(19)
(11)EP 2 666 212 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
25.03.2020 Bulletin 2020/13

(21)Application number: 12702093.1

(22)Date of filing:  13.01.2012
(51)International Patent Classification (IPC): 
H01S 5/068(2006.01)
H01S 5/042(2006.01)
(86)International application number:
PCT/US2012/021258
(87)International publication number:
WO 2012/099792 (26.07.2012 Gazette  2012/30)

(54)

DRIVING CIRCUIT FOR ANALOG-MODULATED DIODE-LASER

TREIBERSCHALTUNG FÜR ANALOG MODULIERTE DIODENLASER

CIRCUIT D'ACTIONNEMENT POUR LASER À DIODE MODULÉE DE FAÇON ANALOGIQUE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 19.01.2011 US 201113009625

(43)Date of publication of application:
27.11.2013 Bulletin 2013/48

(73)Proprietor: Coherent, Inc.
Santa Clara, CA 95054 (US)

(72)Inventors:
  • HOFFMAN, Gilbert, A.
    Aloha, OR 97006-1860 (US)
  • FARMER, Richard, J.
    Portland, OR 97213 (US)

(74)Representative: Sackin, Robert 
Reddie & Grose LLP The White Chapel Building 10 Whitechapel High Street
London E1 8QS
London E1 8QS (GB)


(56)References cited: : 
JP-A- 4 083 660
JP-A- 2007 329 212
JP-A- 2002 299 754
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    TECHNICAL FIELD OF THE INVENTION



    [0001] The present invention relates in general to driving circuitry for diode-lasers. The invention relates in particular to driving circuitry for analog-modulated diode-lasers.

    DISCUSSION OF BACKGROUND ART



    [0002] Diode-lasers with analog-modulated output are used as illumination sources in confocal microscopy. Diode-lasers are typically driven (powered) by a variable direct current (DC) supplied by a simple voltage-to-current converter. The current is varied by varying a DC voltage applied to the converter with a linear relationship between the current and the voltage. In confocal microscopy, it is usually desired that the diode-laser power (light-output) be modulated from zero to some maximum value in a ramp or "sawtooth" wave-form.

    [0003] A preferred way of achieving this modulation form is to drive the diode-laser using a comparable voltage wave-form applied to the current converter. This is complicated by the fact that a certain threshold level of voltage (and corresponding current) is required before laser-action is initiated in the diode. At a voltage less than the threshold voltage, the diode will emit light (radiation) in the form of spontaneous emission or fluorescence. The threshold voltage can be almost one-half of the voltage that produces maximum laser-light output.

    [0004] This is schematically illustrated in the graph of FIG. 1 which depicts diode-laser power as a function of applied voltage. The curve is representative of the output power response to a linear voltage-ramp. It can be seen that at voltages between zero and the lasing threshold voltage, non-laser light-output increases proportionally but weakly compared with the light-output increase once laser action is established. The entire output curve is a distorted replica of the linear voltage ramp. Any other modulation waveform such a sine-wave would be correspondingly distorted.

    [0005] A generally practiced method of reducing, if not altogether eliminating the distortion is to apply a fixed bias-voltage (and corresponding current) to the current converter such that, when the modulation voltage is only slightly greater than zero, the lasing threshold voltage is reached. This is schematically illustrated, graphically, in FIG. 2
    Here, the bias voltage has been selected such that the lasing threshold is reached when the modulation voltage is only a fraction of a volt. This fractional voltage is selected to be only just sufficient that certain statistical variations can be accommodated. These include variations in the lasing threshold, variations in an externally provided modulation drive signal, and variations in internal signal processing circuitry. The response to the linear voltage ramp is now distorted significantly less than in the example of FIG. 1 without bias. Here, however, it should be noted that at zero modulation voltage there is still some non-laser light-output from the diode-laser. This is not acceptable in the confocal microscopy systems. Accordingly, a modulation method is needed that will provide the minimized output-distortion of the method of FIG. 2 but with zero light-output at zero modulation-voltage.

    [0006] Providing a bias current to a laser diode with a control preventing undesired currents below lasing threshold of the laser diode is known from JP 4 083660 A, JP 2002 299754 A and JP 2007 329212 A.

    SUMMARY OF THE INVENTION



    [0007] The object of the present invention is fulfilled by a device and a method as defined in the independent claims. Preferred embodiments are defined in the dependent claims.

    [0008] In one aspect, a method in accordance with the present invention for driving an analog-modulated diode-laser comprises providing a modulation signal corresponding to a desired modulation profile for the diode-laser. The modulation signal varies in a range between predetermined first and second extreme values with one of the extreme values representing zero output of the diode-laser. A modulated drive-current is generated, the drive-current being the sum of a DC component and modulated component, the modulated component being related to the modulation signal. The diode-laser is driven by the drive-current to provide laser-output. The modulation signal is monitored and compared with a predetermined set value thereof within the range between the extreme values. If the monitored modulation signal falls between the set value and that one of the extreme values of the modulation signal representing zero output of the diode laser, the diode-laser is switched off

    [0009] In all but one of the embodiments of the present invention described below, the extreme value representing zero output is a minimum value. Switching off the diode-laser before the modulation signal can reach an extreme thereof representing zero output prevents the diode-laser from being driven by a current sufficiently low that the diode-laser emits only spontaneous emission or fluorescence. This, together with selecting an appropriate DC level for the drive-current provides that the diode-laser output responds essentially linearly to the modulation signal, avoiding any significant distortion of the desired modulation of the diode-laser output.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0010] The accompanying drawings, which are incorporated in and constitute a part of the specification, schematically illustrate a preferred embodiment of the present invention, and together with the general description given above and the detailed description of the preferred embodiment given below, serve to explain principles of the present invention.

