(19)
(11)EP 2 672 544 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
20.05.2020 Bulletin 2020/21

(21)Application number: 13170521.2

(22)Date of filing:  04.06.2013
(51)Int. Cl.: 
H01M 2/10  (2006.01)
H01M 10/643  (2014.01)
H01M 10/42  (2006.01)
H01M 10/6555  (2014.01)
B33Y 80/00  (2015.01)

(54)

CONTOURED BATTERY CASE BASED ON CELL SHAPES

KONTURIERTES BATTERIEGEHÄUSE AUF GRUNDLAGE DER ZELLENFORMEN

BOÎTIER DE BATTERIE PROFILÉ SUR LA BASE DE FORMES CELLULAIRES


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 04.06.2012 US 201261655135 P

(43)Date of publication of application:
11.12.2013 Bulletin 2013/50

(73)Proprietor: EaglePicher Technologies, LLC
Joplin, MO 64801 (US)

(72)Inventors:
  • Darch, David Andrew Timothy
    Joplin, MO 64801 (US)
  • White, Wayne Edward
    Joplin, MO 64801 (US)
  • Destephen, Mario
    Joplin, MO 64801 (US)
  • Heckmaster, David Scott
    Joplin, MO 64801 (US)

(74)Representative: Gill Jennings & Every LLP 
The Broadgate Tower 20 Primrose Street
London EC2A 2ES
London EC2A 2ES (GB)


(56)References cited: : 
WO-A1-2013/107625
JP-A- 2000 108 687
JP-A- 2008 047 488
JP-A- 2012 059 373
US-A1- 2011 097 619
US-A1- 2011 269 008
AT-A1- 508 742
JP-A- 2006 100 147
JP-A- 2009 277 513
US-A1- 2006 078 789
US-A1- 2011 250 476
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description


    [0001] The exemplary embodiments relate to a battery case for holding a battery with multiple electrochemical cells in series or parallel configuration and at least one electronic component.

    [0002] Electrical batteries are used in a wide variety of applications requiring a portable power source. For example, portable devices such as laptops, tablets, mobile phones, portable flashlights, wristwatches, smoke detectors, vehicles, hearing aids and other medical devices, communications radios, light emitting devices, sound systems, night vision goggles, and even portable battery recharging units require a portable power source so that the devices may be used while they are in a portable mode. Some devices may be engineered to include a connected housing for a battery, such that the battery can be transported as an integral component of the device. Others devices may be engineered so that the battery can be carried separately, with interfaces to be plugged into a separately carried battery. These separately carried batteries may then serve as a power source for any variety of devices that have the appropriate interface for drawing electricity from the battery.

    [0003] Whether batteries are transported as integral components of a device or separately carried (i.e., serving as power sources for any variety of devices with the appropriate interface for drawing electricity from the battery), there is a need for better volumetric packaging efficiency of the cells. Hereinafter, volumetric packaging efficiency will be defined as

    where Vi is the volume of a cell with index i, n is the total number of cells, and VC is the total volume of an exterior case of the battery. In particular, it is understood that because the exterior case must encompass all of the cells, the volumetric packaging efficiency can never be higher than 1. Better volumetric packaging efficiency reduces the overall bulk that must be carried, allowing for a space-limited carrier to carry more of other objects or matter and/or to maneuver more easily.

    [0004] While it is relatively easy to achieve efficient volumetric packaging of certain prismatic cells (e.g., cuboid, triangular prisms), it is more difficult to achieve the same level of efficiency with cells of other shapes such as irregular prisms and curvilinear shapes. Thus, it is advantageous to provide better (i.e., higher) volumetric packaging efficiency of the cells with respect to certain prismatic shapes and curvilinear shapes.

    [0005] Whether batteries are transported as integral components of a device or separately carried (i.e., serving as power sources for any variety of devices with the appropriate interface for drawing electricity from the battery), it is advantageous to provide reduced battery weight. For example, reduced battery weight is desired for weight-limited carriers to carry more of other objects or matter and/or to maneuver more easily.

    [0006] Electrical batteries typically have one or more electrochemical cells that store chemical energy and convert the stored chemical energy into electrical energy via electrochemical reactions. The electrochemical reactions are exothermic, producing both electricity, a desired product of the reactions, and thermal energy (i.e., heat). Thermal energy is generally undesired due to a property of batteries to suffer reduced lifespans (i.e., time periods of usability) and reduced range of applications. Prolonged exposure to heat may reduce the lifespan of a battery by reducing the internal electrical resistances of the cells and thereby increasing the rate of discharge, including self-discharge. Heat may also limit the range of applications of batteries. For example, heat may limit discharge rates as higher discharge rates will generate even more heat, and the battery must be limited to the amount of discharge rate allowed. In another example of reducing the range of applications of a battery, heat may limit the environmental conditions in which the battery may be operated since, in hot ambient conditions, the discharge rates must be even more limited. Excessive heat is also a safety issue since thermal runaway, venting, and/or explosions may occur if the battery cells reach certain temperature thresholds.

    [0007] As such, it is advantageous to mitigate the effect of heat on the battery.

    [0008] JP 2006100147 A, JP 2012059373 A, US 2011250476 A1, US 2011097619 A1, JP 2008047488 A, US 2006078798 A1, JP 2009277513 A, US 2011/269008A1, WO 2013/107625 A1, AT 508 742 A1 and JP 2000 108687 A disclose battery cases which contain separate internal battery holders the battery holders being contoured to the shape of the electrochemical cells to be housed therein. The present invention provides a battery case as set out in claim 1 or claim 15 hereto.

