(19)
(11)EP 2 671 014 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
06.05.2020 Bulletin 2020/19

(21)Application number: 12742337.4

(22)Date of filing:  06.02.2012
(51)Int. Cl.: 
F17C 1/02  (2006.01)
F04F 13/00  (2009.01)
(86)International application number:
PCT/US2012/023980
(87)International publication number:
WO 2012/106712 (09.08.2012 Gazette  2012/32)

(54)

SPLIT PRESSURE VESSEL FOR TWO FLOW PROCESSING

GETEILTER DRUCKBEHÄLTER FÜR EINE DOPPELFLUSSVERARBEITUNG

RÉCIPIENT À PRESSION DIVISÉE POUR TRAITEMENT À DEUX FLUX


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 04.02.2011 US 201161439515 P

(43)Date of publication of application:
11.12.2013 Bulletin 2013/50

(73)Proprietor: Hauge, Leif, J.
Virginia Beach, VA 23454 (US)

(72)Inventor:
  • Hauge, Leif, J.
    Virginia Beach, VA 23454 (US)

(74)Representative: Leonhard, Frank Reimund 
Leonhard & Partner Patentanwälte Postfach 10 09 62
80083 München
80083 München (DE)


(56)References cited: : 
US-A- 3 249 153
US-A- 4 871 014
US-A1- 2006 032 808
US-A1- 2006 037 895
US-A1- 2006 245 909
US-A1- 2011 006 006
US-B2- 7 306 437
US-A- 3 249 153
US-A- 4 871 014
US-A1- 2006 032 808
US-A1- 2006 037 895
US-A1- 2006 245 909
US-A1- 2011 006 006
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description


    [0001] The invention relates to fluid processing, and specifically to a pressure vessel for energy exchange between two fluids. In particular, the invention relates to a pressure vessel arranged as two opposing end caps forming a pressure vessel for an energy exchange device.

    [0002] Pressure vessels for energy exchange devices such as heat exchangers have been in industrial use for long time. In the last 10-15 years a new energy exchange device termed a pressure exchanger has been commercialized. This device has adapted standard commercial composite pressure vessels used for membrane separation by reverse osmosis.

    [0003] Such pressure vessels are designed for the insertion of single or multiple membrane modules from both ends without removing the pressure vessel, but this is not a requirement as housing for an energy exchange device. Hence it becomes a bulky solution with multiple seals needed for the inlet and discharge of two different fluid streams. Such seals tend to develop leaks over time and need replacement.

    [0004] Composite vessels need to be oversized and heavy to account for the gradual fracturing of reinforcement fibers over perhaps a life of 25 years. In order to secure end caps the vessel need to be extended substantially, which account for a large loss of productive volume since only a short net length is required for an energy exchange device.

    [0005] In addition it is desirable to arrange either the inlet or discharge flow through a side port of the pressure vessel. For a composite vessel this becomes particularly challenging as such a port cannot have a very large diameter without substantial increased wall thickness, added weight and cost.

    [0006] US 2006/0037895 A1 discloses a pressure exchange device that utilizes an integral high pressure boost pump that is in fluid communication with a pressure exchange unit having two separable end caps which are elongated.

    [0007] US 2006/00245909 A1 refers to a pressure exchanger for the transfer of pressure energy from a high pressure stream to a lower pressure stream wherein an axial port with an additional side port are formed in an end cap.

    [0008] US 7,306,437 B2 (corresponds to US 2006/0032808 A1) discloses a pressure exchanger having a metal pressure vessel with thin walls that accommodate cast or welded in two side ports. The pressure vessel is made of a section containing three of the four ports, while the end cap provides the fourth port.

    [0009] Said reference is referred to for basic understanding of pressure exchanges. More specifically this reference discloses a pressure vessel comprising a first end cap having a side port 7 for a high pressure 35 outflow of a first stream, a second end cap having an axial port 4 for a low pressure outflow of a second stream substantially parallel to a mutual central axis formed by the first and second end cap.

    [0010] Although this design eliminates many of the concerns with using composite pressure vessels, it has some important limitations. The design does not allow for radial flow through side ports of low pressure fluid, which is desirable in order to integrate a circulation pump for the high pressure stream. Direct low pressure flow through a side ported ceramic end cover poses difficult sealing issues and/or an destructive asymmetric side load of the end cover.

    [0011] Furthermore, the long vessel imposes manufacturing issues in terms of internal machining and size when casting.

