(19)
(11)EP 2 672 065 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
20.05.2020 Bulletin 2020/21

(21)Application number: 13170855.4

(22)Date of filing:  06.06.2013
(51)Int. Cl.: 
F01D 5/14  (2006.01)
F01D 11/12  (2006.01)
F01D 9/04  (2006.01)

(54)

TURBINE SHROUD

DECKBAND EINER TURBINE

VIROLE DE TURBINE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 08.06.2012 US 201213492203

(43)Date of publication of application:
11.12.2013 Bulletin 2013/50

(73)Proprietor: General Electric Company
Schenectady, NY 12345 (US)

(72)Inventors:
  • Chouhan, Rohit
    560066 Bangalore, Karnataka (IN)
  • Soni, Sumeet
    560066 Bangalore, Karnataka (IN)

(74)Representative: BRP Renaud & Partner mbB Rechtsanwälte Patentanwälte Steuerberater 
Königstraße 28
70173 Stuttgart
70173 Stuttgart (DE)


(56)References cited: : 
US-A- 5 791 873
US-A1- 2006 127 214
US-A- 6 059 525
US-A1- 2008 075 600
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description


    [0001] The present invention relates generally to rotary machines, and more particularly, to apparatus to facilitate fluid flow within the rotary machine by reducing fluid leakage losses and fluid mixing losses within the rotary machine.

    [0002] Rotary machines, such as gas turbines, are used to generate power for electric generators. A gas turbine has a gas path which typically includes, in serial-flow relationship, an air intake (or inlet), a compressor, a combustor, a turbine, and a gas outlet (or exhaust nozzle). Compressor and turbine sections include at least one row of circumferentially spaced rotating buckets or blades positioned within a housing. Turbine efficiency depends at least in part on a radial clearance or gap between tips of the rotating buckets and a shroud coupled to the surrounding housing. The clearance is needed to avoid contact or rubbing between the bucket tips and the shroud which results in a design limitation for the size of the clearance. If the clearance is too large, enhanced gas flow may leak through the clearance gaps, thus decreasing the turbine's efficiency. Leakage flow, either out of the flow path or into the flow path, from an area of higher pressure to an area of lower pressure, is generally undesirable. If the clearance is too small, the rotor bucket tips may undesirably contact/rub the surrounding shroud during certain turbine operating conditions, which may also decrease the turbine's efficiency. To accommodate for the design limitation of the clearance gap, some known turbines utilize honeycomb and/or labyrinth seals with the shroud and/or bucket to reduce leakage flow through the clearance gap.

    [0003] Fig. 1 is a cross-sectional view of a known shroud 10 having a seal 12 that can be used with a known gas turbine 14. Known turbines 14 include seals 12, such as honeycomb and/or labyrinth seals, to reduce flow through a gap 16. More particularly, known labyrinth seals 12 include a tortuous path defined by longitudinally spaced-apart rows of labyrinth seal teeth 18 that seal against highpressure differentials that may be present in the turbine 14. However, the configurations of some known labyrinth seals 12 may induce fluid mixing losses and/or flow leakage losses of the gas on an exit side 20 of rotating buckets 22 that may adversely affect the efficiency of the turbine 14. More particularly, flow paths of leakage flow 24 for some known seals 12 are sometimes not aligned with a subsequent nozzle 26, wherein misalignment increases the re-circulation of leakage flow 24 within the bucket exit side 20 subsequent labyrinth seal 12. The re-circulation of leakage flow 24 may mix with main flow 28, which may also adversely affect turbine efficiency.

    [0004] US 2006/0127214 describes a feature on a trailing edge of a shroud for redirecting gas flow.

    [0005] According to the invention, a turbine according to claim 1 is provided.

    Fig. 1 is a cross-sectional view of a known shroud used with a known gas turbine.

    Fig. 2 is a schematic view of a rotary machine.

    Fig. 3 is a cross-sectional view of an exemplary diaphragm, a shroud, a rotor, and a seal that may be used with the rotary machine shown in Fig. 2.

    Fig. 4 is a cross-sectional view of the exemplary shroud that may be used with the diaphragm shown in Fig. 3.

    Fig. 5 is a cross-sectional view of another exemplary shroud that may be used with the diaphragm shown in Fig. 3.

