organization of the resultant multi-polymer hydrogel article where the first region extends from a first point to a first interface with the second region, the second region extends from the first interface to a second interface with the third region and includes therein a second point, and the third region extends from the second interface to a third point and where a percent volume ratio of the first polymeric, water-swellable material to the second polymeric material continuously changes from about 100:0 at the first point, to about 50:50 at the second point, to about 0:100 at the third point, the affect of contacting the aerogel structure with the second polymeric material under pressure is to move the second point towards the first point. The extent of the movement of the second point towards the first point is affected by many factors including the amount of pressure exerted on the second polymeric material.

    [0027] In yet another embodiment of the present method, a multilayered, multi-polymer hydrogel article is produced. In one embodiment, at least one of the method steps (a-d) described above is repeated. For instance, following contacting of the aerogel with the second polymeric material, the resulting aerogel structure incorporating the second polymeric material is dehydrated to form a second aerogel structure. This second aerogel structure can be contacted with a third polymeric material such that the third polymeric material incorporates into at least a portion of the second aerogel structure. The process can be repeated such that n aerogel structures are contacted with n + 1 polymeric materials and with each cycle of dehydration and incorporation, another layer is added to the resultant multi-polymer hydrogel article. The n + 1 polymeric material can be any of the potential materials described for either the first polymeric, water-swellable material or the second polymeric material. Also, any of the n aerogel structures are subject to the embodiments described above for the aerogel structure. In various embodiments, the multilayers are comprised of different polymeric materials or the same polymeric material. In one embodiment, the multilayered, multi-polymer hydrogel article is composed of variations of the same polymer. For instance, the polymer may vary by concentration, molecular weight, degree of branching, tacticity, extent of crosslinking, etc.

    [0028] In still another embodiment, the multilayered, multi-polymer hydrogel article can be accomplished utilizing insert-molding techniques known to one skilled in the art. Examples of methods to create the layering may include liquid injection molding. Compression molding may also be used and insures good interlocking of the first polymeric, water-swellable material and the second polymeric material.

    [0029] In another embodiment, a multilayered, multi-polymer hydrogel article may be formed using solvent bonding by at least partially covering a first polymeric, water-swellable material with a second polymeric material, both containing compatible solvents, to create a multi-polymer hydrogel article. The multi-polymer hydrogel article may then be contacted with a third polymeric material, also containing compatible solvents, resulting in a multilayered, multi-polymer hydrogel article. The process may be repeated such that each cycle of incorporation results in another layer being added to the resultant multi-polymer hydrogel article. In various embodiments, the multilayers are comprised of different polymeric materials or the same polymeric material. In one embodiment, the multilayered, multi-polymer hydrogel article is composed of variations of the same polymer. For instance, the polymer may vary by concentration, molecular weight, extent of crosslinking, etc.

    [0030] The present method for forming a multi-polymer hydrogel article may also include crosslinking of all or a portion of the multi-polymer hydrogel article. In various embodiments, crosslinking can occur by radiation crosslinking, physical crosslinking, or chemical crosslinking, or combinations thereof. Examples of radiation crosslinking includes exposing the multi-polymer hydrogel article to at least one of visible light radiation, infrared radiation, ultraviolet radiation, electron beam radiation, gamma radiation, or x-ray radiation. An example of physical crosslinking is exposing the multi-polymer hydrogel article to freezing and thawing. Examples of chemical crosslinking includes exposing the multi-polymer hydrogel article to a monoaldehyde or a diisocyanate. Crosslinking may be carried out after forming the hydrogel structure, after forming the multi-polymer hydrogel article, after shaping the multi-polymer hydrogel article into a desired shape, after in situ formation of the article, or at any other suitable point during processing.

    [0031] The multi-polymer hydrogel article described herein may be suitable for use in a wide variety of applications, including tissue replacement or augmentation, biomedical applications, and pharmaceutical applications. Also, the article will have utility for many orthopedic conditions, particularly those that involve repair of a cartilage, repair of soft tissue defects, e. g., treating damaged or diseased hyaline cartilage, replacement of damaged cartilage surface, and use in spinal discs. The article can be used as an implant to replace at least a portion of an artificial hip, hip liner, knee, knee liner, disk replacement, shoulder, elbow, foot, ankle, finger, or mandible.

    [0032] The following examples are provided to illustrate the invention and are not intended to limit the same.

    [0033] EXAMPLE 1

    [0034] Synthesis Of The First Polymeric, Water-swellable Material

    [0035] To a 1000 ml beaker equipped with a mechanical stirrer was added 60 g polyvinyl alcohol, 30 ml deionized water, and 270 ml of dimethylsulfoxide (DMSO). The polyvinyl alcohol was 99+ % hydrolyzed with an average molecular weight of 124 kiloDalton (kDa) to 186 kDa and was used as received from Sigma-Aldrich (St. Louis, MO). The DMSO was used as received from Sigma-Aldrich and contained < 0.4% water. The solution was heated to 90° C for three hours.