    [0012] Thus, there is a need for a pressure vessel that does not have the above noted disadvantages of existing pressure vessels for energy exchange. Thus, at least one objective of the invention is to provide a pressure vessel that is not encumbered by the aforementioned disadvantages.

    [0013] A problem thus is to enhance the efficiency of the plant and reduce operating expenses over the lifetime of the plant.

    [0014] The invention suggests claim 1.

    [0015] In accordance with at least one embodiment the pressure vessel for an energy exchange device suitable for integration with a circulation pump for the high pressure flow is provided. The pressure vessel diverts the low pressure flows into side ports and provides in-line straight axial high pressure flow conduits where one end cap is mechanically integrated to a circulation pump.

    [0016] The pressure vessel for the energy exchange device has improved manufacturing efficiency. The pressure vessel according to this embodiment has two opposite facing end caps connected mechanically with a seal, each having one inlet and one outlet for one stream.

    [0017] The pressure vessel for the energy exchange device will not develop external leaks through seals. The pressure vessel according to this embodiment has preferably cast or welded end caps with structurally integrated ports.

    [0018] These and other embodiments and advantages of the present invention, which may be employed individually or in selective combination, will become apparent from the following detailed description, taken in conjunction with the accompanying drawings, illustrating by way of example the principles of the invention.
    FIG. 1
    is an exploded perspective view of a split pressure vessel for processing of two streams according to at least one embodiment of the invention.
    FIG. 2
    is a partial cut-away perspective view of the pressure vessel with a pressure exchanger according to the exemplary embodiment illustrated in FIG. 1.
    FIG. 3
    is a cut-away perspective view of a circulation pump driven by a submersible motor integrated with one end cap.
    FIG. 4
    is a cut-away perspective view of a circulation pump integrated with one end cap and driven by an external motor.


    [0019] The following description is intended to convey a thorough understanding of the embodiments described by providing a number of specific embodiments and details involving an improved pressure vessel for energy exchange from one fluid stream to another. It should be appreciated, however, that the present invention is not limited to these specific embodiments and details, which are exemplary only. It is further understood that one possessing ordinary skill in the art, in light of known systems and methods, would appreciate the use of the invention for its intended purposes and benefits in any number of alternative embodiments, depending upon specific design and other needs.

    [0020] Referring now to FIG. 1, an external embodiment of a split pressure vessel according to at least one embodiment of the invention is illustrated. The pressure vessel depicted in FIG. 1 comprises two preferably elongated end caps 1 and 2 for separate first and second fluid streams, where the first has a side port 3 for low pressure outflow of the first stream A and an axial port 4 for high pressure inlet of the first stream A' substantially parallel to the mutual center axis of both end caps 1,2 and preferably in the same plane as the side port 3.

    [0021] The second end cap 2 has a side port 5 for low pressure inflow of the second stream B' preferably in the same plane as the side port 3 of the first end cap 1. The second stream B has an axial port 6 for high pressure outlet substantially parallel to the center axis of both end caps 1 and 2.

    [0022] Each end cap has a flange 7 and 8 with holes 9 for bolts 10 connecting the two end caps to form a pressure vessel. One of the flanges has shoulder or groove 11 for an a- ring 12 to form a face seal between the end caps. Although not depicted on the drawing, any known method of mechanically fixing the end caps together, such as but not limited to a grooved fitting is considered a part of the invention. Furthermore it is noted that all ports are either cast in or welded to the end caps without any kind of additional seal.

    [0023] FIG. 2 shows the particular embodiment of the split pressure vessel with an internal pressure exchanger assembly 13 having an end cover 14 for the first stream and another end cover 15 for the second stream. The end cover for the first stream has one axial high pressure inlet port 16 directly connecting to the structurally integrated high pressure manifold 17 of the first end cap, and an axial low pressure discharge port 18 connects directly to the structurally integrated out flow manifold 19 of the first end cap, which has a static seal 20 isolating from the high pressure side.

    [0024] The end cover 15 for the second stream has one axial high pressure outlet port 21 directly connecting to the structurally integrated high pressure manifold 22 of the second end cap, and an axial low pressure inlet port 23 connects directly to the structurally integrated inlet manifold 24 of the first end cap, which has a static seal 25 isolating from the high pressure side.

    [0025] FIG. 3 shows the second end cap 2 having an integrated circulation pump 26 driven by a submersible motor 27 attached to the pump 26 with a mounting frame 29. The high pressure outlet manifold 22 discharges flow into submersible motor end of the pump housing 28. The pump 26 is attached at the discharge port cover 30. The pump housing 28 is cast or weld integrated with the second end cap 2 and may have a flange for attaching the discharge port cover, which has an axial discharge port 31 preferably in the same plane as the axial inlet port 16 and the side ports 3 and 5.