    Fig. 6 is a cross-sectional view of another exemplary shroud that may be used with the diaphragm shown in Fig. 3.

    Fig. 7 is a cross-sectional view of another exemplary shroud that may be used with the diaphragm shown in Fig. 3.

    Fig. 8 is a cross-sectional view of another exemplary shroud that may be used with the diaphragm shown in Fig. 3.

    Fig. 9 is a cross-sectional view of another exemplary shroud that may be used with the shroud shown in Fig. 3.

    Fig. 10 is a flowchart of an exemplary method of assembling a turbine.



    [0006] Fig. 2 is a schematic view of a rotary machine 30, such as a gas turbine 32. Turbine 32 includes an intake section 34, a compressor section 36 that is downstream from intake section 34, a combustor section 38 downstream from compressor section 36, a turbine section 40 downstream from combustor section 38, and an exhaust section 42 downstream from turbine section 40. Turbine section 40 is coupled to compressor section 36 via a rotor assembly 44 that includes a shaft 46 that extends along a centerline axis 48. Combustor section 38 includes a plurality of combustor assemblies 50 that are each coupled in flow communication with the compressor section 36. A fuel nozzle assembly 52 is coupled to each combustor assembly 50. Turbine section 40 is rotatably coupled to compressor section 36 and to a load 54 such as, but not limited to, an electrical generator and/or a mechanical drive application.

    [0007] During operation, air flows through compressor section 36 and compressed air is discharged into combustor section 38. Combustor assembly 50 injects fuel, for example, natural gas and/or fuel oil, into the air flow, ignites the fuel-air mixture to expand the fuel-air mixture through combustion, and generates high temperature combustion gases. Combustion gases are discharged from combustor assembly 50 towards turbine section 40, wherein thermal energy in the gases is converted to mechanical rotational energy. Combustion gases impart rotational energy to turbine section 40 and to rotor assembly 44, which subsequently provides rotational power to compressor section 36.

    [0008] Fig. 3 is a cross-sectional view of an exemplary shroud 56, rotor 58, and seal 60 used with turbine 32 (shown in Fig. 2). Shroud 56 is configured to mitigate leakage flow 62 such as, but not limited to, hot gas flow within turbine 32 and to mitigate leakage flow 62 mixing with main flow 64, for example, hot gas flow through turbine 32. A clearance gap 66 is defined between shroud 56 and tip of rotor 58, wherein seal 60 is configured to facilitate sealing gap 66 to reduce leakage flow 62 through gap 66. In the exemplary embodiment, turbine 32 includes a diaphragm 68 having a radial outer portion 70, a radial inner portion 72, and a nozzle 74. Shroud 56 and radial outer portion 70 are coupled to a housing 76, while nozzle 74 is coupled to radial outer portion 70, and radial inner portion 72 is coupled to nozzle 74.

    [0009] Rotor 58 includes turbine buckets 78 that are coupled at their radially inner ends 80 to turbine wheels 82 extending radially outward from turbine shaft 46 such that buckets 78 are rotatable about an axis 84. Bucket 78 has a flow inlet side 86 and a flow outlet side 88, which is downstream of flow inlet side 86. Bucket 78 further includes a bucket tip 92, wherein bucket tip 92 includes a plurality of teeth 94 extending radially therefrom, within gap 66 and towards shroud 56. A set of stationary nozzles 74 and rotating buckets 78 form a stage 96 of turbine 32. Moreover, turbine 32 includes a subsequent stage 98 having a subsequent radial outer portion 100 and a nozzle 102. Nozzle 102 includes an inlet side 104, an outlet side 106, and side wall 108. Side wall 108 is angled with respect to shroud 56.

    [0010] Fig. 4 illustrates a cross-sectional view of shroud 56. Shroud 56 includes an alignment member 110 having a first end 112, a second end 114, and a body 116 extending between first end 112 and second end 114. Shroud 56 is sized and shaped to maintain gap 66 as minimally allowed between bucket teeth 94 and seal 60 to provide a tortuous path for leakage flow 62 from bucket inlet side 86 through gap 66 and into bucket outlet side 88. First end 112 includes a first substantially straight portion 118 and a second substantially straight portion 120. In the exemplary embodiment, portions 118 and 120 are positioned substantially orthogonal to each other. Alternatively, any orientation of portions 118 and 120 may be used that enables turbine 32 to function as described herein.