    [0009] The exemplary embodiments described herein address the effect of heat on a battery by reducing the thermal resistance between the heat-creating electrochemical cells and the outer surface of the battery case, thus enhancing heat dissipation and allowing for a safer battery with a greater range of use and a greater lifespan.

    [0010] The exemplary embodiments relate to battery cases for holding batteries with multiple electrochemical cells in series or parallel configuration and at least one electronic component. The battery cases include multiple cell housings made of at least one heat conductive material selected from the group consisting of metal, composite, and polymer, wherein the plurality of interconnected cell housings each have an internal space sized to accommodate one of the electrochemical cells. The cell housings include an internal surface that is contoured to a shape of the one of the electrochemical cells to be housed by the cell housing, wherein the internal surface of each cell housing is cylindrical to match the electrochemical cells having a substantially cylindrical shape, and each of the cell housings completely encloses an outer circumferential surface of the electrochemical cell to be accommodated by the cell housing. The cell housings also include an external surface at least a portion of which follows contours of a corresponding portion of the inner surface, wherein the external surfaces of the cell housings define a plurality of interior volumes that are external to each of the cell housings and internal to an outer periphery of the battery case, and wherein at least one of the interior volumes houses a heat conductive filler material selected from the group consisting of metal, composite, and polymer. The outer periphery of the batter case includes non-planar sides defined by the external surfaces of the cell housings. The battery cases include at least one electronic component housing inside the battery case that accommodates an electronic component, the electronic component housing being positioned such that it is enclosed on all longitudinal sides by the plurality of interconnected cell housings, and an accessible interface for plugging in a device provided either by the electronic component housing or through a longitudinal side of the battery case.

    [0011] In an embodiment, a shape of the electronic component housing is different from a shape of each of the cell housings.

    [0012] The external surfaces of the cell housings define a plurality of interior volumes that are external to each of the cell housings and internal to an outer periphery of the battery case. Further, at least some of the interior volumes house a heat conductive material selected from the group consisting of metal, composite, and polymer. The cell housings are made of a heat conductive material selected from the group consisting of metal, composite, and polymer.

    [0013] The external surface of each cell housing also is contoured to the shape of the electrochemical cell to be housed therein. In such embodiments, an outer periphery of the battery case may include four non-planar sides.

    [0014] In an embodiment, the internal surface of each cell housing is cylindrical to match the electrochemical cells having a substantially cylindrical shape. Preferably, each of the cell housings completely encloses an outer circumferential surface of the electrochemical cell to be accommodated by the cell housing. More preferably, the interior surface is sized to accommodate the at least one electrochemical cell with a gap of no more than about 2.5 mm (= about 0.1 inch) between the outer surface of the electrochemical cell and the internal surface.

    [0015] In some embodiments, the internal surface of each cell housing has a non-prismatic shape to match the electrochemical cells having a non-prismatic shape.

    [0016] In some embodiments, at least some of the cell housings define an opening connecting a first internal space defined by the cell housing to a second internal space defined by an adjacent cell housing.

    [0017] Preferably, the battery case includes a lower casing defining a plurality of lower casing cavities, and an upper casing defining a plurality of upper casing cavities equal to the number of lower casing cavities. The upper casing is formed to fit the lower casing so that the lower casing cavities and the upper casing cavities define the internal spaces of the plurality of cell housings, and the lower casing and the upper casing together define the plurality of cell housings. Preferably, a volume of each of the lower casing cavities is less than a volume of each of the upper casing cavities.

    [0018] A further aspect of the exemplary embodiments includes a method of manufacturing the upper casing and lower casing including the steps of molding the lower casing into a single lower piece and molding the upper casing into a single upper piece.

    [0019] Various exemplary embodiments of a battery case to which aspects of the invention are applied will be described in detail with reference to the following drawings in which:

    FIG. 1A shows an elevation view of an exterior of a known battery case;

    FIG. 1B shows an elevation view of a revealed interior of the FIG. 1A battery case;

    FIG. 2A shows an elevation view of an battery case exterior of a comparative example;

    FIG. 2B shows an elevation view of a partially-revealed battery case interior of the comparative example of FIG. 2A;

    FIG. 3 shows an elevation view of a battery case of a comparative example;

    FIG. 4 shows a side view of a prototype of a battery case in a comparative example;

    FIG. 5 shows an elevation view of a battery case of a comparative example;

    FIG. 6 shows an elevation view of a battery case of a comparative example;

    FIGS. 7A and 7B show elevated sectional views of a lower casing of a battery case in a comparative example;

    FIG. 8 shows an elevation view of a battery case in a comparative example;

    FIGS. 9A and 9B show elevated sectional views of a battery case in a comparative example;

    FIGS. 10A and 10B show zoomed elevated sectional views of a battery case in a comparative example;

    FIG. 11 shows an elevation view of a battery case in a comparative example; and

    FIG. 12. shows an exploded view of a battery case in a comparative example.



    [0020] Embodiments of the invention are described below with reference to FIGS. 1-12. Herein, the nouns "electrochemical cell" and "cell" and their plural forms may be used interchangeably.

    [0021] FIG. 1A shows an elevation view of an exterior of a known battery case 101. The exterior casing 102 has a substantially cuboid exterior surface with an interface cavity 104 into which an electronic interface component (not shown) can be plugged. The exterior casing 102 is manufactured from two pieces: an upper casing 106, and a lower casing 108. The two pieces are manufactured to have substantially the same volume so that they meet at an equatorial plane 110. The equatorial plane 110 shows where the upper casing 106 fits the lower casing 108.