    [0036] After three hours, the solution was poured into one-cm3 aluminum molds. The solution was allowed to cool slowly to room temperature, and the aluminum molds were then placed into a freezer at -30° C for three hours. The aluminum molds were removed from the freezer.

    [0037] The resulting material was translucent, flexible, and pliable. The one cm3 polymeric samples were extracted with 700 ml reagent-grade alcohol (ethanol) followed by solvent exchange with deionized water over a three-day period. The resulting material remained translucent, flexible, and pliable.

    [0038] Dehydration was performed on a vacuum glass Schlenck line by using a freeze-thaw technique in which the sample was frozen followed by evacuation of the liquid vapor phase. The freeze-thaw procedure was performed as follows: the samples were frozen at -196° C and a dynamic vacuum was placed on the sample as it warmed to room temperature. The freeze-dried samples served as the aerogel structure.

    [0039] Synthesis Of The Second Polymeric Material

    [0040] To a one-gallon sigma mixer/extruder (Jaygo Incorporated, New Jersey) fitted with a 3 mm fiber die was added 625.89 g polyethylene-co-vinyl alcohol, 100 ml of water, 1350 g DMSO, and 626.79 g polyvinyl alcohol. The materials were mixed at 240° F (116° C) for 70 minutes. The polyvinyl alcohol was 99+ % hydrolyzed with an average molecular weight of 146,000 to 186,000 and was used as received from Sigma-Aldrich. The polyethylene-co-vinyl alcohol had an ethylene content of 44 mole-percent and was used as received from Sigma-Aldrich. The DMSO was used as received from Sigma-Aldrich and contained < 0.4% water.

    [0041] After 70 minutes, the sample was extruded through a 3 mm fiber die with a draw rate of 4 X and into a 50% alcohol/50% water cooling bath for a residence time of 1-3 seconds. The fiber was allowed to cool and cut into fine pellets using a fiber chopper. The resulting material remained translucent, flexible, and pliable.

    [0042] Synthesis Of The Multi-polymer Hydrogel Article

    [0043] The multi-polymer hydrogel article was formed on a Morgan Press ram injection molder G-100T from Morgan Industries Inc. (Long Beach, CA). The aerogel structure was placed in an aluminum mold. The second polymeric material pellets were placed into the barrel of the injection molder. The material was injection molded at 270° C barrel and 280° C nozzle temperature. Injection pressure was 7000 psi with 18 tons clamping pressure. After injection, the mold was cooled with circulating water at 10° C for five minutes prior to removing the sample. The multi-polymer hydrogel article was extracted with 700 ml reagent-grade alcohol (ethanol) followed by solvent exchange with deionized water over a three-day period. The resulting multi-polymer hydrogel article showed a transparent material in the middle of the sample (substantially comprising the first polymeric material) transitioning to an opaque material in the periphery (substantially comprising the second polymeric material). The material in the article remained flexible and pliable.

    [0044] EXAMPLE 2

    [0045] Synthesis Of The First Polymeric, Water-swellable Material

    [0046] To a 1000 ml beaker equipped with a mechanical stirrer was added 60 g polyvinyl alcohol, 30 ml deionized water, and 270 ml of DMSO. The polyvinyl alcohol was 99+ % hydrolyzed with an average molecular weight of 124 kDa to 186 kDa and was used as received from Sigma-Aldrich. The DMSO was used as received from Sigma-Aldrich and contained ≤ 0.4% water. The solution was heated to 90° C for three hours.

    [0047] After three hours, the solution was cast between two glass plates to create a hydrogel structure as a sheet. The solution was allowed to cool slowly to room temperature, and the plates were then placed into a freezer at -30° C for three hours. The plates were removed from the freezer.

    [0048] The resulting material was translucent, flexible, and pliable. The polymeric sample was extracted with 700 ml reagent-grade alcohol (ethanol) followed by solvent exchange with deionized water over a three-day period. The resulting material remained translucent, flexible, and pliable.

    [0049] Dehydration was performed on a vacuum glass Schlenck line by using a freeze-thaw technique. The samples were frozen at -196° C and a dynamic vacuum was placed on the sample as it warmed to room temperature. The freeze-dried samples served as the aerogel structure.

    [0050] Synthesis Of The Second Polymeric Material

    [0051] To a Jaygo one-gallon sigma mixer/extruder fitted with a 3 mm fiber die was added 625.89 g polyethylene-co-vinyl alcohol, 100 ml of water, 1350 g DMSO, and 626.79 g polyvinyl alcohol. The materials were mixed at 240° F (116° C) for 70 minutes. The polyvinyl alcohol was 99+ % hydrolyzed with an average molecular weight of 146,000 to 186,000 and was used as received from Sigma-Aldrich. The polyethylene-co-vinyl alcohol had an ethylene content of 44 mole-percent and was used as received from Sigma-Aldrich. The DMSO was used as received from Sigma-Aldrich and contained ≤ 0.4% water.