    [0026] The circulation pump or booster may be any kind of suitable pump, including but not limited to a multistage centrifugal pump. It would be particular useful with the pressure exchanger if the pump could be reversible. Pressure exchangers are mostly used with reverse osmosis plants, which accept different feed waters including but not limited to sea water that have considerable fouling potential. If flow could be reversed periodically through the membranes, cleaning may be omitted or substantially reduced or expensive pretreatment avoided. If so, a less expensive surface water intake may be used rather than costly drilled wells.

    [0027] FIG. 4 shows the second end cap 2 having an integrated circulation pump 32 driven by an external motor 33. The high pressure outlet manifold 22 discharges flow into the inlet 34 of the pump housing 35. The inlet side of the pump housing 36 is a structurally integrated part of end cap 2 by casting or welding. The discharge side 37 is connected to the inlet side 36 through bolted flanges or similar methods and a seal 38. The pump shaft 39 is equipped with a high pressure rotary face seal 40. The high pressure flow from the pump is discharged through the pump outlet 41.


    Claims

    1. Pressure vessel comprising

    - a first end cap (1) having a side port (3) for a low pressure outflow of a first stream (A);

    - a second end cap (2) having an axial port (6) for a high pressure outlet of a second stream (B) substantially parallel to a mutual center axis formed by the first end cap and the second end cap;

    - wherein the first end cap (1) has an axial port (4) for a high pressure inlet of the first stream substantially parallel to the mutual center axis formed by the first end cap and the second end cap;

    - wherein the second end cap (2) has a side port (5) for a low pressure inflow of the second stream; and

    - wherein the pressure vessel is configured to divert low pressure stream flows into the side ports (3,5).


     
    2. Pressure vessel of claim 1, wherein a circulation pump (26;32) forming an integrated part of the pressure vessel is attached directly to one of the end caps (1,2) to boost the high pressure flow of one stream and has an axial discharge port (31) in the same plane as the side port (3) and the axial port (6).
     
    3. Pressure vessel of claim 1, wherein the first end cap (1) and the second end cap (2) are mechanically connected with flanges (7,8), a static seal (12), a grooved fitting or any combination.
     
    4. Pressure vessel of claim 1, wherein the first end cap (1) and the second end cap (2) are separable.
     
    5. Pressure vessel of claim 1, wherein the pressure vessel provides in-line straight axial high pressure flow conduits.
     
    6. Pressure vessel of claim 1, wherein the first end cap (1) and the second end cap (2) are elongated.
     
    7. Pressure vessel of claim 2, wherein the first end cap (1) and the second end cap (2) are permanently mechanically integrated to the circulation pump (26).
     
    8. Pressure vessel of claim 2, wherein the circulation pump is a submersible pump (26) with a motor (27), preferably wetted by the less corrosive stream.
     
    9. Pressure vessel of claim 2, wherein the circulation pump (26) is capable of reversing flow direction.
     
    10. Pressure vessel of claim 2, wherein the circulation pump (32) has an external motor (33) with a shaft seal withstanding the high pressure of the stream.
     


    Ansprüche

    1. Druckbehälter, bestehend aus

    - einer ersten Endkappe (1) mit einer seitlichen Öffnung (3) für einen Niederdruckausfluss eines ersten Stroms (A);

    - einer zweiten Endkappe (2) mit einer axialen Öffnung (6) für einen Hochdruckauslass eines zweiten Stroms (B), der im Wesentlichen parallel zu einer gemeinsamen Mittelachse verläuft, die durch die erste Endkappe und die zweite Endkappe gebildet wird;

    - wobei die erste Endkappe (1) eine axiale Öffnung (4) für einen Hochdruckeinlass des ersten Stroms im Wesentlichen parallel zu der durch die erste Endkappe und die zweite Endkappe gebildeten gemeinsamen Mittelachse aufweist;

    - wobei die zweite Endkappe (2) eine seitliche Öffnung (5) für einen Niederdruckeinfluss des zweiten Stroms aufweist; und

    - wobei der Druckbehälter so konfiguriert ist, dass der Niederdruckstrom in die seitlichen Anschlüsse (3,5) umgeleitet wird.