    [0011] Second end 114 is configured to channel tip leakage flow 62 from gap 66, downstream from bucket 78, and towards nozzle side wall 108. In the exemplary embodiment, second end 114 is sized and shaped to substantially match a flow profile of side wall 108 of nozzle 102 to facilitate alignment of leakage flow 62 towards sidewall 108 to minimize and/or eliminate re-circulation of leakage flow 62 into bucket outlet side 88 as compared to conventional turbines 14 (shown in Fig. 1). Second end 114 includes a substantially smooth profile 122 which is configured to direct leakage flow 62 toward side wall 10 to facilitate minimizing and/or eliminating sharp turns of leakage flow 62. Moreover, second end 114 is configured to facilitate minimizing and/or eliminating mixing of leakage flow 62 with main flow 64. In the exemplary embodiment, second end 114 includes a first substantially straight portion 124, a second substantially straight portion 126, and an arcuate portion 128 extending between portions 124 and 126. Alternatively, second end 114 may include any number of straight and arcuate portions to enable shroud 56 to function as described herein.

    [0012] In the exemplary embodiment, arcuate portion 128 extends radially outward from housing 76. As illustrated, because arcuate portion 128 extends radially outward from housing 76, second substantially straight portion 126 is positioned at an angle 130 relative to first substantially straight portion 124 and in line to side wall 108 of subsequent nozzle 102. Moreover, in the exemplary embodiment, second substantially straight portion 126 is orientated at less than about 45° relative to first substantially straight portion 124. The orientation of first substantially straight portion 124, second substantially straight portion 126, and arcuate portion 128 facilitates leakage flow 62 downstream beyond bucket 78 and towards nozzle sidewall 108. More particularly, arcuate portion 128 is configured to position second portion 126 in substantial alignment with angle of sidewall 108 to facilitate leakage flow 62 from gap 66, downstream of bucket 78 and toward nozzle 102. Any orientation of first and second portions 124 and 126 and arcuate portion 128 may be used to facilitate flow alignment with nozzle side wall 108, and enables turbine 32 to function as described herein. Moreover, because arcuate portion 128 is configured to direct leakage flow 62 toward side wall 108, arcuate portion 128 facilitates minimizing and/or eliminating re-circulation and mixing of leakage flow 62 with main flow 64. Arcuate portion 128 is sized and shaped to facilitate reducing and/or eliminating flow mixing losses and/or flow path losses through gap 66 as compared to conventional shrouds having substantially straight exit ends, which increases efficiencies of turbine operations. More particularly, arcuate portion 128 is configured to channel leakage flow 62 substantially uniform out of gap 66 and towards nozzle 102, and to facilitate smooth transition of leakage flow 62 in alignment with nozzle wall 108 towards nozzle 102. Moreover, the shape of arcuate portion 128 directs leakage flow 62 to minimize flow impact of leakage flow 62 toward side wall 108 against a nozzle arcuate surface 131. Reducing flow impact of leakage flow 62 facilitates reducing and/or eliminating oxidation of nozzle arcuate surface 131 and/or adverse heat effects on surface 131, to enhance increasing operating life of nozzle 102.

    [0013] The alignment member 110 also includes a first groove 132 and a second groove 134. First groove 132 and second groove 134 are in flow communication with gap 66 and facilitate coupling seal 60 to body 116. First groove 132 is defined by opposing side walls 136 and 138 and an end wall 140 that extends between side walls 136 and 138. End wall 140 has a first length 142. In the exemplary embodiment, side walls 136 and 138 are angled towards body 116 to facilitate reducing flow leakage and flow losses across gap 66. Alternatively, side walls 136 and 138 may extend orthogonally (not shown) to body 116.

    [0014] Second groove 134 is defined by opposing side walls 144 and 146 and an end wall 148 that extends between side walls 144 and 146. End wall 148 has a second length 149. End wall length 142 is longer than end wall length 149. A shortened second groove 134 facilitates channeling leakage flow 62 out of gap 66 to facilitate reducing flow leakages and losses of fluid flow 62 downstream towards each subsequent nozzle 102 and subsequent bucket (not shown). Alternatively, lengths 142 and 149 can have any length that enables seal 60 to function as described herein. In the exemplary embodiment, sidewalls 144 and 146 are angled towards body 116 to facilitate reducing flow leakages and losses across gap 66. Alternatively, side walls 144 and 146 may extend orthogonally (not shown) to body 116.

