(19)
(11)EP 2 673 467 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
04.11.2020 Bulletin 2020/45

(21)Application number: 12744713.4

(22)Date of filing:  26.01.2012
(51)International Patent Classification (IPC): 
E21B 49/08(2006.01)
E21B 4/14(2006.01)
(86)International application number:
PCT/SE2012/050076
(87)International publication number:
WO 2012/108818 (16.08.2012 Gazette  2012/33)

(54)

METHOD AND ARRANGEMENT TO ESTABLISH DURING DOWN-THE-HOLE DRILLING COMMUNICATION BETWEEN THE CAVITY OF THE DRILL STRING AND THE SURROUNDING MATERIAL

VERFAHREN UND ANORDNUNG ZUM KOMMUNIKATIONSAUFBAU WÄHREND ABWÄRTSLOCHBOHRUNGEN ZWISCHEN DEM HOHLRAUM DES BOHRSTRANGS UND DEM UMGEBENDEN MATERIAL

PROCÉDÉ ET AGENCEMENT POUR FAIRE COMMUNIQUER LA CAVITÉ DU TRAIN DE TIGES DE FORAGE ET LA MATIÈRE ENVIRONNANTE, PENDANT UN FORAGE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 07.02.2011 SE 1150083

(43)Date of publication of application:
18.12.2013 Bulletin 2013/51

(73)Proprietor: LKAB Wassara AB
118 63 Stockholm (SE)

(72)Inventor:
  • HÖRMAN, Magnus
    S-138 34 Älta (SE)

(74)Representative: Zacco Sweden AB 
P.O. Box 5581
114 85 Stockholm
114 85 Stockholm (SE)


(56)References cited: : 
EP-A1- 0 399 426
EP-B1- 0 394 255
US-A1- 2005 029 017
EP-A1- 0 399 426
US-A- 3 578 078
US-B1- 6 295 867
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description


    [0001] The present invention concerns a method to establish during down-the-hole drilling communication between the cavity of the drill string and the surrounding material, according to the introduction to claim 1. The establishment of communication makes it possible for media, such as groundwater surrounding the drill rod down in the drill hole, to flow into and fill the cavity of the drill string. The possibility of establishing such communication allows measurements to be carried out rapidly and simply in situ, down in the drill hole. The invention concerns also an arrangement for the execution of the method according to the introduction to claim 5. EP 0 399 426 discloses a known method and arrangement for establishing fluid communication between the cavity of a drill string and the surroundings to take water samples.

    [0002] During down-the-hole drilling and the formation of drill holes in the ground that are limited by a drill string consisting of a number of drill rods coupled at their ends there arises in many cases a need of achieving communication between the cavity of the tube lining and the material that surrounds the drill string, for example in order to lead media such as water from the surrounding material into the cavity of the drill string. The purpose of this is to carry out after drilling measurement-based investigations down in the material, which investigations may concern temperature, flows and groundwater levels, whereby measuring instruments are passed down in a compartment for measurement, a measurement compartment, that is limited by the cavity of the drill string. This type of measurement normally includes measurement of the permeability of the ground, i.e. the amount of water that must be pumped away in order to obtain a certain lowering of the water level in, for example, a pond or similar collection of water. The permeation through the ground, in situ, is calculated in known manner through measurement of discharge following Darcy's Law: Q=CHK, from which it can be derived that the amount pumped is proportional to the fall of water level H and to the permeability K. This makes it possible to calculate the amount pumped as a function of these two parameters when the coefficient C is known, which can be determined by theoretical or experimental methods using the form of the contact surfaces between the water in the drill hole and the ground, i.e. the surfaces through which water is filtered into a limited measurement compartment. Conversely, it is possible to calculate K with the aid of measurements of the amount pumped and the lowering of the surface of the water in the measurement compartment, which constitutes the value of the permeability from the surrounding ground into the measurement compartment in situ. The equation above thus gives as its result the flow of water in cubic metres per second (m3/s).

    [0003] The measurement compartment is limited by what is known as a tube liner, which is provided in certain parts of its circumference, in particular at its lower part, with one or several openings with an area of opening that has been determined in advance. The openings allow groundwater to flow into the measurement compartment, and the coefficient C can in this way be determined.

    [0004] In order to be able to work as rapidly and efficiently as possible, it is desirable that during the procedure known as down-the-hole drilling, in which a drill string consisting of a number of drill rods, coupled to each other at their ends and attached at a down-the-hole hammer drill, is used, to use the drill string to form the desired measurement compartment and the possibility of being able to carry out measurement work at different levels down in the drill hole, without any special tube lining being needed. In other words, it is desirable to have the possibility of being able to lower the required measuring instruments directly down into the drill string in situ without needing to take the circular route of forming a post hoc specially designed tube liner with measurement openings arranged in the outer surface of the tube liner.

    [0005] Among the many advantages of this are, of course, the saving of time that can be obtained when the measurements required can take place directly down in the drill hole, together with the cost savings achieved through the requirement for equipment for lining of the drill hole being eliminated or reduced. It is, therefore, desirable to make it possible to carry out during down-the-hole drilling measurements in situ down in a drill hole, in particular down in a drill hole in the ground, in order to achieve higher cost efficiency.

    [0006] A first purpose of the present invention, therefore, is to achieve a method that makes it possible to achieve communication immediately after down-the-hole drilling between the cavity of the drill string and the material that surrounds the drill string, not least in order to be able to carry out measurements in situ down in a drill hole. A second aim of the present invention is to achieve an arrangement for the execution of the method. These two aims of the invention are solved through the method demonstrating the distinctive features and characteristics that are specified in claim 1, and through an arrangement that demonstrates the distinctive features and characteristics that are specified in claim 5. Other advantages of the invention are made clear by the non-independent claims.