    [0022] FIG. 1B shows an elevation view of the battery case 101 of FIG. 1A, where the upper casing 106 has been removed to reveal the interior of the battery case 101. A plurality of disconnected cells 112 each are placed in the case 101 (only 5 of 10 total cells are shown). Because the cells 112 are cylindrical and the exterior casing 102 has a substantially cuboid exterior surface, there exist extraneous spaces 114 between the exterior surfaces of the cells and the substantially cuboid exterior surface of the battery case 101. These extraneous spaces 114 reduce the volumetric packaging efficiency of the battery case 101.

    [0023] Further, because the cells 112 are disconnected from one another, there exist extraneous spaces 114 between the cells 112 that further reduce the volumetric packaging efficiency of the battery case 101.

    [0024] Another disadvantage of the extraneous spaces 114 is that they increase the overall thermal resistivity of the battery case 101, since the air within the extraneous spaces 114 acts as a heat insulator. Thus, heat present at the external surface of the cells 112 is not efficiently conducted to the battery case 1, which causes the cells to become over-heated. Although the thermal resistivity of the battery case 101 could be reduced by filling the extraneous spaces 114 with heat conductive material, that would increase the manufacturing cost of the battery as well as increase the weight of the battery.

    [0025] FIG. 2A shows an elevation view of a battery case exterior of a comparative example. In this comparative example, the exterior casing 2 has an exterior surface that is not substantially cuboid.

    [0026] FIG. 2B shows an elevation view of a partially-revealed battery case interior of the comparative example of FIG. 2A (the top of the case is not shown in FIG. 2B). In this comparative example, as preferred, a plurality of cell housings 12 are interconnected. However, it is also possible to have one or more cell housings 12 that are disconnected from each other. Each cell housing 12 may define an internal space 14 sized to accommodate one or more of the electrochemical cells. Each cell housing 12 may include an internal surface 16 at least a portion of which is contoured to a shape of an electrochemical cell to be housed by the cell housing 12. Of course, because a cell housing 12 may house more than one cell, at least a portion of the internal surface 16 may be contoured to a shape of more than one cell to be housed by the cell housing 12. Each cell housing 12 further may include an external surface 22 that is in contact with another external surface 22 of at least one other cell housing 12. This feature reduces the overall volume of the battery thereby increasing the volumetric packaging efficiency.

    [0027] The internal surfaces 16 and external surfaces 22 of each cell housing 12 define a wall 17. Preferably, the wall 17 has a substantially uniform thickness. Alternatively, the wall 17 may have a non-uniform thickness which varies dependent, for example, on a varying temperature profile of the housed cell 111. For example, the wall 17 may be thicker and thus have more heat conductive material at the midsection of the housed cell 111 if the cell 111 is of a type where the most heat is output from the midsection of the cell 111. Alternatively, the wall 17 may have a substantially uniform thickness with a varying density dependent on a varying temperature profile of the housed cell 111. For example, the wall 17 may be equally thick but more dense and thus have more heat conductive material at the midsection of the housed cell 111 if the cell 111 is of a type where the most heat is output from the midsection of the cell 111.

    [0028] The cell housings 12 may also have openings 15 (elongated slots in the illustrated comparative example) connecting their respective internal spaces 14 to the internal spaces of adjacent cells 111. The openings 15 may serve to allow cell connector tabs (not shown) to connect adjacent cells 111 and/or they may serve as gas exhaust passages. The openings also permit a tighter packaging of the cells 111, reducing the total volume and weight of the battery case 1.

    [0029] The battery case 1 comprises at least one electronic component housing 18 that accommodates the at least one electronic component (not shown). The electronic component may include a circuit board, a microprocessor, cell monitors, LED lights (for example, indicating state-of-charge SOC), drainage elements, voltage mode switches (for example, for switching between series and parallel configuration), thermal fuses (for example, shutting down the battery pack when the temperature of a particular cell exceeds a predetermined threshold), any other electronic component related to batteries, or any combination thereof. The shape of the electronic component housing 18 may be different from a shape of each of the cell housings 12.

    [0030] An electronic component housing 18 may be positioned near an outer periphery of the battery case 1, such as at one corner of the case as shown in FIG. 2B. An advantage of such a layout is in providing an accessible interface 4 (see FIG. 4) for plugging in a device. However, the interface 4 does not have to be positioned at a longitudinal exterior surface of the electronic component housing 18-the interface 4 may be positioned at a top exterior surface or a bottom exterior surface of the electronic component housing. According to the present invention, the electronic component housing 18 is positioned such that it is enclosed on all longitudinal sides by cell housings 12. This embodiment provides an additional advantage of further reducing the number of cells 111 whose longitudinal external surfaces 22 are not at an outer periphery of the battery case 1. It is preferable to minimize the number of cells whose longitudinal external surfaces 22 are not at an outer periphery of the battery case 1, because those cells tend to have more thermal resistivity due to the fact that they are more insulated than other cells. At least another advantage of this embodiment is in further reducing extraneous internal volumes 20 within the battery case 1. For example, an electronic component housing 18 with a substantially prismatic shape may be made with a substantially hexagonal bottom surface and substantially hexagonal top surface wherein the minor diameters of the hexagons are substantially equal to each other and equal to the diameters of the top surfaces and bottom surfaces of adjacent cell housings 12

    [0031] According to the present invention, the electronic component housing 18 is positioned such that it is enclosed on all longitudinal sides by cell housings 12, but where the interface 4 of the electronic component(s) is positioned at a longitudinal exterior surface of the battery case 1. In this embodiment, the interface 4 may be connected with extended wiring so as to connect it to the electronic component(s) within the more centrally-located electronic component housing 18.