    [0015] Seal 60 extends between bucket 78 and member 110. In the exemplary embodiment, seal 60 includes a honeycomb seal 150 that is coupled to body 116 and that is mounted within at least first groove 132 and second groove 134. Honeycomb seal 150 is fabricated from thin corrugated strips 152 that are mated together in a honeycomb configuration to form cells 154. In the exemplary embodiment, cells 154 are each hexagonal. Alternatively, cells 154 can have any other shape, including circular, triangular, and/or rectangular, that enables seal 60 to function as described herein. Additionally, or alternatively, seal 60 can include other seals such as, but not limited to, brush seals (not shown).

    [0016] Seal 60 also includes at least one seal tooth 156 that extends from body 116 into gap 66. Tooth 156 defines a tortuous path with teeth 94 that facilitates mitigating leakage flow 62 through gap 66. In the exemplary embodiment, seal tooth 156 is positioned between grooves 132 and 134. A first tooth 158 of teeth 94 is spaced a first distance 160 from seal tooth 156 and a second tooth 162 of teeth 94 is spaced at a second distance 164 from seal tooth 156. In the exemplary embodiment, first distance 160 is longer than second distance 164. A shortened second distance 164 facilitates reducing flow leakages and flow losses of leakage flow 62 towards arcuate portion 128. Alternatively, distances 160 and 164 can have any length that enables seal 60 to function as described herein. In the exemplary embodiment, first end 112 and second end 114 of alignment member 110 minimize and/or eliminate additional seal teeth on opposite sides of tooth 156. Moreover, seal tooth 156 is thicker than conventional teeth 18 (shown in Fig. 1) to better withstand oxidation effects as compared to conventional teeth 18 to reduce maintenance and replacement costs for turbine 32. Alternatively, alignment member 110 may include multiple teeth 156 to enable shroud 56 to function as described herein.

    [0017] Fig. 5 is a side view of another exemplary end 168 of shroud 166 that may be used with diaphragm 68 shown in Fig. 4. Unless otherwise specified, similar components are labeled in Fig. 5 with the same reference numerals used in Figs. 3 and 4. End 168 includes an arcuate portion 170 extending between an end 172 and an end 174. Arcuate portion 170 is sized and shaped to direct leakage flow 62 downstream of bucket 78 and towards nozzle sidewall 108. More particularly, arcuate portion 170 is configured to facilitate minimizing and/or eliminating re-circulation of leakage flow 62 into bucket outlet side 88, which minimizes and/or eliminates mixing of leakage flow 62 with main flow 64. Moreover, end 168 is sized and shaped to reduce leakage losses of leakage flow 62 within gap 66 (shown in Fig. 4).

    [0018] Fig. 6 is a side view of another exemplary end 178 of shroud 176 that may be used with the diaphragm 68 shown in Fig. 4. Unless otherwise specified, similar components are labeled in Fig. 6 with the same reference numerals used in Figs. 3 and 4. End 178 includes an arcuate portion 180, a straight portion 182, and an arcuate portion 184. Portions 180, 182, and 184 are sized and shaped to direct leakage flow 62 downstream from bucket 78 and towards nozzle sidewall 108. More particularly, end 178 is configured to facilitate minimizing and/or eliminating re-circulation of leakage flow 62 into bucket outlet side 88, which minimizes and/or eliminates mixing of leakage flow 62 with main flow 64. Moreover, portions 180, 182, and 184 are sized and shaped to reduce leakage losses of leakage flow 62 within gap 66 (shown in Fig. 4).

    [0019] Fig. 7 is a side view of another exemplary end 188 of shroud 186 that may be used with the diaphragm 68 shown in Fig. 4. Unless otherwise specified, similar components are labeled in Fig. 7 with the same reference numerals used in Figs. 3 and 4. End 188 includes a straight portion 190 and an arcuate portion 192. Portions 190 and 192 are sized and shaped to direct leakage flow 62 downstream from bucket 78 and towards nozzle side wall 108. More particularly, end 188 is configured to facilitate minimizing and/or eliminating re-circulation of leakage flow 62 into bucket outlet side 88, which minimizes and/or eliminates mixing of leakage flow 62 with main flow 64. Moreover, portions 190 and 192 are sized and shaped to reduce leakage losses of leakage flow 62 within gap 66 (shown in Fig. 4).