    [0052] After 70 minutes, the sample was extruded through a 3 mm fiber die with a draw rate of 4 X and into a 50% alcohol/50% water cooling bath for a residence time of 1-3 seconds. The fiber was allowed to cool and cut into fine pellets using a fiber chopper. The resulting material remained translucent, flexible, and pliable.

    [0053] Synthesis Of The Multi-polymer Hydrogel Article

    [0054] The multi-polymer hydrogel article was formed on a Morgan-Press G-100T ram injection molder. The aerogel structure was placed in an aluminum mold. The second polymeric material pellets were placed into the barrel of the injection molder. The material was injection molded at 270° C barrel and 280° C nozzle temperature. Injection pressure was 7000 psi with 18 tons clamping pressure. After injection, the mold was cooled with circulating water at 10° C for five minutes prior to removing the sample. The multi-polymer hydrogel article was extracted with 700 ml reagent-grade alcohol (ethanol) followed by solvent exchange with deionized water over a three-day period. The resulting multi-polymer hydrogel article showed a transparent material in the middle of the sample (substantially comprising the first polymeric material) transitioning to an opaque material in the periphery (substantially comprising the second polymeric material). The multi-polymer hydrogel article remained flexible and pliable.

    [0055] EXAMPLE 3

    [0056] Synthesis Of The First Polymeric, Water-swellable Material

    [0057] To a 1000 ml beaker equipped with a mechanical stirrer was added 20 g polyvinyl alcohol, 10 ml deionized water, and 170 ml of DMSO. The polyvinyl alcohol was 99+ % hydrolyzed with an average molecular weight of 124 kDa to 186 kDa and was used as received from Sigma-Aldrich. The DMSO was used as received from Sigma-Aldrich and contained < 0.4% water. The solution was heated to 80° C for three hours.

    [0058] After three hours, the solution was poured into a 50 ml flask to form a ¼ inch layer. The layer was allowed to cool to room temperature. A molded piece of sugar was placed on top of the layer and additional polymer solution was poured on top of the layer to form the hydrogel structure. The hydrogel structure was quickly frozen to -30° C in a methanol/liquid nitrogen slush bath. The hydrogel structure was allowed to warm to room temperature over a two hour period. The hydrogel structure was submersed in methanol for 12 hours followed by solvent exchange in water for three days to dissolve the sugar. The hydrogel structure was then dehydrated and vacuum dried to produce a void.

    [0059] Synthesis Of The Second Polymeric Material

    [0060] To a 50 ml beaker equipped with a mechanical stirrer was added 15 ml DMSO, 1 ml deionized water, 1.5 g polyvinyl alcohol and 1 g polyethylene-co-vinyl alcohol. The materials were mixed at 80° C for 3 hours.

    [0061] Synthesis Of The Multi-polymer Hydrogel Article

    [0062] The second polymeric material was injected into the void created by the sugar using an 18-gauge needle and syringe. The final article was placed in water for solvent exchange. The subsequent article was cross-sectioned showing that the void was in fact filled with the second polymeric material and the material was attached to the first polymeric material.

    [0063] Characterization

    [0064] Mechanical performance properties for selected hydrogels were measured on a Model 3345 from Instron Corporation. The sample from Example 1 showed a push out strength of 1649 psi, which indicates that the first polymeric, water-swellable material and the second polymeric material are interlocked. Push out strength refers to the amount of force required to separate the first polmeric material from the second polymeric material. In this case, the two materials have different mechanical strengths. The high push out strength shows that the two materials were in fact bound together.