    FIG. 1 is a graph schematically illustrating diode-laser power-output as a function of driving voltage in one prior-art driving arrangement for the diode-laser.

    FIG. 2 is a graph schematically illustrating one preferred embodiment diode-laser power-output as a function of driving voltage in another prior-art driving arrangement for the diode-laser.

    FIG. 3 is a circuit diagram schematically illustrating one preferred embodiment of electronic apparatus in accordance with the present invention for driving an analog-modulated diode-laser, with a voltage-to-current converter arranged to generate a modulated drive-current from a modulated drive-voltage, with the drive-current being directly proportional to the drive-voltage and the drive-voltage input to the current converter being the sum of a fixed bias voltage component and a modulated component.

    FIG. 3A is a graph schematically illustrating drive-current delivered to a diode-laser in the apparatus of FIG. 3, the drive-current including a DC components and a modulated component.

    FIG. 4 is a graph schematically illustrating diode-laser power-output as a function of the modulated component of the drive-voltage in the apparatus of FIG. 3.

    FIG. 5 is a circuit diagram schematically illustrating another preferred embodiment of electronic apparatus in accordance with the present invention for driving an analog-modulated diode-laser, similar to the apparatus of FIG. 3 but wherein the voltage-to-current converter is replaced by an inverting voltage-to-current converter arranged to generate a modulated drive-current from a modulated drive-voltage with the drive-current being inversely proportional to the drive-voltage.

    FIG. 6 is a graph schematically illustrating diode-laser power-output as a function of the modulated component of the drive-voltage in the apparatus of FIG. 5.

    FIG. 7 is a circuit diagram schematically illustrating yet another preferred embodiment of electronic apparatus in accordance with the present invention for driving an analog-modulated diode-laser, similar to the apparatus of FIG. 3 but wherein the input to the voltage-to-current converter has only a modulated component for generating a modulated current and a fixed bias current is added to the modulated current output from the converter.

    FIG. 8 schematically illustrates still another preferred embodiment of electronic apparatus in accordance with the present invention for driving an analog-modulated diode-laser, similar to the apparatus of FIG. 7 but wherein the voltage to current converter is omitted, and the modulation signal is a modulated current from a generator external to the circuit.

    FIG. 9 is a graph schematically illustrating diode-laser power-output as a function of the modulated input current in the apparatus of FIG. 8.


    DETAILED DESCRIPTION OF THE INVENTION



    [0011] Continuing with reference to the drawings FIG. 3 schematically illustrates a preferred arrangement 10 of electronic circuitry for driving an analog-modulated diode-laser in accordance with the method to the present invention. A modulation signal (voltage) is input one side of a programmable digital potentiometer U1. This can be described as a potentiometer for adjusting modulation gain. This signal can be provided by an outside source such as a microprocessor or PC. The signal varies between predetermined minimum and maximum values. The minimum value can be zero or some non-zero positive or negative value.

    [0012] A variable voltage source P2 connected to the other side of potentiometer U1 sets a bias voltage level, and the laser output intensity is determined by a modulated drive-voltage, output from the potentiometer. The modulated drive-voltage is the sum of a fixed bias voltage component and a modulated voltage component. This modulated drive-voltage is transmitted via digital switches U2 and U3 to a voltage-to-current converter 12 which provides a modulated drive-current proportional to the modulated drive-voltage for driving the diode-laser. The modulated drive-current has a fixed bias current component and a modulated current component.

    [0013] Voltage-to-current converters for driving diode-lasers are well known to practitioners of the art, and a detailed description thereof is not necessary for understanding principles of the present invention. Accordingly, such a detailed description is not presented herein. The term "fixed" as applied to voltage and current components discussed above means that these are essentially DC components. The actual level of these is selectively variable by adjusting voltage source P2.

    [0014] Switch U2 is user-operable and can be switched to position A for modulated operation of the diode-laser, or to position B for optionally driving the laser in a CW or steady-state mode, with intensity determined by the potential set by P2. Switch U3 is digitally operated in accordance with the present invention by the output (digital high or digital low) of comparator U5.

    [0015] A variable potential P1 is applied to one input (here, the positive input) of comparator U5 and sets a value below which the modulation signal can be reasonably assumed to be zero. The modulation signal is monitored at the input connection to digital potentiometer U1 and is applied to the other input of comparator U5. If the sampled modulation signal is above the set value, the comparator output is digital low, and switch U3 is in position C with the modulation signal controlling the laser output.