    [0007] The down-the-hole drill may in one design be of single-use type, i.e. the down-the-hole hammer drill can be left down in the drill hole after the drilling and the measurements have been carried out.

    [0008] The invention will be described in more detail below in the form of a non-limiting embodiment with reference to the attached drawings in which:

    Figures 1a-1c show longitudinal sections in different stages through an arrangement according to the invention, mounted in a drill section that is position farthest forward in a drill string equipped with a down-the-hole drill.

    Figures 2a-2d show schematically in a number of stages that follow one after the other the procedures that are required in order to establish communication between the cavity of the drill string and the material that surrounds it, together with the execution of measurements in situ down in a drill hole in the ground, according to the invention.



    [0009] With reference to Figures 1a-1c, there is shown a forward end of a down-the-hole hammer drill 1 that has a machine housing 2 that is principally circularly symmetrical, in which is mounted an impact mechanism driven by pressurised fluid, which impact mechanism is arranged to give impacts onto a drill bit 3 that is mounted through a splined connector in a chuck in a manner that allows reciprocating motion. The machine housing 2 has a central supply line 4 for driving liquid, such as a driving fluid of water, and channels in the drill bit 3 (not shown in the drawing) through which channels used driving liquid can flow out, and through the influence of this drill cuttings generated during the drilling are driven backwards and upwards along the outer surface of the machine housing. This type of down-the-hole hammer drill has long been known and can be constituted by, for example, the type that is described in EP 0394255. The present arrangement will be described arranged at a fluid-driven down-the-hole drill, but it should be understood that the arrangement according to the invention is not limited to such: it can be arranged at a down-the-hole drill of any type that is prevalent, for example a pneumatic down-the-hole drill of the type that uses air under pressure as its driving medium. The machine housing 2 is provided at the rear, at the inlet side for driving fluid, with an end piece 8 that is connected by means of a threaded connector 9 to a drill string 10 consisting of a number of sections of drill rod that are axially connected at their ends. The drill bit 3 is turned during drilling by means of rotation of the drill string 10, as is illustrated by the looped arrow in Figure 2a. Driving fluid for the driving of the down-the-hole hammer drill is supplied from a pump, not shown in the drawings, at the surface level, through the channel 11 in the drill string 10. The channel 11 in the cavity of the drill string 10 thus functions as a source of pressure. New drill rods are joined onto the drill string 10, and the drill string becomes longer as the hole becomes deeper. In order for it to be possible to extend the drill string 1 through the joining on of further drill rod sections, these are connected in a manner that allows their release with neighbouring parts by means of a connector 12 comprising a thread that connects meeting tube sections in a fluid-tight manner.

    [0010] The technology described above constitutes essentially prior art technology.

    [0011] Once again with reference to Figures 1a-1c, there is mounted in the tube section of the drill string 10 located at the front and denoted 10:1, i.e. the tube section that is at the deepest position in the drill hole, an extended piston 15 that can be slid axially within the cavity of the cylindrical tube section 10:1. The piston 15 has an axial penetrating central channel 16 that allows driving fluid to be led in a controlled manner directly from the source of pressure to the down-the-hole hammer drill 1 when the piston is located at its most withdrawn position. Motion of fluid between the piston 15 and the cavity of the tube section 10:1 is not possible, such that a compartment located after the piston, seen from the source of pressure, i.e. the compartment between the piston and the machine housing 2, is not in fluid-transmitting communication with the source of pressure.

    [0012] As is made most clear by Figure 1c, the tube section 10:1 that is located farthest forward is provided on its outer surface with a number of longitudinal groove-shaped holes or openings 17, which allow, for the execution of measurements down in the drill hole, water to flow into the cavity of the tube section. The function of the said openings 17 will be described in more detail below. The cavity of the forward tube section 10:1 can, due to the presence of the openings 17 limit a measurement compartment. The term "measurement compartment" as it is used here denotes a compartment that is isolated from the surroundings by a tube lining that allows water from the surroundings to flow into the compartment through one or several openings that have been arranged in the outer surface of the tube lining with an open area that has been determined in advance. The piston 15 is located concentrically in the tube section 10:1 and is intended to move axially in a manner that allows sliding within the tube section in controlled interaction with the cylinder bore that the cavity of the tube section forms. The piston 15 has an outlet for driving fluid that is limited by a forward relatively extended tubular part 21 manufactured from high-quality steel, and an inlet for driving fluid that is limited by a rear, relatively short, tubular part 22. The rear tubular part 22 is designed as a continuous integrated part of the piston 15, i.e. as a single entity with this piston. In order to further improve the fluid-excluding properties of the piston 15, it is first provided with a surrounding seal 23 of a polymer material. The seal 23 is mounted in a groove-shaped depression 24 on the outer circumference of the piston 15.