    [0065] Annexe
    1. 1. A method of forming a multi-polymer hydrogel article comprising:
      1. (a) forming a hydrogel structure comprising a first polymeric, water-swellable material,
      2. (b) creating an aerogel structure comprising a plurality of open pores by dehydrating the hydrogel structure,
      3. (c) contacting the aerogel structure with a second polymeric material to incorporate the second polymeric material into at least a portion of the plurality of open pores to form the multi-polymer hydrogel article, and
      4. (d) rehydrating the multi-polymer hydrogel article.
    2. 2. The method of clause 1, wherein forming the hydrogel structure comprises dip coating, casting, injection molding, or compression molding the first polymeric, water-swellable material into a shape.
    3. 3. The method of clause 2, wherein forming the hydrogel structure further comprises dip coating, casting or molding the first polymeric, water-swellable material at least partially encompassing a third sacrificial material.
    4. 4. The method of clause 3, wherein the third sacrificial material is soluble in an aqueous solution.
    5. 5. The method of clause 3, wherein the third sacrificial material is selected from the group consisting of sugars, waxes, gelatins, salts, low molecular weight water-soluble polymers, ice, and biodegradable polymers, and combinations thereof.
    6. 6. The method of clause 3, further comprising dissolving the third sacrificial material to form a void at least partially encompassed by the first polymeric, water-swellable material.
    7. 7. The method of clause 6, wherein the void is limited at its periphery by the first polymeric, water-swellable material such that the first polymeric, water-swellable material substantially surrounds the void.
    8. 8. The method of clause 6, wherein dissolving the third sacrificial material occurs in vivo.
    9. 9. The method of clause 1, further comprising, prior to forming the hydrogel structure, introducing a third sacrificial material into the first polymeric, water-swellable material,
      and wherein creating the aerogel structure further includes dissolving the third sacrificial material to thereby form additional open pores.
    10. 10. The method of clause 9, wherein the third sacrificial material is soluble in an aqueous solution.
    11. 11. The method of clause 9, wherein the third sacrificial material is selected from the group consisting of sugars, waxes, gelatins, salts, low molecular weight water-soluble polymers, ice, and biodegradable polymers, and combinations thereof.
    12. 12. The method of clause 1, wherein forming the hydrogel structure further comprises using a surfactant or rapid agitation to create spheres, rods, globules, ellipsoidal shapes, cylindrical shapes, or disc shapes.
    13. 13. The method of clause 12, further comprising polymerizing the surfactant in the case of a self emulsifying polymerization to create hydrogel beads.
    14. 14. The method of clause 1, wherein dehydrating the hydrogel structure includes removing water and/or plasticizers from the hydrogel structure by heating, subjecting to a vacuum, solvent exchange, or freeze-drying, or combinations thereof.
    15. 15. The method of clause 1, wherein creating the aerogel structure further comprises forming the aerogel structure following dehydrating the hydrogel structure, wherein forming comprises cutting, molding, and/or shaping the aerogel structure.
    16. 16. The method of clause 1, wherein the contacting results in a first region substantially comprising the first polymeric, water-swellable material, a second region adjacent the first region comprising a mixture of the first polymeric, water-swellable material and the second polymeric material, and a third region adjacent the second region substantially comprising the second polymeric material, wherein the second polymeric material exhibits an increasing concentration gradient moving from the first region, through the second region, to the third region.
    17. 17. The method of clause 16 wherein the first region extends from a first point to a first interface with the second region, the second region extends from the first interface to a second interface with the third region and includes therein a second point, and the third region extends from the second interface to a third point; wherein a percent volume ratio of the first polymeric, water-swellable material to the second polymeric material continuously changes from about 100:0 at the first point, to about 50:50 at the second point, to about 0:100 at the third point; and wherein the presence of pore blockers moves the second point towards the third point.
    18. 18. The method of clause 17 wherein the pore blockers are selected from the group consisting of sugars, salts, low molecular weight water-soluble polymers, and biodegradable polymers, and combinations thereof.
    19. 19. The method of clause 1, wherein contacting the aerogel structure with the second polymeric material further comprises introducing the second polymeric material into a void created by dissolving a third sacrificial material.
    20. 20. The method of clause 19, further comprising introducing a material into the void created by dissolving the third sacrificial material.
    21. 21. The method of clause 1, wherein contacting the aerogel structure with the second polymeric material occurs under a pressure.
    22. 22. The method of clause 21 wherein a first region extends from a first point to a first interface with a second region, the second region extends from the first interface to a second interface with a third region and includes therein a second point, and the third region extends from the second interface to a third point; wherein a percent volume ratio of the first polymeric, water-swellable material to the second polymeric material continuously changes from about 100:0 at the first point, to about 50:50 at the second point, to about 0:100 at the third point; and wherein the extent of the pressure of the second polymeric material moves the second point towards the first point.
    23. 23. The method of clause 1 wherein at least one of the steps (a)-(d) are repeated to produce a multilayered, multi-polymer hydrogel article.
    24. 24. The method of clause 1 further comprising crosslinking the multi-polymer hydrogel article.
    25. 25. The method of clause 24 wherein crosslinking occurs by radiation crosslinking, physical crosslinking, or chemical crosslinking, or combinations thereof.
    26. 26. The method of clause 25 wherein radiation cross linking comprises exposing the multi-polymer hydrogel article to at least one of visible light radiation, ultraviolet radiation, infrared radiation, electron beam radiation, gamma radiation, or x-ray radiation.
    27. 27. The method of clause 25 wherein physical crosslinking comprises exposing the multi-polymer hydrogel article to freezing and thawing.
    28. 28. The method of clause 25 wherein chemical crosslinking comprises exposing the multi-polymer hydrogel article to a monoaldehyde or a diisocyanate.
    29. 29. An implantable article produced according to the method of clause 1.