    [0016] If the sampled modulation signal falls below the set value, the comparator output goes from digital low to digital high, and switch U3 is switched into position D, shorting the modulated drive signal to ground, and cutting off the voltage-to-current converter from the potential-source such that no output current is generated and the diode-laser output is switched off. Because of this, the laser output intensity is in fact zero, and is not some non-zero, spontaneous-emission-determined value resulting from sub-threshold driving of the diode-laser as in prior-art arrangements. If the modulation signal rises from a value below the set level to a value above the set level, the output of comparator U5 goes from digital high to digital low and switch U5 is restored to position C such that the voltage-to-current converter is re-connected to the modulated driving voltage and the diode-laser has some corresponding non-zero laser-output.

    [0017] FIG. 3A is a graph schematically illustrating drive-current delivered by the voltage-to-current converter in the apparatus of FIG. 3. The current, when "on", comprises a DC component and a modulated component (corresponding to the modulation signal) as illustrated. The drive-current is turned off before the modulation signal reaches the minimum value representing zero output of the diode laser. Here it should be noted that zero diode-laser output may be represented in the modulation signal by a non-zero minimum value. In such a case, the DC level in the drive-current would be related to a sum of bias potential applied via source P2 and the difference between the minimum of the modulation signal and zero. In all other embodiments of the present invention described hereinbelow the drive-current delivered to a diode-laser has the general form schematically depicted in FIG. 3A, but generated in different ways.

    [0018] A particularly useful feature of the apparatus of FIG. 3 is that the DC component of the drive-current and the modulation depth of the modulated component of the drive current are independently selectively variable, by selectively varying, respectively, source P2 or potentiometer U1. This can be used to optimize the drive-current form for a particular diode-laser. Those skilled in the art will recognize that this selective variability of the drive current form is available in other embodiments of the present invention described hereinbelow.

    [0019] FIG. 4 is a graph schematically illustrating the diode-laser output intensity as a function of modulation voltage for a diode-laser driven by the circuitry of FIG. 3. Here, the set level (blanking level) for triggering digital switch U3 has been set to correspond to a modulation voltage signal of about 0.2 V. It should be noted here that the actual voltage delivered to the voltage-to-current converter will be equal to the varying modulation voltage plus the fixed bias-level voltage set by source P2, as discussed above. In the example of FIG. 4, the bias level has been set at about the voltage threshold for lasing at a level such that linear (laser-action) part of the intensity versus voltage curve extrapolates to zero intensity at zero signal volts. The set level is selected to be only sufficiently above the minimum value of the modulation signal to accommodate the statistical variations in laser threshold and other parameters discussed above with reference to FIG. 2. This provides that when the laser is lasing (not blanked by switch U3) the laser intensity will be about linearly proportional to the voltage of the modulation signal. By way of example, in FIG. 4, 100% output (maximum) intensity corresponds to a signal voltage of 5.0 V with a signal voltage of 0.5 V providing 10% of the maximum intensity.

    [0020] FIG. 5 is a circuit diagram schematically illustrating another preferred embodiment 20 of electronic apparatus in accordance with the present invention for driving an analog-modulated diode-laser. Apparatus 20 is similar to apparatus 10 of FIG. 3 but wherein voltage-to-current converter 12 of apparatus 10 is replaced by an inverting voltage-to-current converter 22. This provides that modulated drive-current converted from a modulated drive-voltage is inversely proportional to the drive-voltage, i.e., the lower the signal voltage the higher the drive-current. Inverting current-to-voltage converters are sometimes preferred by practitioners of the art for various reasons.

    [0021] Functions of apparatus 20 can be understood by reference in addition to FIG. 6 which is a graph schematically illustrating diode-laser power-output as a function of the modulated component of the drive-voltage in the apparatus. Regarding the blanking at near-zero diode-laser output this is done by providing a relatively high set-level (blanking level) voltage as depicted in FIG. 6. The blanking switch U3 is triggered by comparator U5 into blanking position D when the sampled voltage signal exceeds the set-level provided by source P1. In position D, inverting voltage-to-current converter is connected to a potential source P3 which provides a potential high enough that drive-current produced by the converter in response falls to zero and the diode-laser is switched off.

    [0022] FIG. 7 is a circuit diagram schematically illustrating yet another preferred embodiment 30 of electronic apparatus in accordance with the present invention for driving an analog-modulated diode-laser. Apparatus 30 is similar to apparatus 10 of FIG. 3 with an exception that only a modulated voltage (between predetermined high and low extreme values) is delivered to voltage-to-current converter 12. This, of course, causes the immediate output of the converter to be a correspondingly modulated current. In apparatus 30 the DC bias level of the current is added to or, if the minimum of the modulated current is non-zero, supplemented by current supplied from a selectively variable current generator 32 and summed with modulated current from converter 12 by a wire connection 34. In apparatus 30, blanking switch U3 is triggered in the same way as in apparatus 10 of FIG. 3, i.e., when the modulation signal voltage falls below the set level applied to comparator, blanking switch U3 is triggered into the D position, thereby disconnecting the diode laser from the current source. Here again, if the input voltage signal, having been below the set level, rises above the set level, switch U3 is triggered back to position C and current is now supplied to the diode-laser.