    [0020] Fig. 8 is a side view of another exemplary end 196 of shroud 194 that may be used with the diaphragm 68 shown in Fig. 4. Unless otherwise specified, similar components are labeled in Fig. 8 with the same reference numerals used in Figs. 3 and 4. End 196 includes an arcuate portion 198 and a straight portion 200. Portions 198 and 200 are sized and shaped to direct leakage flow 62 downstream from bucket 78 and towards nozzle sidewall 108. More particularly, end 196 is configured to facilitate minimizing and/or eliminating re-circulation of leakage flow 62 into bucket outlet side 88, which minimizes and/or eliminates mixing of leakage flow 62 with main flow 64. Moreover, portions 198 and 200 are sized and shaped to reduce leakage losses of leakage flow 62 within gap 66 (shown in Fig. 4).

    [0021] Fig. 9 is a cross-sectional view of another exemplary shroud 202 that may be used with diaphragm 68 (shown in Fig. 4). Unless otherwise specified, similar components are labeled in Fig. 9 with the same reference numerals used in Figs. 3 and 4. In the exemplary embodiment, second groove 134 is defined by opposing side walls 144 and 146, and end wall 148. More particularly, side wall 144 is oriented at a first angle 204 relative to end wall 148. Opposite side wall 146 includes a substantially straight portion 206 and an angled portion 208 that is oriented at a second angle 210 relative to end wall 148. In the exemplary embodiment, first angle 204 is larger than second angle 210. Straight portion 206, angled portion 208 and angles 204 and 210 are sized, shaped, and orientated to facilitate reducing and/or eliminating reducing flow mixing losses and flow path losses for fluid flow 62 as compared to conventional shrouds. Moreover, straight portion 206 and angled portion 208 facilitate minimizing and/or eliminating re-circulation of leakage flow 62 into bucket outlet side 88, which minimizes and/or eliminates mixing of leakage flow 62 with main flow 64.

    [0022] Fig. 10 is a flowchart illustrating an exemplary method 300 of assembling a turbine, for example turbine 32 (shown in Fig. 2), the method not forming part of the invention. In the exemplary method 300, turbine includes a housing, a rotatable shaft, and a rotor coupled to shaft. The rotor includes a bucket that extends radially outward from the shaft. Method 300 includes coupling 310 a shroud, for example shroud 56 (shown in Fig. 4), to the housing. The shroud includes an alignment member having a first end, a second end, and a body extending between the first and second ends, such as alignment member 110, first end 112, second end 114, and body 116 (all shown in Fig. 4). The second end includes an arcuate portion, for example arcuate portion 128 (shown in Fig. 4). The body includes a first groove and a second groove, such as first groove 132 and second groove 134 (shown in Fig. 4).

    [0023] Method 300 includes extending 320 the arcuate portion relative to and beyond the bucket to facilitate fluid flow downstream to a subsequent nozzle. In the exemplary embodiment, orientating the arcuate portion includes extending the arcuate portion radially outward from the housing. A seal, such as seal 60 (shown in Fig. 4), is coupled 330 to the shroud to facilitate sealing a gap defined between the bucket and the shroud. In the exemplary embodiment, the seal is coupled to the body between the first and second grooves.

    [0024] During an exemplary operation of turbine 32, fluid flow 64 is channeled through nozzle 74 towards buckets 78, which causes buckets 78 to rotate with turbine shaft 46 to induce work output by shaft 46. A portion of leakage flow 62 is channeled from inlet side 86 of bucket 78 into gap 66. Bucket tip 92 (shown in Fig. 3) with teeth 94 and shroud seal 60 (shown in Fig, 4) facilitates mitigating leakage losses from leakage flow 62 such as, for example, hot gas flow through gap 66. Leakage flow 62 is leaked through labyrinth paths formed by bucket teeth 94, honeycomb seal 150, and seal tooth 156 (shown in Fig, 4). Fluid flow 62 is then channeled towards arcuate portion 128 of shroud 56. Arcuate portion 128 facilitates directing leakage flow 62 smoothly towards nozzle side wall 108 without any sharp turnings and reverse flow and/or recirculated flow downstream from bucket 78. Each subsequent nozzle 102 directs fluid flow 64 downstream towards another bucket (not shown) for rotation.