    Claims

    1. A method of forming a multi-polymer hydrogel article comprising:

    (a) forming a hydrogel structure comprising a first polymeric, water-swellable material selected from the group consisting of polymers and copolymers of polyvinyl alcohol, polyglycols, polyethylene glycol dimethacrylate, polyethylene glycol diacrylate, polyhydroxyethyl methacrylate, polyvinyl pyrrolidone, polyacrylamide, polyacrylic acid, hydrolyzed polyacrylonitrile, polyethyleneimine, ethoxylated polyethyleneimine, polyallyl alcohol, polyallylamine, and combinations thereof;

    (b) creating an aerogel structure comprising a plurality of open pores by dehydrating the hydrogel structure;

    (c) contacting the aerogel structure with a second polymeric material to incorporate the second polymeric material into at least a portion of the plurality of open pores to form the multi-polymer hydrogel article; and

    (d) rehydrating the multi-polymer hydrogel article.


     
    2. The method of claim 1, wherein forming the hydrogel structure further comprises dip coating, casting or molding the first polymeric, water-swellable material at least partially encompassing a third sacrificial material.
     
    3. The method of claim 2, further comprising dissolving the third sacrificial material to form a void at least partially encompassed by the first polymeric, water-swellable material, optionally wherein dissolving the third sacrificial material occurs in vivo.
     
    4. The method of claim 1, further comprising, prior to forming the hydrogel structure, introducing a third sacrificial material into the first polymeric, water-swellable material, and wherein creating the aerogel structure further includes dissolving the third sacrificial material to thereby form additional open pores.
     
    5. The method of claim 1, wherein contacting the aerogel structure with the second polymeric material further comprises introducing the second polymeric material into a void created by dissolving a third sacrificial material comprising sugars, salts, or waxes.
     
    6. The method of any one claims 2 through 4, wherein the third sacrificial material comprises sugars, waxes, gelatins, salts, low molecular weight water-soluble polymers, ice, biodegradable polymers, or combinations thereof, wherein optionally the third sacrificial material is soluble in an aqueous solution.
     
    7. The method of claim 1, wherein forming the hydrogel structure further comprises using a surfactant or rapid agitation to create spheres, rods, globules, ellipsoidal shapes, cylindrical shapes, or disc shapes.
     
    8. The method of claim 7, further comprising polymerizing the surfactant in the case of a self emulsifying polymerization to create hydrogel beads.
     
    9. The method of claim 1, wherein dehydrating the hydrogel structure includes removing water and/or plasticizers from the hydrogel structure by heating, subjecting to a vacuum, solvent exchange, or freeze-drying, or combinations thereof.
     
    10. The method of claim 1, wherein the contacting results in a first region substantially comprising the first polymeric, water-swellable material, a second region adjacent the first region comprising a mixture of the first polymeric, water-swellable material and the second polymeric material, and a third region adjacent the second region substantially comprising the second polymeric material, wherein the second polymeric material exhibits an increasing concentration gradient moving from the first region, through the second region, to the third region.
     
    11. The method of claim 10 wherein the first region extends from a first point to a first interface with the second region, the second region extends from the first interface to a second interface with the third region and includes therein a second point, and the third region extends from the second interface to a third point; wherein a percent volume ratio of the first polymeric, water-swellable material to the second polymeric material continuously changes from about 100:0 at the first point, to about 50:50 at the second point, to about 0: 100 at the third point; and wherein the presence of pore blockers, optionally selected from the group consisting of sugars, salts, low molecular weight water-soluble polymers, and biodegradable polymers, and combinations thereof, moves the second point towards the third point.
     
    12. The method of claim 1, wherein contacting the aerogel structure with the second polymeric material occurs under a pressure.
     
    13. The method of claim 12 wherein a first region extends from a first point to a first interface with a second region, the second region extends from the first interface to a second interface with a third region and includes therein a second point, and the third region extends from the second interface to a third point; wherein a percent volume ratio of the first polymeric, water-swellable material to the second polymeric material continuously changes from about 100:0 at the first point, to about 50:50 at the second point, to about 0:100 at the third point; and wherein the extent of the pressure of the second polymeric material moves the second point towards the first point.
     
    14. The method of claim 1 wherein at least one of the steps (a)-(d) are repeated to produce a multilayered, multi-polymer hydrogel article.
     
    15. The method of claim 1 further comprising crosslinking the multi-polymer hydrogel article, wherein crosslinking optionally occurs by radiation crosslinking preferably selected from visible light radiation, ultraviolet radiation, infrared radiation, electron beam radiation, gamma radiation, or x-ray radiation, physical crosslinking preferably by exposure to freezing and thawing, chemical crosslinking preferably by exposure to a monoaldehyde or a diisocyanate, or combinations thereof.
     