    [0013] As has been described above, the machine housing 2 comprises a central channel 4 intended to lead driving fluid into the impact mechanism that is located within the machine housing of the impact hammer when the piston 15 is located at its most withdrawn position, in contact with the impact hammer 1 in a manner that allows fluid to flow. A tube muff 30 is arranged at the rear free end of the end piece 8 of the machine housing 2 intended for interaction in a manner that allows fluid to flow with the forward end 21 of the tube of the piston. The tube muff 30 has a ring-shaped cylindrical compartment 31 that surrounds a plastic collar or sealing ring 32 that is seated in a ring groove 33 in the compartment, and through which the forward end 21 of the section of tube interacts in a sealing manner when the section of tube is located inserted into the tube muff, as shown in Figure 1a. The piston 15 is driven towards its most withdrawn position through the influence of the hydrostatic force that the driving fluid in the channel 16 exerts onto the end surface 15b of the piston 15 that faces the source of pressurised medium 11 (the pump, symbolised by an arrow in Figure 1a) during drilling. By ensuring that a hydraulic imbalance exists between the relevant end surfaces 15a and 15b of the piston, i.e. by ensuring that the end surface 15b of the piston 15 that faces the source of pressurised medium 11 (the pump) has an area that always is larger than the area of the second end surface 15a of the piston, it is guaranteed that the piston, even in the continuum that is established, attempts to reach a position that is in connection with the end piece 8 of the machine housing 2 in a manner that allows fluid to flow. The dimensions of the sealing ring 32 and the ring groove 33 are so selected that a fluid-tight effect is obtained when the forward end 21 of the tube of the piston 15, which end serves as outlet, is located inserted into the end piece 8 of the machine housing 2. In order to ensure that the forward end 21 of the tube of the piston 15 glides in a correct manner into a position that gives sealing in the tube muff 30 of the end piece 2, the end piece comprises a conical inner surface 35, i.e. a conical expansion intended to interact with the first end 21 of the tube of the piston. It should be understood that the central channel 16 of the piston 15 forms an extension backwards of the central channel 4 of the machine housing 2 and thus a shunt that can lead driving fluid past the openings 17 that are formed in the outer surface of the first tube section 10:1 when the outlet of the piston 15 is located at its most withdrawn position and in connection with the impact hammer through the tube muff 30 in the rear end piece 8 of the machine housing 2 in a manner that allows fluid to flow.

    [0014] The inlet for driving fluid to the piston 15, i.e. the rear relatively short tubular part 22, at the same time forms one of two interacting connectors 40 and 41 that can be united axially, and that are designed as male and female parts. These two connectors 40, 41 are components of a recovery means generally denoted by 45, with the aid of which the piston 15 can be fetched up out of the drill string 10. The said second connector 41, designed as a female part, is fixed to the end of a wire or similar that is a component of a lifting arrangement generally denoted by 42. This second connector 41 is intended to be suspended by a wire or similar and lowered down into the drill hole with the aid of suitable lifting gear located at the surface (not shown in the drawings). The term "lifting arrangement" is used below to denote any lifting crane that is equipped with steel wires, pulley blocks or similar means and that can be used to raise and lower objects.

    [0015] It should be pointed out that it is the general custom to name objects that have been inserted into a drill hole as "fish", and a tool designed to recover such an object as a "fishing tool".

    [0016] Electrical measurement signals are transferred through a line 47 to and from a measurement tool 50 or a sensor suspended from the lifting arrangement when the present arrangement is used during the execution of measurement-based investigations in a drill hole. These measurements may be constituted by any presently available measurements and may include, for example, temperature, rate of flow, and level of groundwater. The measurement signals obtained may alternatively be transferred by telemetry, i.e. in a wireless manner, using for example, a radio link or an optical link between a transmitter down in the drill hole and a receiver at the surface level.

    [0017] As is made most clear by Figures 1a and 1b, the second connector 41, fixed at the end of the lifting arrangement 42, comprises a locking means generally denoted by 52 that, equipped with spring-loaded locking pins 53, can enter into locking interaction with the first connector 40 formed as an end part 54 of a free end of the rear tubular part 22 of the piston, which end part 54 is extended radially relative to the axial direction. The locking effect is obtained by the locking pins 53 engaging behind the said radially extended end part 54, i.e. the locking pins move towards the part of the tubular part that has a smaller diameter. In order to achieve a secure engagement in which the locking pins 53 snap into place behind the end part 54, not only the locking pins but also the radially extended end part have been given designs with markedly sharp edges.

    [0018] A closer study of Figure 1c will reveal that the groove-shaped openings 17 have been given such locations on the circumference of the first or most forwardly located tube section 10:1 relative to the total length of the piston 15 that the central channel 16 of the piston forms a shunt or backwards extension of the central channel 4 of the machine housing 2 for direct communication with the source of pressure. Due to the sealing effect between the piston 15 and the ring-shaped inner cavity of the first tube section 10:1, driving fluid is blocked from leaking into the compartment of the tube section 10:1 between the piston 15 and the machine housing 2, and thus from leaking out through the groove-shaped openings 17. Driving fluid is instead forced to flow directly through the central channel 16 of the piston 15 from the source of pressure (the pump) to the down-the-hole hammer drill 1.

    [0019] The arrangement described above thus makes it possible to establish communication between the cavity of the drill string and the surrounding material in a drill hole, and thus to carry out measurements in situ in the drill hole.

    [0020] A down-the-hole drilling unit is shown in Figure 2a that, consisting of a down-the-hole hammer drill 1 fixed at one end of a drill string 10, is located in one piece down in an essentially vertical drill hole 60 and where a driving flow is supplied by a source of pressurised medium that is connected to a second end of the drill string, whereby, in order to make it possible to carry out sampling in situ, the following measurements and steps must be taken:

    that a first tube section 10:1 intended to form a part of the drill string 10 is assigned one or several openings 17 with a total area of opening at the circumference of the outer surface of the tube section that has been determined in advance,

    that a piston 15 demonstrating an inlet 22 and an outlet 21 for leading a flow of driving fluid through the piston is arranged,

    that the piston 15 is constructed such that it can glide axially along the cavity of the first tube section 10:1 and that it is oriented such that the outlet of the piston faces the inlet 8 for the flow of driving fluid into the down-the-hole hammer drill 1,

    that the inlet 8 of the down-the-hole hammer drill 1 and the outlet 21 of the piston 15 are given such a mutually operative form that they can be connected and disconnected through axial displacement of the piston in the first tube section 10:1 from a situation that allows fluid to flow, whereby the flow of driving fluid from the source of pressurised medium to the down-the-hole hammer drill is led, when fluid is allowed to flow, through the piston,

    that the inlet 22 of the piston is assigned one part of a first and second interacting recovery means 40, 41, designed as male and female parts, that allow the piston 15 to be fished up out of the drill string 10 through the second part being lowered down into the drill string.