    [0025] The embodiments described herein enhance the efficiency, reliability, and reduced maintenance costs and outages of the associated turbine as compared to conventional shrouds. An arcuate portion of the shroud is sized and shaped to align and channel gas flow out of a clearance gap defined between the shroud and a rotor and towards a subsequent nozzle. The arcuate portion is sized and shaped to facilitate reducing flow leakages and losses of gas flow from the bucket.

    [0026] Although the embodiments are herein described and illustrated in association with a turbine for a gas turbine, it should be understood that the present invention may be used for controlling any fluid between any generally high pressure area and any generally low pressure area within any rotary machine. Accordingly, practice of the exemplary embodiments is not limited to gas turbines.

    [0027] This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the appended claims.


    Claims

    1. A turbine comprising:

    a housing (76);

    a turbine shaft (46) rotatably supported in said housing (76) and extending along a centerline axis (48); and

    a plurality of turbine stages (96, 98) located along said turbine shaft (46) and contained within said housing (76), each turbine stage (96, 98) comprising:

    a rotor (58) coupled to said turbine shaft (46), said rotor (58) comprising a bucket (78) extending radially outward therefrom;

    a shroud (56), said shroud comprising:
    an alignment member coupled to the housing (76) and comprising a first end (112), a second end (114), and a body (116) extending between said first and said second ends, said second end comprising an arcuate portion (128) configured to facilitate leakage flow downstream from the bucket (78); characterised in that said body (116) comprises a first groove (132), and a second groove (134) downstream from the first groove (132), wherein the second groove (134) comprises:

    an upstream radially and circumferentially extending side wall (144);

    a downstream radially and circumferentially extending sidewall (146); and

    a circumferentially extending end wall 148 that extends axially between radially outer ends of the upstream side wall (144) and the downstream sidewall (146);

    wherein the second end comprises a profile (122) comprising the arcuate portion, the profile (122) extending axially from a radially inner end of the downstream sidewall (146); and

    wherein a seal (60) is coupled to said body (116) to facilitate sealing a gap (66) defined between the bucket (78) and said body (116).


     
    2. The turbine according to claim 1, wherein the upstream sidewall (144) and the downstream sidewall (146) are angled relative to the body (116) to facilitate reducing flow leakages and losses across a clearance gap (66) defined between the shroud (56) and tip of a rotor (58).
     
    3. The turbine of Claim 1, wherein said arcuate portion (128) extends radially outward relative to the housing.
     
    4. The turbine of Claim 1 or Claim 2, wherein said second end (114) comprises a pair of substantially straight portions (124, 126).
     
    5. The turbine of any preceding Claim, wherein said arcuate portion (128) extends between said pair of substantially straight portions (124, 126).
     
    6. The turbine of any preceding Claim, wherein a first of said substantially straight portions (124) is oriented obliquely relative to a second of said substantially straight portions (126).
     
    7. The turbine of any preceding Claim, wherein said second end (114) comprises a substantially straight portion (124) that extends between said first end (112) and said arcuate portion (128).
     
    8. The turbine of any preceding Claim, wherein said second end (114) comprises a substantially straight portion (124) and said arcuate portion (128) extends between said first end (112) and said substantially straight portion (124).
     
    9. The turbine of any preceding Claim, wherein said first groove (132) has a first length and said second groove (134) has a second length that is shorter than said first length.
     
    10. The turbine of any preceding Claim, wherein the upstream sidewall (144) is oriented at a first angle with respect to said body and the downstream sidewall (146) is oriented at a second angle with respect to said body, and said first angle is larger than said second angle.
     
    11. The turbine of any preceding Claim, wherein said second end (114) is in fluid flow alignment with a nozzle (102) of the turbine.
     