    [0023] FIG. 8 schematically illustrates still another preferred embodiment 40 of electronic apparatus in accordance with the present invention for driving an analog-modulated diode-laser. Apparatus 40 is similar to apparatus 30 of FIG. 7 inasmuch as bias is provided as a current by generator 16 and summed with modulated current from U2 by a wire connection 18. Connecting the two current sources together with a wire effectively sums the two current sources together. In apparatus 40, however, voltage-to-current converter 12 of apparatus 30 is omitted and the modulated component of driving current is supplied by modulation signal in the form of a modulated current generated external to the circuit. The current signal is amplified if necessary by a variable amplifier 46 and supplied to wire connection 18 via switch U2. A selectively variable DC current generator 48 is provided for driving the diode-laser in an un-modulated (steady-state) mode and can be connected to wire connector 18 by switch U2.

    [0024] As the modulation signal in apparatus 40 is a current signal, voltage comparator U5 of apparatus 30 is substituted in apparatus 40 by a current-comparator U6. The modulation signal is sampled by a current-sensor loop 42 and the sample is provided to the current-comparator where it is compared with an externally supplied set or blanking level. Here, yet again, if the sampled current falls below the set level applied to comparator, the comparator triggers switch U3 into the D position, thereby disconnecting the diode laser from the current source and switching the diode-laser off. If the sampled current, having been below the set level, rises above the set level, switch U3 is triggered back to position C and current is now supplied to the diode-laser, thereby switching the diode-laser back on. Current comparator circuits suitable for use as comparator U6 are well known to practitioners of the art, and a detailed description thereof is not necessary for understanding principles of the present invention. Accordingly, such a detailed description is not presented herein.

    [0025] FIG. 9 is a graph schematically illustrating diode-laser power-output as a function of the modulated input current in the apparatus of FIG. 8. The response to the modulation signal is essentially identical with that of FIG. 4 with an exception that the signal is a current signal rather than a voltage signal.

    [0026] Recapitulating here, four embodiments of the inventive analog modulated diode-laser driving apparatus are described above. In each embodiment it is desired to avoid driving-current for a diode-laser reaching a value at which the diode-laser emits spontaneous emission or fluorescence when no output at all is required by an analog modulation signal. In each embodiment this is achieved by monitoring the modulation signal and, if monitored signal falls with a range between predetermined minimum and maximum values, switching off the diode-laser. The present invention is not limited to the embodiments described and depicted herein. Rather the invention is limited only by the claims appended hereto.


    Claims

    1. A method of driving a continuously modulated diode-laser, comprising the steps of:

    providing a modulation signal corresponding to a desired modulation profile for the diode-laser, the modulation signal varying continuously in a range between predetermined first and second extreme values with one of the minimum and maximum values representing zero output of the diode-laser;

    generating a modulated drive-current, the drive-current being the sum of a DC component and a continuously modulated component, the continuously modulated component related to the modulation signal;

    driving the diode-laser with the drive-current to provide laser-output;

    sampling the magnitude of the modulation signal and comparing the sampled modulation signal with a predetermined, externally supplied set value of the modulation signal associated with a lasing threshold of the diode-laser within the range between the extreme values; and

    if the sampled modulation signal falls between the set value and the said one of the extreme values of the modulation signal representing a desired zero output of the diode-laser, switching off the drive-current thereby providing a laser intensity being about linearly proportional to the modulated drive-current.


     
    2. The method of claim 1, wherein the extreme value representing zero output of the diode-laser is a minimum value.
     
    3. The method of claim 2, wherein the minimum value of the modulation signal is zero.
     
    4. The method of claim 1, wherein the modulation signal is a voltage signal or wherein the modulation signal is a current signal.
     
    5. The method of claim 4, wherein the modulated component of the drive-current is directly related to the modulation signal or is inversely related to the modulation signal.
     
    6. The method of claim 1, wherein the DC component of the drive-current is about equal to a threshold drive-current above which the diode-laser emits laser-radiation.
     
    7. The method of claim 1, wherein the DC component and the modulated component of the drive-current are selectively variable.
     
    8. A method of driving a continuously modulated diode-laser, comprising:

    providing a modulation voltage signal corresponding to a desired modulation profile for the diode-laser, the modulation voltage signal varying continuously in a range between predetermined minimum and maximum values with the minimum value of the modulation signal representing zero output of the diode-laser;

    generating a modulated drive-voltage corresponding to the modulation signal, the modulated drive-voltage being the sum of a fixed bias-voltage component and a varying voltage component corresponding to the modulation signal voltage;

    converting the drive-voltage to a drive-current proportional to the drive-voltage;

    driving the diode-laser with the drive-current to provide laser-output;

    sampling the magnitude of the modulation voltage signal and comparing the sampled modulation voltage signal with a predetermined, externally supplied set value sufficiently above a minimum value of the modulation signal associated with a lasing threshold of the diode-laser within the range between the minimum and maximum values; and

    if the sampled modulation signal falls below the set level, switching the drive-voltage to zero, thereby switching the drive-current to zero and switching off the diode-laser output thereby providing a laser intensity being about linearly proportional to the modulated drive-current.


     
    9. The method of claim 8, wherein the fixed bias level of the modulated drive-voltage is about equal to a threshold drive-voltage above which the diode-laser emits laser radiation.
     