    [0021] The arrangement functions in the following manner.

    [0022] With reference to Figures 2a-2d, a drill hole has been produced in the ground by means of the down-the-hole drilling unit in which the required driving fluid for the down-the-hole hammer drill has been connected directly from the source of pressurised medium 11 to the down-the-hole hammer drill through the piston 15 in its transfer position in the tube section 10:1 that is located farthest forward. When the down-the-hole drilling unit has reached the required depth, the piston 15 is recovered from the drill string 10 through the said second interacting part 41 of the fishing tool being lowered by a lifting arrangement down into the drill hole, as is shown in Figure 2b. After uniting the two interacting connectors 40, 41, the piston 15 is lifted up the drill hole 10 by means of the lifting arrangement 42, as is shown in Figure 2c. In the free measurement compartment that is limited by drill hole in the ground, which drill hole is lined by the drill string 10, water flows through the openings 17 from the surrounding bedrock into the measurement compartment. As is shown in Figure 2d, a measuring instrument or sensor 50 is lowered suspended from a lifting arrangement to the desired level in the measurement compartment, after which the desired measured values, concerning, for example, the permeability of the ground, are recorded. The measurement data obtained is transferred with the aid of suitable transfer means, which may include an electrical cable that extends along the wire of the lifting arrangement or, alternatively, wireless communication over a radio link, to a receiver at surface level (not shown in the drawings).

    [0023] The invention is not limited to what has been described above and shown in the drawings: it can be changed and modified in several different ways within the scope of the innovative concept defined by the attached patent claims.


    Claims

    1. A method to allow fluid communication to be established between an inner cavity of a drill string and a surrounding material in situ down in a drill hole (60) during the use of a down-the-hole drill unit that includes the drill string (10) formed from a number of drill rods coupled at their ends, a down-the-hole hammer drill (1) fixed at one end of the drill string and a source of pressurised medium (11) that delivers a medium under pressure to the down-the-hole hammer drill and that is connected to the second end of the drill string, which method comprises the following operational steps:

    (a) that a tube section (10:1) of the drill string (10) is assigned at its outer cover one or several openings (17) with an area of opening that has been determined in advance,

    (b) that a piston (15) with an axial penetrating channel (16) is arranged,

    (c) that the piston (15) is arranged such that it can glide axially inside the cavity of the tube section (10:1),

    (d) that the piston (15) is designed such that it, during drilling, allows driving fluid to be led through the channel (16) from the source of pressure (11) to the down-the-hole hammer drill (1) when the piston is located at its most withdrawn position in the tube section (10:1) and in contact with the down-the-hole drill unit (1) in a manner that allows fluid to flow, and that the piston (15) is driven towards its most withdrawn position through influence of a hydrostatic force that the driving fluid in the channel (16) exerts onto an end surface (15b) of the piston (15) that faces the source of pressurised medium (11) during drilling,

    (e) that the side of the piston (15) that faces the source of pressure (11) is assigned a first connector (40) of a recovery means (45), which first connector can be coupled together in a retaining manner with a second connector (41) that is a component of the said recovery means,

    (f) that, after drilling, a lifting arrangement (42) is arranged at the surface level in connection with the drill hole (60),

    (g) that the second connector (41) of the recovery means (45), fixed at the lifting arrangement (42) that is arranged at the surface level, is caused to enter into retaining interaction with the first connector by being lowered down into the drill hole (60) by means of the lifting arrangement (42), after which the piston (15) is fished up out of the drill hole by means of the lifting arrangement and the a compartment that is formed in this way in the cavity of the tube section (10:1) can be used as a measurement compartment, and that the tube section (10:1) allows water from the surroundings to flow into the measuring compartment through one or several openings (17), thereby establishing fluid communication between the inner cavity of the drill string and the surrounding material.


     
    2. The method according to claim 1, whereby measurements are carried out in situ down in a measurement compartment formed in this way in the drill hole (60) through the execution of the following operational steps:

    (h) that after drilling and fishing up of the piston (15) have been carried out, a measuring instrument (50) or a sensor is lowered by means of a lifting arrangement (46) to a determined level in the measurement compartment formed,

    (i) that the measured values obtained are recorded by the measuring instrument (50) and transferred as electrical signals through a cable or by telemetry to the surface level for further processing.


     
    3. The method according to any one of claims 1-2, whereby the piston (15) is driven towards its most withdrawn position during drilling by the influence of the hydrostatic pressure that the driving medium supplied by the source of pressure (11) exerts on the end surface (15b) of the piston that faces towards the said source of pressurised medium.
     
    4. The method according to any one of claims 1-3, whereby the openings (17) in the outer surface are arranged in a first tube section (10:1) of the drill string (10), i.e. the tube section that is located farthest down in the drill hole and that is next to the down-the-hole hammer drill (1), and the piston (15) is arranged such that it can glide inside the inner cavity of the said first tube section.
     