    Ansprüche

    1. Turbine, umfassend:

    ein Gehäuse (76);

    eine Turbinenwelle (46), die in dem Gehäuse (76) drehbar gelagert ist und entlang einer Mittellinienachse (48) verläuft; und

    eine Vielzahl von Turbinenstufen (96, 98), die entlang der Turbinenwelle (46) angeordnet sind und in dem Gehäuse (76) enthalten sind, wobei jede Turbinenstufe (96, 98) umfasst:

    einen Rotor (58), der an die Turbinenwelle (46) gekoppelt ist, wobei der Rotor (58) eine Schaufel (78) umfasst, die radial nach außen verläuft;

    eine Ummantelung (56), wobei die Ummantelung umfasst:
    ein Ausrichtungselement, das an das Gehäuse (76) gekoppelt ist und ein erstes Ende (112), ein zweites Ende (114) und einen Körper (116) umfasst, der zwischen dem ersten und zweiten Ende verläuft, wobei das zweite Ende einen gebogenen Abschnitt (128) umfasst, der konfiguriert ist, um Leckströmung stromabwärts von der Schaufel (78) zu ermöglichen; dadurch gekennzeichnet, dass der Körper (116) eine erste Nut (132) und eine zweite Nut (134) stromabwärts von der ersten Nut (132) umfasst, wobei die zweite Nut (134) umfasst:

    eine stromaufwärtige, radial und in Umfangsrichtung verlaufende Seitenwand (144);

    eine stromabwärtige, radial und in Umfangsrichtung verlaufende Seitenwand (146); und

    eine in Umfangsrichtung verlaufende Endwand 148, die axial zwischen radial äußeren Enden der stromaufwärtigen Seitenwand (144) und der stromabwärtigen Seitenwand (146) verläuft;

    wobei das zweite Ende ein Profil (122) umfasst, das den gebogenen Abschnitt umfasst, wobei das Profil (122) axial von einem radial inneren Ende der stromabwärtigen Seitenwand (146) verläuft; und

    wobei eine Dichtung (60) an den Körper (116) gekoppelt ist, um Abdichten eines zwischen der Schaufel (78) und dem Körper (116) definierten Spalts (66) zu ermöglichen.


     
    2. Turbine nach Anspruch 1, wobei die stromaufwärtige Seitenwand (144) und die stromabwärtige Seitenwand (146) relativ zu dem Körper (116) abgewinkelt sind, um Verringern der Strömungsleckagen und -verluste über einen Zwischenspalt (66) zu ermöglichen, der zwischen der Ummantelung (56) und der Spitze eines Rotors (58) definiert ist.
     
    3. Turbine nach Anspruch 1, wobei der bogenförmige Abschnitt (128) in Bezug auf das Gehäuse radial nach außen verläuft.
     
    4. Turbine nach Anspruch 1 oder Anspruch 2, wobei das zweite Ende (114) ein Paar von im Wesentlichen geraden Abschnitten (124, 126) umfasst.
     
    5. Turbine nach einem der vorstehenden Ansprüche, wobei der bogenförmige Abschnitt (128) zwischen dem Paar von im Wesentlichen geraden Abschnitten (124, 126) verläuft.
     
    6. Turbine nach einem der vorstehenden Ansprüche, wobei ein erster der im Wesentlichen geraden Abschnitte (124) relativ zu einem zweiten der im Wesentlichen geraden Abschnitte (126) schräg ausgerichtet ist.
     
    7. Turbine nach einem der vorstehenden Ansprüche, wobei das zweite Ende (114) einen im Wesentlichen geraden Abschnitt (124) umfasst, der zwischen dem ersten Ende (112) und dem bogenförmigen Abschnitt (128) verläuft.
     
    8. Turbine nach einem der vorstehenden Ansprüche, wobei das zweite Ende (114) einen im Wesentlichen geraden Abschnitt (124) umfasst und der bogenförmige Abschnitt (128) zwischen dem ersten Ende (112) und dem im Wesentlichen geraden Abschnitt (124) verläuft.
     
    9. Turbine nach einem der vorstehenden Ansprüche, wobei die erste Nut (132) eine erste Länge aufweist und die zweite Nut (134) eine zweite Länge aufweist, die kürzer als die erste Länge ist.
     
    10. Turbine nach einem der vorstehenden Ansprüche, wobei die stromaufwärtige Seitenwand (144) in einem ersten Winkel in Bezug auf den Körper ausgerichtet ist und die stromabwärtige Seitenwand (146) in einem zweiten Winkel in Bezug auf den Körper ausgerichtet ist und der erste Winkel größer als der zweite Winkel ist.
     