    Ansprüche

    1. Ein Verfahren zum Bilden eines Gegenstands aus mehrere Polymere enthaltendem Hydrogel, umfassend:

    (a) Bilden einer Hydrogelstruktur, die ein erstes polymeres, in Wasser quellbares Material, ausgewählt aus der Gruppe bestehend aus Polymeren und Copolymeren von Polyvinylalkohol, Polyglykolen, Polyethylenglykoldimethacrylat, Polyethylenglykoldiacrylat, Polyhydroxyethylmethacrylat, Polyvinylpyrrolidon, Polyacrylamid, Polyacrylsäure, hydrolysiertem Polyacrylnitril, Polyethylenimin, ethoxyliertem Polyethylenimin, Polyallylalkohol, Polyallylamin und Kombinationen davon, umfasst;

    (b) Erzeugen einer Aerogelstruktur, die eine Vielzahl offener Poren umfasst, durch Dehydratisieren der Hydrogelstruktur;

    (c) in Kontakt bringen der Aerogelstruktur mit einem zweiten polymeren Material, um das zweite polymere Material in mindestens einen Teil der Vielzahl offener Poren zu inkorporieren, um den Gegenstand aus mehrere Polymere enthaltendem Hydrogel zu bilden; und

    (d) Rehydratisieren des Gegenstands aus mehrere Polymere enthaltendem Hydrogel.


     
    2. Das Verfahren nach Anspruch 1, wobei Bilden der Hydrogelstruktur weiter Tauchbeschichten, Gießen oder Formpressen des ersten polymeren, in Wasser quellbaren Materials umfasst, wobei mindestens teilweise ein drittes Opfermaterial umfasst ist.
     
    3. Das Verfahren nach Anspruch 2, weiter umfassend Lösen des dritten Opfermaterials, um einen Hohlraum zu bilden, der zumindest teilweise von dem ersten polymeren, in Wasser quellbaren Material umfasst ist, wobei gegebenenfalls Lösen des dritten Opfermaterials in vivo erfolgt.
     
    4. Das Verfahren nach Anspruch 1, weiter umfassend, vor dem Bilden der Hydrogelstruktur, Einbringen eines dritten Opfermaterials in das erste polymere, in Wasser quellbare Material, und wobei Erzeugen der Aerogelstruktur weiter Lösen des dritten Opfermaterials beinhaltet, um dadurch zusätzliche offene Poren zu bilden.
     
    5. Das Verfahren nach Anspruch 1, wobei in Kontakt bringen der Aerogelstruktur mit dem zweiten polymeren Material weiter Einbringen des zweiten polymeren Materials in einen durch Lösen eines dritten Opfermaterials, das Zucker, Salze oder Wachse umfasst, bereitgestellten Hohlraum umfasst.
     
    6. Das Verfahren nach einem der Ansprüche 2 bis 4, wobei das dritte Opfermaterial Zucker, Wachse, Gelatinen, Salze, niedermolekulare wasserlösliche Polymere, Eis, biologisch abbaubare Polymere oder Kombinationen davon umfasst, wobei das dritte Opfermaterial gegebenenfalls in einer wässrigen Lösung löslich ist.
     
    7. Das Verfahren nach Anspruch 1, wobei Bilden der Hydrogelstruktur weiter Verwendung eines grenzflächenaktiven Mittels oder schnelles Rühren umfasst, um Kugeln, Stäbe, Kügelchen, Ellipsoidformen, zylindrische Formen oder Scheibenformen zu erzeugen.
     
    8. Das Verfahren nach Anspruch 7, weiter umfassend Polymerisieren des grenzflächenaktiven Mittels im Fall einer selbstemulgierenden Polymerisation, um Hydrogelkügelchen zu erzeugen.
     
    9. Das Verfahren nach Anspruch 1, wobei Dehydratisieren der Hydrogelstruktur Entfernen von Wasser und/oder Weichmachern aus der Hydrogelstruktur durch Erwärmen, Unterziehen einem Vakuum, Lösungsmittelaustausch oder Gefriertrocknen oder Kombinationen davon beinhaltet.
     
    10. Das Verfahren nach Anspruch 1, wobei das in Kontakt bringen einen ersten Bereich, der im Wesentlichen das erste polymere, in Wasser quellbare Material umfasst, einen zu dem ersten Bereich benachbarten zweiten Bereich, der ein Gemisch des ersten polymeren, in Wasser quellbaren Materials und des zweiten polymeren Materials umfasst, und einen zu dem zweiten Bereich benachbarten dritten Bereich, der im Wesentlichen das zweite polymere Material umfasst, zur Folge hat, wobei das zweite polymere Material einen ansteigenden Konzentrationsgradienten aufweist, der sich vom ersten Bereich durch den zweiten Bereich hin zum dritten Bereich zieht.
     