    5. An arrangement to establish fluid communication between a hollow cavity of a drill string (10) that is a component of a down-the-hole drill unit and the surrounding material in situ down in a drill hole (60), whereby a down-the-hole hammer drill (1) is fixed attached at one end of the drill string (10) and a source of pressurised medium (11) is connected to the second end of the drill string at the surface level, which source supplies a medium under pressure to the down-the-hole hammer drill during drilling, characterised in that it comprises a tube section (10:1) that demonstrates one or several openings (17) in its outer surface, which openings have a total area of opening that is determined in advance,
    a piston (15) that is arranged such that it forms a seal with the inner open wall of the drill string (10) and is arranged to move axially along the drill rod inside this, whereby the said piston (15) demonstrates a penetrating channel (16) that allows a flow of driving fluid under pressure to be led through the piston and the establishment of communicating flow between the source of pressurised medium (11) and the down-the-hole hammer drill (1) when the piston is located at its most withdrawn position in the tube section (10:1) in contact with the down-the-hole hammer drill (1) in a manner that allows fluid to flow, in which position the pressurised medium from the source (11) is led through the channel (16) to the down-the-hole hammer drill,
    and that the piston (15) is driven towards its most withdrawn position through influence of a hydrostatic force that the driving fluid in the channel exerts onto an end surface (15b) of the piston (15) that faces the source of pressurised medium (11) during drilling, a lifting arrangement (42) located at the surface level and located in connection with the drill hole (60), a recovery means (45) including first and second connectors (40, 41) that can be united in a retaining manner, of which the first connector (40) is arranged at the piston (15) and faces the source of pressure (11), while the second connector (41) is fixed at the lifting arrangement (42) and can be lowered into the drill hole by means of the lifting arrangement in order to interact with the first connector (40), whereby the piston is fished up out of the drill hole by means of the lifting arrangement after the drilling has been carried out, whereby a compartment is formed in this way in the cavity of the tube section (10:1) that can be used as a measurement compartment, and that the tube section (10:1) allows water from the surroundings to flow into the measuring compartment through one or several openings (17), thereby establishing fluid communication between the inner cavity of the drill string and the surrounding material.
     
    6. The arrangement according to claim 5, whereby the channel (16) of the piston (15) is limited by tubular parts (21, 22) that, extending axially out from the relevant end (15a, 15b) of the piston, form an outlet and an inlet, respectively, for the flow through of pressurised medium, where the tubular part (21) that forms the outlet is located in interaction in a manner that does not allow fluid to pass with a pipe muff (3) arranged in the rear end piece (8) of the machine housing (2) when the piston is located in its most withdrawn position in the drill string.
     
    7. The arrangement according to claim 6, whereby recovery means (45) including first and second connectors (40, 41) designed as male and female parts and arranged to interact in a retaining manner with each other through a snap-on effect.
     
    8. The arrangement according to any one of claims 5-7, whereby the lifting arrangement (42) is arranged for the lowering of the second connector (41) of the recovery means (45) into the drill hole (60) and interaction with the first connector (40), which is arranged at the piston (15), and for the lifting of the piston (15) from the drill hole after the connectors have been united.
     
    9. The arrangement according to any one of claims 5-8, whereby the impact hammer (1) comprises a machine housing (2) the inlet of which for the flow of driving fluid is limited by a pipe muff (30) arranged at its rear end piece, in which pipe muff the tubular part (21) that forms the outlet of the piston (15) for the flow through of driving medium is located in a manner that does not allow fluid to pass when the piston is located at its most withdrawn position in the tube section (10:1).
     


    Ansprüche

    1. Verfahren zum Ermöglichen eines Aufbaus von Fluidkommunikation zwischen einem inneren Hohlraum eines Bohrstrangs und einem umgebenden Material in situ in einem Bohrloch (60) herunter während der Anwendung einer Imlochbohreinheit, die den Bohrstrang (10) umfasst, der durch eine Anzahl von Bohrstangen gebildet ist, die an ihren Enden verbunden sind, eines Imlochhammerbohrers (1), der an einem Ende des Bohrstrangs befestigt ist, und einer Quelle eines unter Druck stehenden Mediums (11), das ein Medium unter Druck an den Imlochhammerbohrer abgibt und mit dem zweiten Ende des Bohrstrangs verbunden ist, welches Verfahren
    die folgenden Betriebsschritte umfasst:

    (a) dass einem Rohrabschnitt (10:1) des Bohrstrangs (10) an der äußeren Abdeckung eine oder mehrere Öffnungen (17) mit einem Öffnungsbereich, der vorab festgelegt worden ist, zugeordnet wird,

    (b) dass ein Kolben (15) mit einem axialen Durchdringungskanal (16) angeordnet wird,

    (c) dass der Kolben (15) so angeordnet wird, dass er im Hohlraum des Rohrabschnitts (10:1) axial gleiten kann,

    (d) dass der Kolben (15) so ausgeformt ist, dass er es während des Bohrens ermöglicht, dass Antriebsfluid durch den Kanal (16) von der Druckquelle (11) zum Imlochhammerbohrer (1) geleitet wird, wenn der Kolben in der am meisten zurückgezogenen Position im Rohrabschnitt (10:1) angeordnet ist und mit der Imlochbohreinheit (1) so in Kontakt ist, dass Fluid strömen kann, und dass der Kolben (15) gegen die am meisten zurückgezogene Position unter Einwirkung einer hydrostatischen Kraft getrieben wird, die das Antriebsfluid im Kanal (16) auf eine Endfläche (15b) des Kolbens (15) ausübt, die der Quelle des unter Druck stehenden Mediums (11) während des Bohrens zugewandt ist,

    (e) dass derjenigen Seite des Kolbens (15), die der Druckquelle (11) zugewandt ist, einen ersten Konnektor (40) eines Rückgewinnungsmittels (45) zugeordnet wird, welcher erste Konnektor mit einem zweiten Konnektor (41) festhaltend verbunden werden kann, der eine Komponente des Rückgewinnungsmittels ist,

    (f) dass eine Hebeeinrichtung (42) nach dem Bohren am Oberflächenniveau in Verbindung mit dem Bohrloch (60) angeordnet wird,

    (g) dass der zweite Konnektor (41) des Rückgewinnungsmittels (45), befestigt an der Hebeeinrichtung (42), die am Oberflächenniveau angeordnet ist, veranlasst wird, mit dem ersten Konnektor in festhaltende Wechselwirkung dadurch einzugehen, dass er in das Bohrloch (60) mittels der Hebeeinrichtung (42) niedergesenkt wird, wonach der Kolben (15) mittels der Hebeeinrichtung aus dem Bohrloch aufgefangen wird und eine Kammer, die so im Hohlraum des Rohrabschnitts (10:1) gebildet ist, als eine Messkammer verwendet werden kann, und dass der Rohrabschnitt (10:1) ermöglicht, dass Wasser von der Umgebung durch eine oder mehrere Öffnungen (17) in die Messkammer strömen kann, wodurch Fluidkommunikation zwischen dem inneren Hohlraum des Bohrstrangs und dem umgebenden Material aufgebaut wird.