    10. The method of claim 9 wherein the minimum value of the modulation signal is zero.
     
    11. A drive circuit for a diode laser, said circuit for receiving a modulating input signal and for generating a modulated output current in response to the input signal, said output current for driving the laser and wherein below a threshold current, the laser will generate spontaneous non-laser emissions and above the threshold current, the laser will generate laser light, the circuit comprising:

    an input node for receiving the modulated input signal, the modulated input signal varying continuously in a range between predetermined first and second extreme values with one of the minimum and maximum values representing zero output of the diode-laser;

    an output node for supplying the modulated drive current to the laser, the drive-current being the sum of a DC component and a continuously modulated component, the continuously modulated component related to the modulated input signal;

    one or more elements located between the input and the output nodes for converting the modulated input signal to the modulated drive current;

    a sampler for sampling the modulated input signal;

    a switch located between the input and the output nodes, said switch movable between a closed position permitting the drive current to be delivered to the laser and an open position which prevents the drive current from reaching the laser; and

    a comparator configured to compare the sampled modulated input signal with a predetermined, externally supplied set value of the modulation signal associated with a lasing threshold of the diode-laser within the range between the extreme values; and

    if the sampled modulation signal falls between the set value and the said one of the extreme values of the modulation signal representing a desired zero output of the diode-laser, instructing the switch to move to the open position to switch off the drive-current thereby providing a laser intensity being about linearly proportional to the modulated drive-current.


     
    12. A drive circuit for a diode laser, said circuit for receiving a modulating input signal and for generating a modulated output current in response to the input signal, said output current for driving the laser and wherein below a threshold current, the laser will generate spontaneous non-laser emissions and above the threshold current, the laser will generate laser light, the circuit comprising:

    an input node for receiving the modulated input signal, the modulated input signal varying continuously in a range between predetermined first and second extreme values with one of the minimum and maximum values representing zero output of the diode-laser;

    a generator for generating a modulated drive-voltage corresponding to the modulated input signal, the modulated drive-voltage being the sum of a fixed bias-voltage component and a varying voltage component corresponding to the modulated input signal;

    a convertor for converting the drive-voltage to a drive-current proportional to the drive-voltage;

    an output node for supplying the modulated drive current to the laser;

    a sampler for sampling the modulated input signal;

    a switch located between the input and the output nodes, said switch movable between a closed position permitting the drive current to be delivered to the laser and an open position which prevents the drive current from reaching the laser; and

    a comparator configured to compare the sampled modulated input signal with a predetermined, externally supplied set value of the modulation signal associated with a lasing threshold of the diode-laser within the range between the extreme values; and

    if the sampled modulation signal falls between the set value and the said one of the extreme values of the modulation signal representing a desired zero output of the diode-laser, instructing the switch to move to the open position to switch off the drive-current thereby providing a laser intensity being about linearly proportional to the modulated drive-current.


     


    Ansprüche

    1. Verfahren zum Ansteuern eines kontinuierlich modulierten Diodenlasers, das die folgenden Schritte aufweist:

    Bereitstellen eines Modulationssignals, das einem gewünschten Modulationsprofil für den Diodenlaser entspricht, wobei das Modulationssignal kontinuierlich in einem Bereich zwischen einem vorbestimmten ersten und zweiten Extremwert variiert, wobei einer von dem Mindest-und dem Höchstwert einen Nullausgang des Diodenlasers repräsentiert;

    Erzeugen eines modulierten Ansteuerstroms, wobei der Ansteuerstrom die Summe einer Gleichstromkomponente und einer kontinuierlich modulierten Komponente ist, wobei die kontinuierlich modulierte Komponente mit dem Modulationssignal in Beziehung steht;

    Ansteuern des Diodenlasers mit dem Ansteuerstrom zum Bereitstellen von Laserleistung;

    Abtasten der Größe des Modulationssignals und Vergleichen des abgetasteten Modulationssignals mit einem vorbestimmten, extern eingestellten Sollwert des Modulationssignals, der einer Pumpschwelle des Diodenlasers im Bereich zwischen den Extremwerten zugeordnet ist; und,

    wenn das abgetastete Modulationssignal zwischen den Sollwert und den genannten einen der Extremwerte des Modulationssignals fällt, der eine gewünschten Nullausgang des Diodenlasers repräsentiert, Abschalten des Ansteuerstroms, wodurch eine Laserintensität bereitgestellt wird, die etwa linear proportional zum modulierten Ansteuerstrom ist.


     
    2. Verfahren nach Anspruch 1, wobei der Extremwert, der einen Nullausgang des Diodenlasers repräsentiert, ein Mindestwert ist.
     
    3. Verfahren nach Anspruch 2, wobei der Mindestwert des Modulationssignals null ist.
     
    4. Verfahren nach Anspruch 1, wobei das Modulationssignal ein Spannungssignal ist oder wobei das Modulationssignal ein Stromsignal ist.
     
    5. Verfahren nach Anspruch 4, wobei die modulierte Komponente des Ansteuerstroms in direkter Beziehung zu dem Modulationssignal steht oder in umgekehrter Beziehung zu dem Modulationssignal steht.
     
    6. Verfahren nach Anspruch 1, wobei die Gleichstromkomponente des Ansteuerstroms etwa gleich einem Schwellen-Ansteuerstrom ist, über dem der Diodenlaser Laserstrahlung emittiert.
     