    [0032] In another embodiment, the electronic component housing 18 also serves as a cell housing 12. In this embodiment, the interior and exterior surfaces of the electronic component housing 18 may contour to the shape of the housed cell except on the side(s) with the electronic components.

    [0033] In embodiments, the external surfaces 22 of the cell housings 12 define a plurality of interior volumes 20 that are external to each of the cell housings 12 and internal to an outer periphery of the battery case 1. The interior volumes 20 are entirely encompassed on their longitudinal sides solely by the external surfaces 22 of the cell housings 12 rather than by any exterior casing 2 of the battery case 1.

    [0034] Preferably, an outer periphery of the battery case 1 includes four non-planar sides 19. The sides 19 are non-planar since external surfaces 22 of the cell housings 12 define the sides 19. This increases volumetric packaging efficiency by reducing the volume within the extraneous spaces and thus the total volume of the battery case 1, reduces weight by reducing the amount of material that must be used to manufacture the case, and reduces thermal resistivity by eliminating at least some heat insulating internal volumes 20.

    [0035] FIGS. 5 and 6 show an example wherein the interior volumes 20 can be empty (i.e., have airspace only) to reduce the overall weight of the battery case 1, or they can be filled with a heat conductive filler material 24 which may be metal, composite, polymer, or any other heat conductive material, or a combination thereof to reduce the thermal resistivity of the battery case 1.

    [0036] At least a portion of the external surface 22 of each cell housing 12 also is contoured to the shape of the electrochemical cell 111 to be housed therein. If the cells 111 are cylindrical, then the internal surface 16 and external surface 22 of each cell housing 12 may be shaped to fit at least a portion of the cylindrical cells 111; if the cells are another non-prismatic shape, then the internal surface 16 and the external surface 22 of each cell housing 12 may be shaped to fit at least a portion of the non-prismatic cells; and if the cells are a prismatic shape, then the internal surface 16 and the external surface 22 of each cell housing 12 may be shaped to fit at least a portion of the prismatic cells. As an example, lithium carbonmonofluoride batteries (CFx batteries) and batteries with CFx-hybrid chemistries are generally manufactured with a substantially cylindrical shape. As such, the aforementioned challenge exists with achieving a high volumetric packaging efficiency of CFx batteries, since the exterior surfaces of the cells form convex curvilinear surfaces which are geometrically difficult to fit together without creating interior volumes 20. Further, CFx batteries and CFx-hybrid batteries have relatively high heat output and thus the present embodiment is particularly useful when applied to this particular battery chemistry. Of course, the embodiments described herein offer advantages with batteries of other chemistries including, but not limited to, Li-Ion, Li-SOCl2, Li-MnO2, NiMH, and Li-SO2.

    [0037] Preferably, the internal surface 16 is sized to accommodate the electrochemical cell 111 with a minimal gap between the outer surface of the electrochemical cell and the internal surface 16 of the cell housing 12. Minimizing the gap serves at least three purposes. First, minimizing the gap reduces the amount of heat-insulating air thus reducing the thermal resistivity of the case. Second, minimizing the gap allows for a smaller overall volume thus increasing the volumetric packaging efficiency. Third, minimizing the gap reduces the amount of cell vibration that could occur within the cell housings 12 when the battery case 1 is moved. Preferably, the gap is less than 0.1 inch at most.

    [0038] To reduce cell vibration and improve thermal resistivity, the gap can be filled with, for example, an epoxy or other heat conductive substance, such as a thermal filler, that effectively absorbs physical shock and/or has a high coefficient of friction. The internal surfaces 16 of the cell housings 12 can be coated with the epoxy before the electrochemical cells 111 are installed. Alternatively, epoxy can be injected into the gaps after the electrochemical cells 111 are installed.

    [0039] FIG. 7A shows an elevation view of a battery case 1 in a comparative example. As an alternative or in addition to epoxy, for example, the gap can be filled with a sleeve 26 designed to fit the cylindrical shape of the cell 111. The sleeve 26 is preferably made of at least one heat conductive material selected from the group consisting of metal, composite, and polymer, thus increasing the rate of thermal dissipation. However, the sleeve 26 may be made of any heat conductive material that may be shaped to fit a cell 111. Preferably, the sleeve 26 substantially wraps around the outer circumferential surface of the cylindrical cell 111. This prevents cells 111 from making contact with adjacent cells 111 and potentially causing a short circuit, thereby obviating the need for, for example, producing shrink-wrapped cells and thus lowering manufacturing costs.

    [0040] FIG. 7B shows an elevated sectional view of a battery case 1 in another comparative example. In this embodiment, the sleeve 26 may also have openings 28 in it for cell connector tabs (not shown) to adjacent cells and/or pockets for gas exhaust. Preferably, the openings 28 may be at an edge of the sleeve 26, as shown in FIG. 7B, but they may also be at the midsection or other non-edge portion of the sleeve 26.

    [0041] FIG. 8 shows an elevation view of a battery case 1 in another comparative example. The sleeve 26 may extend completely or almost to the top of the enclosed cell 111. The sleeve 26 may also enclose a bottom surface or top surface or both of the cell 111 (i.e., the circular ends of the cylindrical cell) depending on, for example, weight, fit, and thermal conductivity requirements of the cells 111. If the sleeve 26 encloses both the bottom surface and a top surface of the cell 111, it may also be designed to have an insertion/extraction opening through which the cell 111 can be inserted or extracted.