     
    2. Verfahren nach Anspruch 1, wobei die Messungen in situ in eine Messkammer herunter, die so im Bohrloch (60) gebildet ist, ausgeführt werden durch Ausführung der folgenden Betriebsschritte:

    (h) dass ein Messinstrument (50) oder ein Sensor nach dem Ausführen des Bohrens und Auffangens des Kolbens (15) mittels einer Hebeeinrichtung (46) zu einem bestimmten Niveau in der gebildeten Messkammer gesenkt wird,

    (i) dass die erhaltenen gemessenen Werte durch das Messinstrument (50) erfasst werden und als elektrische Signale durch ein Kabel oder durch Telemetrie an das Oberflächenniveau zur weiteren Bearbeitung übertragen werden.


     
    3. Verfahren nach einem der Ansprüche 1-2, wobei der Kolben (15) gegen die am meisten zurückgezogene Position während des Bohrens getrieben wird unter Einwirkung des hydrostatischen Drucks, den das Antriebsmedium, das durch die Druckquelle (11) abgegeben wird, auf die Endfläche (15b) des Kolbens ausübt, die der Quelle des unter Druck stehenden Mediums zugewandt ist.
     
    4. Verfahren nach einem der Ansprüche 1-3, wobei die Öffnungen (17) in der Außenfläche in einem ersten Rohrabschnitt (10:1) des Bohrstrangs (10) angeordnet sind, d.h. der Rohrabschnitt, der am weitesten unten im Bohrloch angeordnet ist und neben Imlochhammerbohrer (1) ist, und der Kolben (15) so angeordnet ist, dass er im inneren Hohlraum des ersten Rohrabschnitts gleiten kann.
     
    5. Anordnung zum Aufbau einer Fluidkommunikation zwischen einem hohlen Hohlraum eines Bohrstrangs (10), der eine Komponente der Imlochbohreinheit ist, und dem umgebenden Material in situ in einem Bohrloch (60) herunter, wobei ein Imlochhammerbohrer (1) an einem Ende des Bohrstrangs (10) fest befestigt ist und eine Quelle eines unter Druck stehenden Mediums (11) mit dem zweiten Ende des Bohrstrangs am Oberflächenniveau verbunden ist, welche Quelle ein Medium unter Druck zum Imlochhammerbohrer während des Bohrens zuführt, dadurch gekennzeichnet, dass sie einen Rohrabschnitt (10:1) umfasst, der eine oder mehrere Öffnungen (17) in der Außenfläche umfasst, welche Öffnungen einen vorab bestimmten Öffnungsgesamtbereich aufweisen,
    einen Kolben (15), der so angeordnet ist, dass er eine Dichtung mit der inneren offenen Wand des Bohrstrangs (10) bildet und dafür eingerichtet ist, sich entlang der Bohrstange darin axial zu bewegen,
    wobei der Kolben (15) einen Durchdringungskanal (16) aufweist, der es ermöglicht, dass eine Strömung von unter Druck stehenden Antriebsfluid durch den Kolben geleitet wird sowie den Aufbau einer Kommunikationsströmung zwischen der Quelle des unter Druck stehenden Mediums (11) und dem Imlochhammerbohrer (1) ermöglicht, wenn der Kolben in der am meisten zurückgezogenen Position im Rohrabschnitt (10:1) angeordnet ist und mit dem Imlochhammerbohrer (1) in Kontakt ist, dass Fluid strömen kann, in welcher Position das unter Druck stehende Medium von der Quelle (11) durch den Kanal (16) zum Imlochhammerbohrer geleitet wird,
    und dass der Kolben (15) gegen die am meisten zurückgezogene Position unter Einwirkung einer hydrostatischen Kraft getrieben wird, die das Antriebsfluid im Kanal auf eine Endfläche (15b) des Kolbens (15) ausübt, die der Quelle des unter Druck stehenden Mediums (11) während des Bohrens zugewandt ist, eine Hebeeinrichtung (42), die am Oberflächenniveau und in Verbindung mit dem Bohrloch (60) angeordnet ist, ein Rückgewinnungsmittel (45) mit einem ersten und zweiten Konnektor (40, 41), die festhaltend vereinigt werden können, wovon der erste Konnektor (40) am Kolben (15) angeordnet ist und der Druckquelle (11) zugewandt ist, während der zweite Konnektor (41) an der Hebeeinrichtung (42) befestigt ist und in das Bohrloch mittels der Hebeeinrichtung niedergesenkt werden kann, um mit dem ersten Konnektor (40) zu wechselwirken, wobei der Kolben nach dem Bohren aus dem Bohrloch mittels der Hebeeinrichtung aufgefangen wird, wobei eine Kammer, die so im Hohlraum des Rohrabschnitts (10:1) gebildet ist, als eine Messkammer verwendet werden kann, und dass der Rohrabschnitt (10:1) ermöglicht, dass Wasser von der Umgebung durch eine oder mehrere Öffnungen (17) in die Messkammer strömen kann, wodurch Fluidkommunikation zwischen dem inneren Hohlraum des Bohrstrangs und dem umgebenden Material aufgebaut wird.
     