    7. Verfahren nach Anspruch 1, wobei die Gleichstromkomponente und die modulierte Komponente des Ansteuerstroms selektiv variabel sind.
     
    8. Verfahren zum Ansteuern eines kontinuierlich modulierten Diodenlasers, das Folgendes aufweist:

    Bereitstellen eines Modulationsspannungssignals, das einem gewünschten Modulationsprofil für den Diodenlaser entspricht, wobei das Modulationsspannungssignal in einem Bereich zwischen einem Mindest- und einem Höchstwert kontinuierlich variiert, wobei der Mindestwert des Modulationssignals einen Nullausgang des Diodenlasers repräsentiert;

    Erzeugen einer modulierten Ansteuerspannung, die dem Modulationssignal entspricht, wobei die modulierte Ansteuerspannung die Summe einer festen Vorspannungskomponente und einer variierenden Spannungskomponente, die der Modulationssignalspannung entspricht, ist;

    Umwandeln der Ansteuerspannung in einen zur Ansteuerspannung proportionalen Ansteuerstrom;

    Ansteuern des Diodenlasers mit dem Ansteuerstrom zum Bereitstellen von Laserleistung;

    Abtasten der Größe des Modulationsspannungssignals und Vergleichen des abgetasteten Modulationsspannungssignals mit einem vorbestimmten, extern eingestellten Sollwert des Modulationssignals, der weit genug über einem Mindestwert des Modulationssignals ist, der einer Pumpschwelle des Diodenlasers im Bereich zwischen den Extremwerten zugeordnet ist; und,

    wenn das abgetastete Modulationssignal unter den Sollpegel fällt, Umschalten der Ansteuerspannung auf null, wodurch der Ansteuerstrom auf null geschaltet wird und der Diodenlaserausgang abgeschaltet wird, wodurch eine Laserintensität bereitgestellt wird, die etwa linear proportional zum modulierten Ansteuerstrom ist.


     
    9. Verfahren nach Anspruch 8, wobei der feste Vorspannungspegel der modulierten Ansteuerspannung etwa gleich einer Schwellen-Ansteuerspannung ist, über der der Diodenlaser Laserstrahlung emittiert.
     
    10. Verfahren nach Anspruch 9, wobei der Mindestwert des Modulationssignals null ist.
     
    11. Ansteuerschaltung für einen Diodenlaser, wobei die genannte Schaltung zum Empfangen eines modulierenden Eingangssignals und zum Erzeugen eines modulierten Ausgangsstroms als Reaktion auf das Eingangssignal ist, wobei der genannte Ausgangsstrom zum Ansteuern des Lasers ist und wobei der Laser unter einem Schwellenstrom spontane Nicht-Laser-Emissionen erzeugt und der Laser über dem Schwellenstrom Laserlicht erzeugt, wobei die Schaltung Folgendes aufweist:

    einen Eingangsknoten zum Empfangen des modulierten Eingangssignals, wobei das modulierte Eingangssignal kontinuierlich in einem Bereich zwischen einem vorbestimmten ersten und zweiten Extremwert variiert, wobei einer von dem Mindest- und dem Höchstwert einen Nullausgang des Diodenlasers repräsentiert;

    einen Ausgabeknoten zum Versorgen des Lasers mit dem modulierten Ansteuerstrom, wobei der Ansteuerstrom die Summe einer Gleichstromkomponente und einer kontinuierlich modulierten Komponente ist, wobei die kontinuierlich modulierte Komponente mit dem modulierten Eingangssignal in Beziehung steht;

    ein oder mehr zwischen dem Eingangs- und dem Ausgangsknoten befindliche Elemente zum Umwandeln des modulierten Eingangssignals in den modulierten Ansteuerstrom;

    einen Abtaster zum Abtasten des modulierten Eingangssignals;

    einen zwischen dem Eingangs- und dem Ausgangsknoten befindlichen Schalter, wobei der genannte Schalter zwischen einer geschlossenen Stellung, die das Zuführen des Ansteuerstroms zum Laser zulässt, und einer offenen Stellung, die verhindert, dass der Ansteuerstrom den Laser erreicht, bewegbar ist; und

    einen Komparator, der konfiguriert ist zum Vergleichen des abgetasteten modulierten Eingangssignals mit einem vorbestimmten, extern eingestellten Sollwert des Modulationssignals, der einer Pumpschwelle des Diodenlasers im Bereich zwischen den Extremwerten zugeordnet ist; und

    wenn das abgetastete Modulationssignal zwischen den Sollwert und den genannten einen der Extremwerte des Modulationssignals fällt, der einen gewünschte Nullausgang des Diodenlasers repräsentiert, zum Anweisen des Schalters zum Bewegen in die offene Stellung zum Abschalten des Ansteuerstroms, wodurch eine Laserintensität bereitgestellt wird, die zum modulierten Ansteuerstrom etwa linear proportional ist.