    11. Turbine nach einem der vorstehenden Ansprüche, wobei das zweite Ende (114) in Fluidstromausrichtung mit einer Düse (102) der Turbine ist.
     


    Revendications

    1. Turbine comprenant :

    un logement (76) ;

    un arbre de turbine (46) supporté de manière rotative dans ledit logement (76) et s'étendant le long d'un axe central (48) ; et

    une pluralité d'étages de turbine (96, 98) situés le long dudit arbre de turbine (46) et contenus dans ledit logement (76), chaque étage de turbine (96, 98) comprenant :

    un rotor (58) couplé audit arbre de turbine (46), ledit rotor (58) comprenant un godet (78) s'étendant radialement vers l'extérieur à partir de celui-ci ;

    une virole (56), ladite virole comprenant :
    un élément d'alignement couplé au logement (76) comprenant une première extrémité (112), une seconde extrémité (114), et un corps (116) s'étendant entre lesdites première et seconde extrémités, ladite seconde extrémité comportant une partie arquée (128) configurée pour faciliter l'écoulement de la fuite en aval du godet (78) ; caractérisé en ce que ledit corps (116) comprend une première rainure (132), et une seconde rainure (134) en aval de la première rainure (132), dans laquelle la deuxième rainure (134) comprend :

    une paroi latérale s'étendant radialement et circonférentiellement en amont (144) ;

    une paroi latérale s'étendant radialement et circonférentiellement en aval (146) ;
    et

    une paroi d'extrémité s'étendant circonférentiellement (148) qui s'étend axialement entre les extrémités radialement externes de la paroi latérale en amont (144) et la paroi latérale en aval (146) ;

    dans laquelle la seconde extrémité comprend un profil (122) comprenant la partie arquée, le profil (122) s'étendant axialement depuis une extrémité radialement interne de la paroi latérale en aval (146) ; et

    dans laquelle un joint (60) est couplé audit corps (116) pour faciliter l'étanchéité d'un intervalle (66) défini entre le godet (78) et ledit corps (116).


     
    2. Turbine selon la revendication 1, dans laquelle la paroi latérale en amont (144) et la paroi latérale en aval (146) sont inclinées par rapport au corps (116) pour faciliter la réduction des fuites et pertes d'écoulement à travers un intervalle de jeu (66) défini entre la virole (56) et la pointe d'un rotor (58).
     
    3. Turbine selon la revendication 1, dans laquelle ladite partie arquée (128) s'étend radialement vers l'extérieur par rapport au logement.
     
    4. Turbine selon la revendication 1 ou la revendication 2, dans laquelle ladite seconde extrémité (114) comprend une paire de parties sensiblement droites (124, 126).
     
    5. Turbine selon une quelconque revendication précédente, dans laquelle ladite partie arquée (128) s'étend entre ladite paire de parties sensiblement droites (124, 126).
     
    6. Turbine selon une quelconque revendication précédente, dans laquelle une première desdites parties sensiblement droites (124) est orientée obliquement par rapport à une seconde desdites parties sensiblement droites (126).
     
    7. Turbine selon une quelconque revendication précédente, dans laquelle ladite seconde extrémité (114) comprend une partie sensiblement droite (124) qui s'étend entre ladite première extrémité (112) et ladite partie arquée (128).
     
    8. Turbine selon une quelconque revendication précédente, dans laquelle ladite seconde extrémité (114) comprend une partie sensiblement droite (124) et ladite partie arquée (128) s'étend entre ladite première extrémité (112) et ladite partie sensiblement droite (124).
     
    9. Turbine selon une quelconque revendication précédente, dans laquelle ladite première rainure (132) a une première longueur et ladite seconde rainure (134) a une seconde longueur qui est plus courte que ladite première longueur.
     
    10. Turbine selon une quelconque revendication précédente, dans laquelle la paroi latérale en amont (144) est orientée vers un premier angle par rapport audit corps et la paroi latérale en aval (146) est orientée vers un second angle par rapport audit corps, et ledit premier angle est plus grand que ledit deuxième angle.
     
    11. Turbine selon une quelconque revendication précédente, dans laquelle ladite seconde extrémité (114) est en alignement d'écoulement de fluide avec une buse (102) de la turbine.
     




    Drawing



























    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description