    6. Anordnung nach Anspruch 5, wobei der Kanal (16) des Kolbens (15) durch rohrförmige Teile (21, 22) beschränkt ist, die sich aus dem entsprechenden Ende (15a, 15b) des Kolbens axial erstreckend einen Auslass bzw. einen Einlass bilden für die Durchströmung von unter Druck stehendem Medium, wobei der rohrförmige Teil (21), der den Auslass bildet, so in Wechselwirkung angeordnet ist, dass Fluid nicht durchtreten kann bei Anordnung einer Rohrmuffe (3) im hinteren Endstück (8) des Maschinengehäuses (2), wenn der Kolben in der am meisten zurückgezogenen Position im Bohrstrang angeordnet ist.
     
    7. Anordnung nach Anspruch 6, wobei Rückgewinnungsmittel (45) einen ersten und zweiten Konnektor (40, 41) umfassen, ausgeformt als männliche und weibliche Teile und eingerichtet zum festhaltenden Wechselwirkung miteinander durch einen Schnappeffekt.
     
    8. Anordnung nach einem der Ansprüche 5-7, wobei die Hebeeinrichtung (42) zum Niedersenken des zweiten Konnektors (41) des Rückgewinnungsmittels (45) in das Bohrloch (60) und zum Wechselwirken mit dem ersten Konnektor (40), der am Kolben (15) angeordnet ist, und zum Heben des Kolbens (15) aus dem Bohrloch, nachdem die Konnektoren vereinigt worden sind, eingerichtet ist.
     
    9. Anordnung nach einem der Ansprüche 5-8, wobei der Schlaghammer (1) ein Maschinengehäuse (2) umfasst, dessen Einlass für die Strömung von Antriebsfluid durch eine Rohrmuffe (30) beschränkt ist, die am hinteren Endstück angeordnet ist, in welcher Rohrmuffe der rohrförmige Teil (21), der den Auslass des Kolbens (15) für die Durchströmung von Antriebsmedium bildet, so angeordnet ist, dass Fluid nicht durchtreten kann, wenn der Kolben in der am meisten zurückgezogenen Position im Rohrabschnitt (10:1) angeordnet ist.
     


    Revendications

    1. Procédé pour permettre l'établissement d'une communication fluidique entre une cavité intérieure d'une colonne de forage et un matériau environnant in situ dans un trou de forage (60) pendant l'utilisation d'une unité de forage de fond de trou qui comprend la colonne de forage (10) formée d'un certain nombre de tiges de forage couplées à leurs extrémités, un marteau perforateur de fond de trou (1) fixé à une extrémité de la colonne de forage et une source de milieu sous pression (11) qui délivre un milieu sous pression vers le marteau perforateur de fond de trou et qui est raccordé à la deuxième extrémité de la colonne de forage, ledit méthode comprenant les étapes opérationnelles suivantes consistant en :

    (a) ce qu'une section de tube (10:1) de la colonne de forage (10) se voit attribuer au niveau de son couvercle extérieur une ou plusieurs ouvertures (17) avec une zone d'ouverture qui a été déterminée à l'avance,

    (b) ce qu'un piston (15) avec un canal de pénétration axiale (16) est arrangé,

    (c) ce que le piston (15) est disposé de telle sorte qu'il puisse glisser axialement à l'intérieur de la cavité de la section de tube (10:1),

    (d) ce que le piston (15) est conçu si bien que pendant le forage, il permet au fluide d'entraînement d'être conduit à travers le canal (16) de la source de pression (11) au marteau perforateur de fond de trou (1) lorsque le piston est situé à sa position la plus retirée dans la section de tube (10:1) et en contact avec l'unité de forage de fond de trou (1) de manière à permettre au fluide de s'écouler, et ce que le piston (15) est entraîné vers sa position la plus retirée par l'influence d'une force hydrostatique que le fluide d'entraînement dans le canal (16) exerce sur une surface d'extrémité (15b) du piston (15) qui fait face à la source de milieu sous pression (11) pendant le forage,

    (e) ce que le côté du piston (15) qui fait face à la source de pression (11) se voit attribuer un premier connecteur (40) d'un moyen de récupération (45), ledit premier connecteur pouvant être couplé d'une manière de retenue ensemble avec un deuxième connecteur (41) qui est un composant dudit moyen de récupération,

    (f) ce qu'après le forage, un dispositif de levage (42) est arrangé au niveau de la surface en liaison avec le trou de forage (60),

    (g) ce que le deuxième connecteur (41) du moyen de récupération (45), fixé au dispositif de levage (42) qui est disposé au niveau de la surface, est amené à entrer en interaction de retenue avec le premier connecteur en étant abaissé dans le trou de forage (60) au moyen du dispositif de levage (42), après quoi le piston (15) est extrait du trou de forage au moyen du dispositif de levage, et un compartiment ainsi formé dans la cavité de la section de tube (10:1) peut être utilisée comme compartiment de mesure, et en ce que la section de tube (10:1) permet à l'eau provenant de l'environnement de s'écouler dans le compartiment de mesure à travers une ou plusieurs ouvertures (17), établissant ainsi une communication fluidique entre la cavité intérieur de la colonne de forage et le matériau environnant.


     
    2. Procédé selon la revendication 1, dans lequel des mesures sont effectuées in situ en bas dans un compartiment de mesure formé de cette manière dans le trou de forage (60) par l'exécution des étapes opérationnelles suivantes consistant en :

    (h) ce qu'après le forage et l'extrait du piston (15) ont été effectués, un instrument de mesure (50) ou un capteur est abaissé au moyen d'un dispositif de levage (46) à un niveau déterminé dans le compartiment de mesure formé,

    (i) ce que les valeurs mesurées obtenues sont enregistrées par l'instrument de mesure (50) et transférés sous forme de signaux électriques via un câble ou par télémétrie au niveau de la surface pour un traitement ultérieur.