     
    12. Ansteuerschaltung für einen Diodenlaser, wobei die genannte Schaltung zum Empfangen eines modulierenden Eingangssignals und zum Erzeugen eines modulierten Ausgangsstroms als Reaktion auf das Eingangssignal ist, wobei der genannte Ausgangsstrom zum Ansteuern des Lasers ist und wobei der Laser unter einem Schwellenstrom spontane Nicht-Laser-Emissionen erzeugt und der Laser über dem Schwellenstrom Laserlicht erzeugt, wobei die Schaltung Folgendes aufweist:

    einen Eingangsknoten zum Empfangen des modulierten Eingangssignals, wobei das modulierte Eingangssignal kontinuierlich in einem Bereich zwischen einem vorbestimmten ersten und zweiten Extremwert variiert, wobei einer von dem Mindest- und dem Höchstwert einen Nullausgang des Diodenlasers repräsentiert;

    einen Generator zum Erzeugen einer modulierten Ansteuerspannung, die dem modulierten Eingangssignal entspricht, wobei die modulierte Ansteuerspannung die Summe einer festen Vorspannungskomponente und einer dem modulierten Eingangssignal entsprechenden variierenden Spannungskomponente ist;

    einen Wandler zum Umwandeln der Ansteuerspannung in einen zur Ansteuerspannung proportionalen Ansteuerstrom;

    einen Ausgangsknoten zum Versorgen des Lasers mit dem modulierten Ansteuerstrom;

    einen Abtaster zum Abtasten des modulierten Eingangssignals;

    einen zwischen dem Eingangs- und dem Ausgangsknoten befindlichen Schalter, wobei der genannte Schalter zwischen einer geschlossenen Stellung, die das Zuführen des Ansteuerstroms zum Laser zulässt, und einer offenen Stellung, die verhindert, dass der Ansteuerstrom den Laser erreicht, bewegbar ist; und

    einen Komparator, der konfiguriert ist zum Vergleichen des abgetasteten modulierten Eingangssignals mit einem vorbestimmten, extern eingestellten Sollwert des Modulationssignals, der einer Pumpschwelle des Diodenlasers im Bereich zwischen den Extremwerten zugeordnet ist; und,

    wenn das abgetastete Modulationssignal zwischen den Sollwert und den genannten einen der Extremwerte des Modulationssignals fällt, der einen gewünschten Nullausgang des Diodenlasers repräsentiert, zum Anweisen des Schalters zum Bewegen in die offene Stellung zum Abschalten des Ansteuerstroms, wodurch eine Laserintensität bereitgestellt wird, die zum modulierten Ansteuerstrom etwa linear proportional ist.


     


    Revendications

    1. Procédé d'attaque d'un laser à diode modulé continûment, comprenant les étapes de :

    fourniture d'un signal de modulation correspondant à un profil de modulation souhaité du laser à diode, le signal de modulation variant continûment dans une plage entre des première et seconde valeurs extrêmes prédéterminées, une des valeurs minimale et maximale représentant une sortie nulle du laser à diode ;

    la génération d'un courant d'attaque modulé, le courant d'attaque étant la somme d'une composante C.C. et d'une composante modulée continûment, la composante modulée continûment étant liée au signal de modulation ;

    l'attaque du laser à diode avec le courant d'attaque pour produire une sortie laser ;

    l'échantillonnage de la grandeur du signal de modulation et la comparaison du signal de modulation échantillonné à une valeur de consigne fournie extérieurement, prédéterminée du signal de modulation associée à un seuil d'effet laser du laser à diode dans la plage entre les valeurs extrêmes; et

    si le signal de modulation échantillonné tombe entre la valeur de consigne et ladite une des valeurs extrêmes du signal de modulation représentant une sortie nulle souhaitée du laser à diode, la coupure du courant d'attaque, produisant ainsi une intensité laser environ linéairement proportionnelle au courant d'attaque modulé.


     
    2. Procédé selon la revendication 1, dans lequel la valeur extrême représentant une sortie nulle du laser à diode est une valeur minimale.
     
    3. Procédé selon la revendication 2, dans lequel la valeur minimale du signal de modulation est zéro.
     
    4. Procédé selon la revendication 1, dans lequel le signal de modulation est un signal de tension ou dans lequel le signal de modulation est un signal de courant.
     
    5. Procédé selon la revendication 4, dans lequel la composante modulée du courant d'attaque est directement liée au signal de modulation ou inversement liée au signal de modulation.
     
    6. Procédé selon la revendication 1, dans lequel la composante C.C. du courant d'attaque est environ égale au courant d'attaque de seuil au-dessus duquel le laser à diode émet un rayonnement laser.
     
    7. Procédé selon la revendication 1, dans lequel la composante C.C. et la composante modulée du courant d'attaque sont sélectivement variables.
     