    [0042] FIG. 11 shows an elevation view of another comparative example. The sleeve 26 may only enclose the outer circumferential surface of a cell 111 and not the top and bottom of the cell 111.

    [0043] FIG. 3 shows an elevation view of a battery case 1 in another comparative example. In this example, the battery case 1 is made of two pieces: an upper casing 6 with a plurality of upper casing cavities, and a lower casing 8 with a plurality of lower casing cavities. The casings may be formed to fit one another so that the lower casing cavities and upper casing cavities define the internal spaces 14 of the plurality of cell housings 12. For example, a battery case 1 designed to fit substantially cylindrical cells 111 may have lower casing cavities shaped to fit lower portions of the cylindrical cells and upper casing cavities shaped to fit upper portions of the cylindrical cells. FIG. 3 shows an equatorial plane 10 as the plane where the upper casing 6 fits the lower casing 8 at the bisections of the cell housings 12, thus giving the upper casing 6 and lower casing 8 approximately the same volume. However, in another embodiment, it may be preferred to have an upper casing 6 and lower casing 8 fit at a plane that does not substantially bisect the cells 111. For example, CFx batteries and batteries with CFx-hybrid chemistries tend to output the most heat at their midsections. For manufacturing reasons, the plane at which the casings fit each other may be unable to dissipate as much heat. Thus, having the casings fit each other at an equatorial plane 10 for CFx batteries and batteries with CFx-hybrid chemistries would dissipate less heat than having the casings fit each other in some other way. For example, the casings could fit each other closer to one end of where the cells 111 would be situated within the cell housings 12. In this case, the casings may have substantially different volumes. Further, each upper casing cavity may have a substantially different volume than the lower casing cavity to which the upper casing cavity corresponds. However, when an upper casing 6 is fitted to a lower casing 8 with a different volume, the overall volume of the battery case 1 and shape of the exterior casing 2 may still be the same as if the casings had the same volume.

    [0044] The upper casing 6 and lower casing 8 may each be machined to achieve the desired shape. Preferably, the casings may each be molded into a single piece. Thus, the upper casing 6 would be a first unitary structure, and the lower casing 8 would be a second unitary structure. Alternatively, the casings may be manufactured by depositing or forming layers of material in succession so as to build up each casing's structure, or by 3-D printing.

    [0045] FIGS. 9A and 9B show elevated sectional views of a battery case 1 in another comparative example. In this comparative example, the battery case 1 is made of more than two pieces. FIG. 9A shows one of two base pieces 30 (i.e., either the upper casing 6 or the lower casing 8) without any interior walls. FIG. 9B shows multiple interior pieces 32 serving as the interior walls. Alternatively, the interior piece 32 may consist of a single unitary piece that defines all of the interior walls. Further, both of the two base pieces 30 may be made without any interior walls, as shown in FIG. 9A. In this comparative example, it is possible to have a single interior piece 32 be sufficiently long to span the interior walls of the upper casing 6 and the lower casing 8, thereby allowing for a design where the battery case 1 is made from three pieces: an upper casing 6, a lower casing 8, and a single interior piece 32. Preferably, the interior pieces 32 are made of a heat conductive filler material 24 selected from the group consisting of metal, composite, and polymer. However, the interior pieces 32 may be made of any heat conductive material. The interior pieces 32 could be extruded, molded, stamped, assembled of smaller components, 3-D printed, or manufactured by other known techniques.

    [0046] FIG. 12 shows an exploded view of a battery case 1 in another comparative example. In this example, the battery case 1 is made of exactly three pieces: the two base pieces 30 and a middle piece 34 that defines all walls 17 (i.e., both interior and exterior walls) of the cell housings 12. Such a design may reduce manufacturing costs when the walls 17 of the cell housings 12 are to be made of a different material, or with the same material but with a different manufacturing technique such as extrusion, than the base pieces 30. As with the two-piece example described above, the base pieces 30 and the middle piece 34 may be extruded, molded, stamped, assembled of smaller components, 3-D printed, or manufactured by other known techniques.

    [0047] FIGS. 10A and 10B show zoomed elevated sectional views of a battery case 1 in another comparative example. In this comparative example, as shown in FIG. 10A, a cell housing 12 has a hollowed volume 36 between first the internal surface 16 and second the external surface 22 or adjacent cell housing 12. The hollowed volume 36 has a curvilinear shape to substantially match that of the wall 17 defined by the internal surface 16 and the external surface 22 or adjacent cell housing 12. The hollowed volume 36 may also extend to the walls of the electronic component housing 18. Preferably, as shown in FIG. 10B, the hollowed volume 36 is filled with a heat conductive filler material 24 selected from the group consisting of metal, composite, and polymer. However, the hollowed volume 36 may be made of any heat conductive material.

    [0048] The foregoing disclosure refers to composites in general, and viable composites includes, but are not limited to, Ceramacast 675N, aluminum nitride, aluminum, graphite, CoolPoly D4302, and other thermally conductive material mixed with epoxy.

    [0049] The foregoing disclosure refers to polymers in general, and viable polymers include, but are not limited to, Noryl, CoolPoly D4302 thermally conductive copolyester elastomer, CoolPoly D5120 thermally conductive polyphenlyene sulfide, CoolPoly D5506 thermally conductive liquid crystal polymer, CoolPoly D3620 thermally conductive polyamide, polylactic acid, and Duraform EX plastic (used, for example, in 3-D printing).