     
    3. Procédé selon l'une quelconque des revendications 1 à 2, dans lequel le piston (15) est entraîné vers sa position la plus retirée pendant le forage par l'influence de la pression hydrostatique que le milieu d'entraînement fourni par la source de pression (11) exerce sur la surface d'extrémité (15b) du piston tournée vers ladite source de fluide sous pression.
     
    4. Procédé selon l'une quelconque des revendications 1 à 3, dans lequel les ouvertures (17) dans la surface extérieure sont disposées dans une première section de tube (10:1) de la colonne de forage (10), c'est-à-dire la section de tube qui est située le plus bas dans le trou de forage et qui est à côté du marteau perforateur de fond de trou (1), et le piston (15) est agencé de telle sorte qu'il puisse glisser à l'intérieur de la cavité intérieure de ladite première section de tube.
     
    5. Agencement pour établir une communication fluidique entre une cavité creuse d'une colonne de forage (10) qui est un composant d'une unité de forage de fond de trou et le matériau environnant in situ dans un trou de forage (60), un marteau perforateur de fond de trou (1) étant attaché de manière fixe à une extrémité de la colonne de forage (10) et une source de milieu sous pression (11) étant reliée à la deuxième extrémité de la colonne de forage au niveau de la surface, ladite source fournissant un milieu sous pression au marteau perforateur de fond de trou, caractérisé en ce qu'il comprend une section de tube (10:1) qui présente une ou plusieurs ouvertures (17) dans sa surface extérieure, lesdites ouvertures ayant une surface totale d'ouverture déterminée à l'avance,
    un piston (15) qui est agencé de telle sorte qu'il forme un joint avec la paroi intérieure ouverte de la colonne de forage (10) et est agencé pour se déplacer axialement le long de la tige de forage à l'intérieur de celui-ci,
    ledit piston (15) présente un canal de pénétration (16) qui permet à un écoulement de fluide d'entraînement sous pression d'être conduit à travers le piston et l'établissement d'un écoulement de communication entre la source de fluide sous pression (11) et le marteau perforateur de fond de trou (1) lorsque le piston est situé à sa position la plus retirée dans la section de tube (10:1) en contact avec le marteau perforateur de fond de trou (1) de manière à permettre au fluide de s'écouler, position dans laquelle le fluide sous pression de la source (11) est conduit à travers le canal (16) vers le marteau perforateur de fond de trou,
    et en ce que le piston (15) est entraîné vers sa position la plus retirée par l'influence d'une force hydrostatique que le fluide d'entraînement dans le canal exerce sur une surface d'extrémité (15b) du piston (15) qui fait face à la source de milieu sous pression (11) pendant le forage, un dispositif de levage (42) est arrangé au niveau de la surface et situé en liaison avec le trou de forage (60), un moyen de récupération (45) comprenant des premier et deuxième connecteurs (40, 41) qui peuvent être réunis d'une manière de retenue, dont le premier connecteur (40) est arrangé au niveau du piston (15) et fait face à la source de pression (11), tandis que le deuxième connecteur (41) est fixé au dispositif de levage (42) et peut être abaissé dans le trou de forage au moyen du dispositif de levage afin d'interagir avec le premier connecteur (40), le piston étant extrait du trou de forage au moyen du dispositif de levage après le forage a été effectué, un compartiment étant ainsi formé dans la cavité de la section de tube (10:1) qui peut être utilisé en tant que compartiment de mesure, et en ce que la section de tube (10:1) permet à l'eau provenant de l'environnement de s'écouler dans le compartiment de mesure à travers une ou plusieurs ouvertures (17), établissant ainsi une communication fluidique entre la cavité intérieur de la colonne de forage et le matériau environnant.
     
    6. Agencement selon la revendication 5, dans lequel le canal (16) du piston (15) est limité par des parties tubulaires (21, 22) qui, s'étendant axialement à partir de l'extrémité correspondante (15a, 15b) du piston, forment respectivement une sortie et une entrée pour l'écoulement à travers du milieu sous pression, où la partie tubulaire (21) qui forme la sortie est située en interaction d'une manière qui ne permet pas au fluide de passer avec un manchon de tuyau (3) disposé à l'embout arrière (8) du carter de machine (2) lorsque le piston est situé dans sa position la plus retirée dans la colonne de forage.
     
    7. Agencement selon la revendication 6, dans lequel des moyens de récupération (45) comprennent des premier et deuxième connecteurs (40, 41) conçus comme des parties mâle et femelle et agencés pour interagir d'une manière de retenue l'un avec l'autre par un effet d'encliquetage.
     
    8. Agencement selon l'une quelconque des revendications 5 à 7, dans lequel le dispositif de levage (42) est agencé pour l'abaissement du deuxième connecteur (41) du moyen de récupération (45) dans le trou de forage (60) et l'interaction avec le premier connecteur (40) qui est agencé au niveau du piston (15), et pour le levage du piston (15) du trou de forage après que les connecteurs ont été réunis.
     
    9. Agencement selon l'une quelconque des revendications 5 à 8, dans lequel le marteau à percussion (1) comprend un carter de machine (2) dont l'entrée pour l'écoulement du fluide d'entraînement est limitée par un manchon de tuyau (30) disposé à sa pièce d'extrémité arrière dans laquelle le manchon de tuyau de la partie tubulaire (21) qui forme la sortie du piston (15) pour l'écoulement du milieu d'entraînement est situé de manière à ne pas laisser passer le fluide lorsque le piston est situé à sa position la plus retirée dans la section de tube (10:1).
     




    Drawing











    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description