     
    2. Druckbehälter nach Anspruch 1, wobei eine Zirkulationspumpe (26; 32), die einen integrierten Teil des Druckbehälters bildet, direkt an einer der Endkappen (1, 2) befestigt ist, um den Hochdruckstrom eines Stromes zu verstärken, und eine axiale Auslassöffnung (31) in der gleichen Ebene wie die seitliche Öffnung (3) und die axiale Öffnung (6) aufweist.
     
    3. Druckbehälter nach Anspruch 1, bei dem die erste Endkappe (1) und die zweite Endkappe (2) mechanisch mit Flanschen (7, 8), einer statischen Dichtung (12), einem gerillten oder mit Nut versehenen Fitting oder einer beliebigen Kombination verbunden sind.
     
    4. Druckbehälter nach Anspruch 1, wobei die erste Endkappe (1) und die zweite Endkappe (2) trennbar sind.
     
    5. Druckbehälter nach Anspruch 1, wobei der Druckbehälter geradlinige, axiale Hochdruck-Strömungsleitungen in-line bereitstellt.
     
    6. Druckbehälter nach Anspruch 1, wobei die erste Endkappe (1) und die zweite Endkappe (2) länglich sind.
     
    7. Druckbehälter nach Anspruch 2, wobei die erste Endkappe (1) und die zweite Endkappe (2) dauerhaft mechanisch mit der Umwälzpumpe (26) integriert sind.
     
    8. Druckbehälter nach Anspruch 2, wobei die Umwälzpumpe eine Tauchpumpe (26) mit einem Motor (27) ist, vorzugsweise von dem weniger korrosiven Strom benetzbar.
     
    9. Druckbehälter nach Anspruch 2, wobei die Umwälzpumpe (26) in der Lage ist, die Strömungsrichtung umzukehren.
     
    10. Druckbehälter nach Anspruch 2, wobei die Umwälzpumpe (32) einen externen Motor (33) mit einer Wellendichtung aufweist, die dem hohen Druck des Stromes standhält.
     


    Revendications

    1. Récipient sous pression comprenant

    - un premier embout (1) ayant un orifice latéral (3) pour un écoulement à basse pression d'un premier flux (A);

    - un second bouchon d'extrémité (2) ayant un orifice axial (6) pour une sortie haute pression d'un second courant (B) sensiblement parallèle à un axe central mutuel formé par le premier bouchon d'extrémité et le second bouchon d'extrémité;

    - dans lequel le premier embout (1) comporte un orifice axial (4) pour une entrée haute pression du premier flux sensiblement parallèle à l'axe central mutuel formé par le premier embout et le deuxième embout;

    - dans lequel le deuxième embout (2) comporte un orifice latéral (5) pour une arrivée à basse pression du deuxième flux; et

    - dans lequel la cuve sous pression est configurée pour dévier les flux de flux à basse pression vers les orifices latéraux (3,5).


     
    2. Récipient sous pression selon la revendication 1, dans lequel une pompe de circulation (26;32) faisant partie intégrante du récipient sous pression est fixée directement à l'un des bouchons d'extrémité (1,2) pour augmenter le débit à haute pression d'un courant et possède un orifice de décharge axial (31) dans le même plan que l'orifice latéral (3) et l'orifice axial (6).
     
    3. Récipient sous pression selon la revendication 1, dans lequel le premier embout (1) et le second embout (2) sont reliés mécaniquement par des brides (7,8), un joint statique (12), un raccord rainuré ou toute combinaison.
     
    4. Récipient sous pression selon la revendication 1, dans lequel le premier embout (1) et le deuxième embout (2) sont séparables.
     
    5. Récipient sous pression selon la revendication 1, dans lequel le récipient sous pression fournit des conduits d'écoulement à haute pression axiale en ligne droite.
     
    6. Récipient sous pression selon la revendication 1, dans lequel le premier embout (1) et le deuxième embout (2) sont allongés.
     
    7. Réservoir sous pression selon la revendication 2, dans lequel le premier bouchon (1) et le deuxième bouchon (2) sont intégrés mécaniquement de façon permanente à la pompe de circulation (26).
     
    8. Réservoir sous pression selon la revendication 2, dans lequel la pompe de circulation est une pompe submersible (26) avec un moteur (27), de préférence mouillé par le courant le moins corrosif.
     
    9. Réservoir sous pression selon la revendication 2, dans lequel la pompe de circulation (26) est capable d'inverser le sens de l'écoulement.
     
    10. Réservoir sous pression selon la revendication 2, dans lequel la pompe de circulation (32) a un moteur externe (33) avec un joint d'arbre résistant à la haute pression du flux.
     




    Drawing












    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description