    11. Das Verfahren nach Anspruch 10, wobei der erste Bereich sich von einem ersten Punkt bis zu einer ersten Grenzfläche mit dem zweiten Bereich erstreckt, der zweite Bereich sich von der ersten Grenzfläche bis zu einer zweiten Grenzfläche mit dem dritten Bereich erstreckt und darin einen zweiten Punkt beinhaltet, und der dritte Bereich sich von der zweiten Grenzfläche bis zu einem dritten Punkt erstreckt; wobei sich ein prozentuales Volumenverhältnis des ersten polymeren, in Wasser quellbaren Materials zu dem zweiten polymeren Material kontinuierlich von etwa 100:0 am ersten Punkt auf etwa 50:50 am zweiten Punkt, auf etwa 0:100 am dritten Punkt ändert; und wobei die Gegenwart von Porenblockern, gegebenenfalls ausgewählt aus der Gruppe bestehend aus Zuckern, Salzen, niedermolekularen wasserlöslichen Polymeren und biologisch abbaubaren Polymeren und Kombinationen davon, den zweiten Punkt zum dritten Punkt hin verschiebt.
     
    12. Das Verfahren nach Anspruch 1, wobei in Kontakt bringen der Aerogelstruktur mit dem zweiten polymeren Material unter einem Druck erfolgt.
     
    13. Das Verfahren nach Anspruch 12, wobei ein erster Bereich sich von einem ersten Punkt bis zu einer ersten Grenzfläche mit einem zweiten Bereich erstreckt, der zweite Bereich sich von der ersten Grenzfläche bis zu einer zweiten Grenzfläche mit einem dritten Bereich erstreckt und darin einen zweiten Punkt beinhaltet, und der dritte Bereich sich von der zweiten Grenzfläche bis zu einem dritten Punkt erstreckt; wobei sich ein prozentuales Volumenverhältnis des ersten polymeren, in Wasser quellbaren Materials zu dem zweiten polymeren Material kontinuierlich von etwa 100:0 am ersten Punkt auf etwa 50:50 am zweiten Punkt, auf etwa 0:100 am dritten Punkt ändert; und wobei das Ausmaß des Drucks des zweiten polymeren Materials den zweiten Punkt hin zum ersten Punkt verschiebt.
     
    14. Das Verfahren nach Anspruch 1, wobei mindestens einer der Schritte (a)-(d) wiederholt wird, um einen mehrschichtigen Gegenstand aus mehrere Polymere enthaltendem Hydrogel herzustellen.
     
    15. Das Verfahren nach Anspruch 1, weiter umfassend Vernetzen des Gegenstands aus mehrere Polymere enthaltendem Hydrogel, wobei Vernetzen gegebenenfalls durch Strahlungsvernetzung, vorzugsweise ausgewählt aus Strahlung sichtbaren Lichts, UV-Strahlung, Infrarot-Strahlung, Elektronenstrahlstrahlung, gamma-Strahlung oder Röntgenstrahlung, physikalisches Vernetzen, vorzugsweise durch Aussetzen gegenüber Gefrieren und Tauen, chemische Vernetzung, vorzugsweise durch Aussetzen gegenüber einem Monoaldehyd oder einem Diisocyanat, oder Kombinationen davon erfolgt.
     


    Revendications

    1. Procédé de formation d'un article en hydrogel multipolymère comprenant:

    (a) la formation d'une structure en hydrogel comprenant une première matière polymérique, gonflable dans l'eau choisie parmi le groupe constitué de polymères et de copolymères d'alcool polyvinylique, de polyglycols, de diméthacrylate de polyéthylène glycol, de diacrylate de polyéthylène glycol, de méthacrylate de polyhydroxyéthyle, de polyvinylpyrrolidone, de polyacrylamide, d'acide polyacrylique, de polyacrylonitrile hydrolysé, de polyéthylèneimine, de polyéthylèneimine éthoxylé, d'alcool polyallylique, de polyallylamine, et des combinaisons de ceux-ci;

    (b) la création d'une structure en aérogel comprenant une pluralité de pores ouverts par déshydratation de la structure en hydrogel;

    (c) la mise en contact de la structure en aérogel avec une seconde matière polymérique pour incorporer la seconde matière polymérique dans au moins une portion de la pluralité de pores ouverts pour former l'article en hydrogel multipolymère, et

    (d) la réhydratation de l'article en hydrogel multipolymère.


     
    2. Procédé selon la revendication 1, dans lequel la formation de la structure en hydrogel comprend en outre un revêtement par immersion, une coulée ou un moulage de la première matière polymérique, gonflable dans l'eau entourant au moins partiellement une troisième matière sacrificielle.
     
    3. Procédé selon la revendication 2, comprenant en outre la dissolution de la troisième matière sacrificielle pour former un vide entouré au moins partiellement de la première matière polymérique, gonflable dans l'eau, facultativement dans lequel la dissolution de la troisième matière sacrificielle a lieu in vivo.
     