    [0050] The foregoing disclosure refers to the battery case 1, but the invention may also include a battery pack with the battery case 1 and a battery that includes a plurality of electrochemical cells and at least one electronic component.

    [0051] The illustrated examples of the battery case and battery pack as set forth above are intended to be illustrative and not limiting.


    Claims

    1. A battery case (1) for housing a battery with a plurality of electrochemical cells (11) and at least one electronic component, the battery case comprising:

    a plurality of interconnected cell housings (12) made of at least one heat conductive material selected from the group consisting of metal, composite, and polymer, wherein the plurality of interconnected cell housings (12) each define an internal space (14) sized to accommodate one of the electrochemical cells (11), and include

    an internal surface (16) that is contoured to a shape of the one of the electrochemical cells (11) to be housed by the cell housing (12),
    wherein the internal surface (16) of each cell housing (12) is cylindrical to match the electrochemical cells (11) having a substantially cylindrical shape, and each of the cell housings (12) completely encloses an outer circumferential surface of the electrochemical cell (11) to be accommodated by the cell housing, and

    an external surface (22) that is in contact with another external surface (22) of at least one other cell housing (12), wherein the external surface (22) of each cell housing (12) also is contoured to the shape of the electrochemical cell (11) to be housed therein,
    wherein the external surfaces (22) of the cell housings (12) define a plurality of interior volumes (20) that are external to each of the cell housings (12) and internal to an outer periphery of the battery case (1), and wherein at least one of the interior volumes (20) houses a heat conductive filler material selected from the group consisting of metal, composite, and polymer;

    wherein the outer periphery of the battery case (1) includes non-planar sides defined by the external surfaces (22) of the cell housings (12); and

    at least one electronic component housing (18) inside the battery case (1) that accommodates the at least one electronic component, characterized in that the electronic component housing (18) being positioned such that it is enclosed on all longitudinal sides by the plurality of interconnected cell housings (12), and
    an accessible interface (4) for plugging in a device provided either by the electronic component housing (18) or through a longitudinal side of the battery case.


     
    2. The battery case (1) of any of the preceding claims, wherein
    the internal surface (16) is sized to accommodate the at least one electrochemical cell (11) with a gap of no more than 2.5 mm between the outer surface of the electrochemical cell (11) and the internal surface (16).
     
    3. The battery case (1) of any of the preceding claims, wherein
    the internal surface (16) of each cell housing (12) has a non-prismatic shape to match the electrochemical cells (11) having a non-prismatic shape.
     
    4. The battery case (1) of any of the preceding claims, wherein
    at least one of the cell housings (12) defines an opening connecting a first internal space (14) defined by the cell housing (12) to a second internal space (14) defined by an adjacent cell housing (12).
     
    5. The battery case (1) of any of the preceding claims, further comprising:

    a lower casing (8) defining a plurality of lower casing cavities; and

    an upper casing (6) defining a plurality of upper casing cavities equal to the number of lower casing cavities, wherein

    the upper casing (6) is formed to fit the lower casing (8) so that the lower casing cavities and the upper casing cavities define the internal spaces of the plurality of cell housings, and

    the lower casing (8) and the upper casing (6) together define the plurality of cell housings (12); wherein preferably

    a volume of each of the lower casing cavities is less than a volume of each of the upper casing cavities.


     
    6. The battery case of any of claims 1 to 5, wherein a shape of the electronic component housing (18) is different from a shape of each of the cell housings (12).
     
    7. The battery case (1) of any of claims 1 to 6, wherein an outer periphery of the battery case (1) includes four non-planar sides.
     
    8. A battery pack comprising:

    a battery including a plurality of electrochemical cells (11) and at least one electronic component; and

    the battery case (1) of any of claims 1 to 7.


     
    9. The battery case of any of claims 1 to 8, wherein each of the plurality of cell housings (12) has a wall defined by the internal surface (16) and the external surface (22) and that has a substantially uniform thickness.
     
    10. A method of manufacturing the battery case (1) of claim 5, comprising the steps of: molding the lower casing (8) into a single lower piece; and molding the upper casing (6) into a single upper piece.
     
    11. A method of manufacturing the battery case (1) of claim 5, comprising the steps of: creating the lower casing (8) and the upper casing (6) by depositing or forming layers of material in succession using 3-D printing so as to build up a structure of the lower casing (8) and a structure of the upper casing (6).
     


    Ansprüche

    1. Batteriekasten (1) zum Aufnehmen einer Batterie mit mehreren elektrochemischen Zellen (11) und wenigstens einer elektronischen Komponente, wobei der Batteriekasten Folgendes umfasst:

    mehrere miteinander verbundene Zellgehäuse (12), die aus wenigstens einem wärmeleitenden Material hergestellt sind, die aus der Gruppe ausgewählt ist, die aus Metall, Verbundwerkstoff und Polymer besteht, wobei die mehreren miteinander verbundenen Zellgehäuse (12) jedes einen inneren Raum (14) definieren, der bemessen ist, um eine der elektrochemischen Zellen (11) unterzubringen, und eine innere Oberfläche (16) beinhalten, die einer Form der einen der elektrochemischen Zellen (11) nachgeformt ist, um durch das Zellgehäuse (12) aufgenommen zu werden, wobei die innere Oberfläche (16) jedes Zellgehäuses (12) zylindrisch ist, um mit den elektrochemischen Zellen (11), die eine im Wesentlichen zylindrische Form aufweisen, übereinzustimmen und jedes der Zellgehäuse (12) eine Außenumfangsoberfläche der elektrochemischen Zelle (11), die durch das Zellgehäuse aufgenommen werden soll, und eine äußere Oberfläche (22), die mit einer anderen äußere Oberfläche (22) von wenigstens einem anderen Zellgehäuse (12) in Berührung gebracht wird, vollständig einschließt, wobei die äußere Oberfläche (22) jedes Zellgehäuses (12) ebenso der Form der elektrochemischen Zelle (11), die darin aufgenommen wird, nachgeformt ist, wobei die äußeren Oberflächen (22) der Zellgehäuse (12) mehrere Innenvolumina (20) definieren, die außen zu jedem der Zellgehäuse (12) und innen zu einer Außenumfangsfläche des Batteriekastens (1) sind, und wobei wenigstens eines der Innenvolumina (20) ein wärmeleitendes Füllmaterial, das aus der Gruppe ausgewählt ist, das aus Metall, Verbundwerkstoff und Polymer besteht, aufnimmt;

    wobei die Außenumfangsfläche des Batteriekastens (1) nicht ebene Seiten, die durch die äußeren Oberflächen (22) der Zellgehäuse (12) definiert sind, beinhaltet; und

    wenigstens ein elektronisches Komponentengehäuse (18) im Innern des Batteriekastens (1), der die wenigstens eine elektronische Komponente unterbringt, dadurch gekennzeichnet, dass das elektronische Komponentengehäuse (18) derart angeordnet ist, dass es an allen Längsseiten von mehreren miteinander verbundenen Zellgehäusen (12) eingeschlossen ist, und eine zugängliche Schnittstelle (4) zum Stecken einer Vorrichtung, die entweder durch das elektronische Komponentengehäuse (18) oder durch eine Längsseite des Batteriekastens bereitgestellt wird.


     
    2. Batteriekasten (1) nach einem der vorhergehenden Ansprüche, wobei die innere Oberfläche (16) bemessen ist, um die wenigstens eine elektrochemische Zelle (11) mit einem Abstand von nicht mehr als 2,5 mm zwischen der Außenoberfläche der elektrochemischen Zelle (11) und der innere Oberfläche (16) unterzubringen.
     
    3. Batteriekasten (1) nach einem der vorhergehenden Ansprüche, wobei die innere Oberfläche (16) jedes Zellgehäuses (12) eine nicht prismatische Form aufweist, um mit den elektrochemischen Zellen (11), die eine nicht prismatisch Form aufweisen, übereinzustimmen.
     
    4. Batteriekasten (1) nach einem der vorhergehenden Ansprüche, wobei wenigstens einer der Zellgehäuse (12) eine Öffnung, die einen ersten, durch das Zellgehäuse (12) definierten inneren Raum (14) mit einem zweiten, durch ein angrenzendes Zellengehäuse (12) definierten inneren Raum (14) verbindet, definiert.
     
    5. Batteriekasten (1) nach einem der vorhergehenden Ansprüche, ferner Folgendes umfassend:

    einen unteren Mantel (8), der mehrere untere Mantelhohlräume definiert; und

    einen oberen Mantel (6), der mehrere obere Mantelhohlräume definiert, die gleich der Anzahl der unteren Mantelhohlräume ist, wobei der obere Mantel (6) ausgebildet ist, um in den unteren Mantel (8) zu passen, sodass die untere Mantelhohlräume und die oberen Mantelhohlräume die inneren Räume der mehreren Zellgehäuse definieren, und der untere Mantel (8) und der obere Mantel (6) zusammen die mehreren Zellgehäuse (12) definieren;

    wobei vorzugsweise ein Volumen jedes der unteren Mantelhohlräume kleiner als ein Volumen jedes der obere Mantelhohlräume ist.


     
    6. Batteriekasten nach einem der Ansprüche 1 bis 5, wobei eine Form des elektronischen Komponentengehäuses (18) unterschiedlich zu einer Form von jedem der Zellgehäuse (12) ist.
     
    7. Batteriekasten (1) nach einem der Ansprüche 1 bis 6, wobei eine Außenumfangsfläche des Batteriekastens (1) vier nicht ebene Seiten beinhaltet.
     
    8. Batteriepack, Folgendes umfassend:

    eine Batterie, die mehrere elektrochemische Zellen (11) und wenigstens eine elektronische Komponente beinhaltet; und

    der Batteriekasten (1) nach einem der Ansprüche 1 bis 7.


     
    9. Batteriekasten nach einem der Ansprüche 1 bis 8, wobei jeder der mehreren Zellgehäuse (12) eine Wand aufweist, die durch die innere Oberfläche (16) und die äußere Oberfläche (22) definiert ist und die eine im Wesentlichen einheitliche Dicke aufweist.
     
    10. Verfahren zum Herstellen des Batteriekastens (1) nach Anspruch 5, umfassend die folgenden Schritte:

    Formen des unteren Mantels (8) zu einem einzigen Unterstück; und

    Formen des Obergehäuses (6) zu einem einzigen Oberstück.


     
    11. Verfahren zum Herstellen des Batteriekastens (1) nach Anspruch 5, umfassend die folgenden Schritte:
    Erstellen des unteren Mantels (8) und des oberen Mantels (6) durch aufeinanderfolgendes Abscheiden oder Ausbilden von Materialschichten unter Verwendung von 3D-Druck, um eine Struktur des unteren Mantels (8) und eine Struktur des oberen Mantels (6) aufzubauen.
     