    8. Procédé d'attaque d'un laser à diode modulée continûment, comprenant :

    la fourniture d'un signal de tension de modulation correspondant à un profil de modulation souhaité du laser à diode, le signal de tension de modulation variant continûment dans une plage entre des valeurs minimale et maximale prédéterminées, la valeur minimale du signal de modulation représentant une sortie nulle du laser à diode;

    la génération d'une tension d'attaque modulée correspondant au signal de modulation, la tension d'attaque modulée étant la somme d'une composante de tension de polarisation fixe et d'une composante de tension variable correspondant à la tension du signal de modulation ;

    la conversion de la tension d'attaque en un courant d'attaque proportionnel à la tension d'attaque;

    l'attaque du laser à diode avec le courant d'attaque pour produire une sortie laser ;

    l'échantillonnage de la grandeur du signal de tension de modulation et la comparaison du signal de tension de modulation échantillonné à une valeur de consigne fournie extérieurement prédéterminée suffisamment supérieure à une valeur minimale du signal de modulation associée à un seuil d'effet laser du laser à diode dans la plage entre les valeurs minimale et maximale ; et

    si le signal de modulation échantillonné tombe en dessous du niveau de consigne, la commutation de la tension d'attaque à zéro, commutant ainsi le courant d'attaque à zéro et coupant la sortie du laser à diode, produisant ainsi une intensité laser environ linéairement proportionnelle au courant d'attaque modulé.


     
    9. Procédé selon la revendication 8, dans lequel le niveau de polarisation fixe de la tension d'attaque modulée est environ égal à une tension d'attaque de seuil au-dessus de laquelle le laser à diode émet un rayonnement laser.
     
    10. Procédé selon la revendication 9 dans lequel la valeur minimale du signal de modulation est zéro.
     
    11. Circuit d'attaque d'un laser à diode, ledit circuit servant à recevoir un signal d'entrée de modulation et à générer un courant de sortie modulé en réponse au signal d'entrée, ledit courant de sortie servant à attaquer le laser et dans lequel en dessous d'un courant de seuil, le laser génère des émissions non laser spontanées et au-dessus du courant de seuil, le laser génère une lumière laser, le circuit comprenant :

    un nœud d'entrée pour recevoir le signal d'entrée modulé, le signal d'entrée modulé variant continûment dans une plage entre des première et seconde valeurs extrêmes prédéterminées, une des valeurs minimale et maximale représentant une sortie nulle du laser à diode ;

    un nœud de sortie pour fournir le courant d'attaque module au laser, le courant d'attaque étant la somme d'une composante C.C. et d'une composante modulée continûment, la composante modulée continûment étant liée au signal d'entrée modulé ;

    un ou plusieurs éléments situés entre les nœud d'entrée et de sortie pour convertir le signal d'entrée modulé en le signal d'attaque modulé ;

    un échantillonneur pour échantillonner le signal d'entrée modulé ;

    un commutateur situé entre les nœuds d'entrée et de sortie, ledit commutateur étant déplaçable entre une position fermée permettant la fourniture du courant d'attaque au laser et une position ouverte qui empêche le courant d'attaque d'atteindre le laser ; et

    un comparateur configuré pour comparer le signal d'entrée modulé échantillonné à une valeur de consigne fournie extérieurement prédéterminée du signal de modulation associée à un seuil d'effet laser du laser à diode dans la plage entre les valeurs extrêmes ; et

    si le signal de modulation échantillonné tombe entre la valeur de consigne et ladite une des valeurs extrêmes du signal de modulation représentant une sortie nulle souhaitée du laser à diode, la commande du commutateur pour passer à la position ouverte afin de couper le courant d'attaque, produisant ainsi une intensité laser environ linéairement proportionnelle au courant d'attaque modulé.


     
    12. Circuit d'attaque d'un laser à diode, ledit circuit servant à recevoir un signal d'entrée de modulation et à générer un courant de sortie modulé en réponse au signal d'entrée, ledit courant de sortie servant à attaquer le laser et dans lequel en dessous d'un courant de seuil, le laser génère des émissions non laser spontanées et au-dessus du courant de seuil, le laser génère une lumière laser, le circuit comprenant :

    un nœud d'entrée pour recevoir le signal d'entrée modulé, le signal d'entrée modulé variant continûment dans une plage entre des première et seconde valeurs extrêmes prédéterminées, une des valeurs minimale et maximale représentant une sortie nulle du laser à diode ;

    un générateur pour générer une tension d'attaque modulée correspondant au signal d'entrée modulé, la tension d'attaque modulée étant la somme d'une composante de tension de polarisation fixe et d'une composante de tension variable correspondant au signal d'entrée modulé ;

    un convertisseur pour convertir la tension d'attaque en un courant d'attaque proportionnel à la tension d'attaque ;

    un nœud de sortie pour fournir le courant d'attaque modulé au laser ;

    un échantillonneur pour échantillonner le signal d'entrée modulé ;

    un commutateur situé entre les nœuds d'entrée et de sortie, ledit commutateur étant déplaçable entre une position fermée permettant la fourniture du courant d'attaque au laser et une position ouverte qui empêche le courant d'attaque d'atteindre le laser ; et

    un comparateur configuré pour comparer le signal d'entrée modulé échantillonné à une valeur de consigne fournie extérieurement prédéterminée du signal de modulation associée à un seuil d'effet laser du laser à diode dans la plage entre les valeurs extrêmes ; et

    si le signal de modulation échantillonné tombe entre la valeur de consigne et ladite une des valeurs extrêmes du signal de modulation représentant une sortie nulle souhaitée du laser à diode, la commande du commutateur pour passer à la position ouverte afin de couper le courant d'attaque, produisant ainsi une intensité laser environ linéairement proportionnelle au courant d'attaque modulé.


     




    Drawing
































    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description