    4. Procédé selon la revendication 1, comprenant en outre, avant la formation de la structure en hydrogel, l'introduction d'une troisième matière sacrificielle dans la première matière polymérique, gonflable dans l'eau et dans lequel la création de la structure en aérogel comprend en outre la dissolution de la troisième matière sacrificielle de manière à former des pores ouverts additionnels.
     
    5. Procédé selon la revendication 1, dans lequel le contact de la structure en aérogel avec la seconde matière polymérique comprend en outre l'introduction de la seconde matière polymérique dans un vide créé par dissolution d'une troisième matière sacrificielle comprenant des sucres, des sels, ou des cires.
     
    6. Procédé selon l'une quelconque des revendications 2 à 4, dans lequel la troisième matière sacrificielle comprend des sucres, des cires, des gélatines, des sels, des polymères de faibles masses moléculaires solubles dans l'eau, de la glace, des polymères biodégradables, ou des combinaisons de ceux-ci, dans lequel facultativement la troisième matière sacrificielle est soluble dans une solution aqueuse.
     
    7. Procédé selon la revendication 1, dans lequel la formation de la structure en hydrogel comprend en outre l'utilisation d'un surfactant ou une agitation rapide pour créer des formes de sphères, de tiges, de globules, ellipsoïdales, cylindriques, ou de disques.
     
    8. Procédé selon la revendication 7, comprenant en outre une polymérisation du surfactant dans le cas d'une polymérisation auto-émulsionnable pour créer des perles en hydrogel.
     
    9. Procédé selon la revendication 1, dans lequel la déshydratation de la structure en hydrogel inclut un retrait de l'eau et/ou des plastifiants de la structure en hydrogel en chauffant, en soumettant à un vide, à un échange de solvant, ou en lyophilisant, ou des combinaisons ceux-ci.
     
    10. Procédé selon la revendication 1, dans lequel le contact conduit à une première région comprenant substantiellement la première matière polymérique gonflable dans l'eau, une seconde région adjacente à la première région comprenant un mélange de la première matière polymérique gonflable dans l'eau et la seconde matière polymérique, et une troisième région adjacente à la seconde région comprenant substantiellement la seconde matière polymérique, dans lequel la seconde matière polymérique présente un gradient croissant de concentration se déplaçant de la première région, à travers la seconde région, jusqu'à la troisième région.
     
    11. Procédé selon la revendication 10 dans lequel la première région s'étend d'un premier point à une première interface avec la seconde région, la seconde région s'étend de la première interface à une seconde interface avec la troisième région et inclut à l'intérieur un second point, et la troisième région s'étend de la seconde interface à un troisième point ; dans lequel un rapport volumique en pourcentage de la première matière polymérique, gonflable dans l'eau à la seconde matière polymérique change continuellement d'environ 100:0 au premier point, à environ 50:50 au second point, jusqu'à environ 0:100 au troisième point; et dans lequel la présence de bloqueurs de pores, facultativement choisis dans le groupe consistant en des sucres, des sels, des polymères de faibles poids moléculaires solubles dans l'eau, et des polymères biodégradables, et des combinaisons de ceux-ci, déplace le second point vers le troisième point.
     
    12. Procédé selon la revendication 1, dans lequel la mise en contact de la structure en aérogel avec la seconde matière polymérique a lieu sous pression.
     
    13. Procédé selon la revendication 12 dans lequel une première région s'étend d'un premier point à une première interface avec une seconde région, la seconde région s'étend de la première interface à une seconde interface avec une troisième région et inclut à l'intérieur un second point, et la troisième région s'étend de la seconde interface à un troisième point ; dans lequel un rapport volumique en pourcentage de la première matière polymérique, gonflable dans l'eau à la seconde matière polymérique change continuellement d'environ 100:0 au premier point, à environ 50:50 au second point, jusqu'à environ 0:100 au troisième point, et dans lequel l'étendue de la pression de la seconde matière polymérique déplace le second point vers le premier point.
     
    14. Procédé selon la revendication 1 dans lequel au moins une des étapes (a) - (d) sont répétées pour produire un article en hydrogel multicouche multipolymère.
     
    15. Procédé selon la revendication 1 comprenant en outre une réticulation de l'article en hydrogel multipolymère, dans lequel une réticulation se produit facultativement par réticulation par irradiation de préférence choisie parmi un rayonnement de lumière visible, un rayonnement ultraviolet, un rayonnement infrarouge, un rayonnement de faisceau d'électrons, un rayonnement gamma, un rayonnement de rayons X, une réticulation physique de préférence par exposition à une congélation et une décongélation, une réticulation chimique de préférence par exposition à un monoaldéhyde ou un diisocyanate, ou des combinaisons de ceux-ci.
     






    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description