    Revendications

    1. Boîtier de batterie (1) destiné à loger une batterie dotée d'une pluralité de cellules électrochimiques (11) et d'au moins un composant électronique, le boîtier de batterie comprenant :

    une pluralité de logements de cellules interconnectés (12) constitués d'au moins un matériau conducteur de chaleur choisi à partir du groupe constitué de métal, de composite et de polymère, dans lequel la pluralité de logements de cellules interconnectés (12) définissent chacun un espace interne (14) dimensionné pour héberger l'une des cellules électrochimiques (11) et comprendre

    une surface interne (16) qui est profilée selon une forme de l'une parmi les cellules électrochimiques (11) devant être logée par le logement de cellule (12),
    dans lequel la surface interne (16) de chaque logement de cellule (12) est cylindrique pour correspondre aux cellules électrochimiques (11) ayant une forme essentiellement cylindrique, et chacun des logements de cellules (12) entoure complètement une surface circonférentielle extérieure de la cellule électrochimique (11) devant être hébergée par le logement de cellule, et

    une surface externe (22) qui est en contact avec une autre surface externe (22) d'au moins un autre logement de cellule (12), dans lequel la surface externe (22) de chaque logement de cellule (12) est également profilée selon la forme de la cellule électrochimique (11) devant y être logée,
    dans lequel les surfaces externes (22) des logements de cellules (12) définissent une pluralité de volumes intérieurs (20) qui sont externes à chacun des logements de cellules (12) et internes à une périphérie extérieure du boîtier de batterie (1), et dans lequel au moins l'un des volumes intérieurs (20) loge un matériau de remplissage conducteur de chaleur choisi à partir du groupe constitué de métal, de composite et de polymère ;

    dans lequel la périphérie extérieure du boîtier de batterie (1) comprend des côtés non-planaires définis par les surfaces externes (22) des logements de cellules (12) ; et
    au moins un logement de composant électronique (18) à l'intérieur du boîtier de batterie (1) qui accueille l'au moins un composant électronique, caractérisé en ce que le logement de composant électronique (18) est positionné de telle sorte qu'il est entouré sur tous les côtés longitudinaux par la pluralité de logements de cellules interconnectés (12) et
    une interface accessible (4) pour brancher un dispositif fourni soit par le logement de composant électronique (18) soit à travers un côté longitudinal du boîtier de batterie.
     
    2. Boîtier de batterie (1) selon l'une quelconque des revendications précédentes, dans lequel
    la surface interne (16) est dimensionnée pour accueillir l'au moins une cellule électrochimique (11) avec un écart ne dépassant pas 2,5 mm entre la surface extérieure de la cellule électrochimique (11) et la surface interne (16).
     
    3. Boîtier de batterie (1) selon l'une quelconque des revendications précédentes, dans lequel
    la surface interne (16) de chaque logement de cellule (12) a une forme non prismatique pour correspondre aux cellules électrochimiques (11) ayant une forme non prismatique.
     
    4. Boîtier de batterie (1) selon l'une quelconque des revendications précédentes, dans lequel
    au moins l'un des logements de cellules (12) définit une ouverture reliant un premier espace interne (14) défini par le logement de cellule (12) à un second espace interne(14) défini par un logement de cellule adjacent (12).
     
    5. Boîtier de batterie (1) selon l'une quelconque des revendications précédentes comprenant en outre :

    un coffre inférieur (8) définissant une pluralité de cavités de coffre inférieur ; et

    un coffre supérieur (6) définissant une pluralité de cavités de coffre supérieur égales au nombre de cavités de coffre inférieur, dans lequel

    le coffre supérieur (6) est formé pour s'adapter au coffre inférieur (8) de telle sorte que les cavités de coffre inférieur et les cavités de coffre supérieur définissent les espaces internes de la pluralité de logements de cellules, et

    le coffre inférieur (8) et le coffre supérieur (6) définissent ensemble la pluralité de logements de cellules (12) ; dans lequel de préférence

    un volume de chacune des cavités de coffre inférieur est inférieur à un volume de chacune des cavités de coffre supérieur.


     
    6. Boîtier de batterie selon l'une quelconque des revendications 1 à 5, dans lequel une forme du logement de composant électronique (18) est différente d'une forme de chacun des logements de cellules (12).
     
    7. Boîtier de batterie (1) selon l'une quelconque des revendications 1 à 6, dans lequel une périphérie extérieure du boîtier de batterie (1) comprend quatre côtés non-planaires.
     
    8. Bloc-batterie comprenant :

    une batterie comprenant une pluralité de cellules électrochimiques (11) et au moins un composant électronique ; et

    le boîtier de batterie (1) selon l'une quelconque des revendications 1 à 7.


     
    9. Boîtier de batterie selon l'une quelconque des revendications 1 à 8, dans lequel chacun de la pluralité de logements de cellules (12) a une paroi définie par la surface interne (16) et la surface externe (22) et qui a une épaisseur sensiblement uniforme.
     
    10. Procédé de fabrication du boîtier de batterie (1) selon la revendication 5, comprenant les étapes de : moulage du coffre inférieur (8) en une seule pièce inférieure ; et moulage du coffre supérieur (6) en une seule pièce supérieure.
     
    11. Procédé de fabrication du boîtier de batterie (1) selon la revendication 5, comprenant les étapes de : création du coffre inférieur (8) et du coffre supérieur (6) en déposant ou en formant successivement des couches de matériau à l'aide d'une impression 3D de manière à construire une structure du coffre inférieur (8) et une structure du coffre supérieur (6).
     




    Drawing


















    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description