(19)
(11)EP 2 673 528 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
26.06.2019 Bulletin 2019/26

(21)Application number: 11785886.0

(22)Date of filing:  09.02.2011
(51)International Patent Classification (IPC): 
F16F 9/02(2006.01)
F16F 15/027(2006.01)
F16F 9/43(2006.01)
F16F 9/54(2006.01)
E02D 13/00(2006.01)
E02D 7/02(2006.01)
E02D 7/18(2006.01)
E02D 13/02(2006.01)
(86)International application number:
PCT/AU2011/000133
(87)International publication number:
WO 2011/146959 (01.12.2011 Gazette  2011/48)

(54)

VIBRATION DAMPENING DEVICE

SCHWINGUNGSDÄMPFUNGSVORRICHTUNG

DISPOSITIF D'AMORTISSEMENT DE VIBRATIONS


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(43)Date of publication of application:
18.12.2013 Bulletin 2013/51

(73)Proprietor: A.C.N. 166 970 627 PTY LTD
Singleton, NSW 2330 (AU)

(72)Inventor:
  • TIGHE, Peter John
    Toongabbie New South Wales 2146 (AU)

(74)Representative: Rupprecht, Kay et al
Meissner Bolte Patentanwälte Rechtsanwälte Partnerschaft mbB Widenmayerstraße 47
80538 München
80538 München (DE)


(56)References cited: : 
DE-A1- 4 447 156
FR-A- 1 263 909
JP-A- 4 258 550
JP-A- H04 258 550
US-A- 3 889 936
DE-A1- 4 447 156
JP-A- 2 157 316
JP-A- H02 157 316
US-A- 3 116 045
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    Technical Field



    [0001] The present invention relates to a vibration dampening device.

    Background



    [0002] A common technique for installing sheet elongate members such as piles, anchor members, caissons, and mandrels is to use a vibratory machine, such as a pile driver or vibratory hammer, supported by a support apparatus, such as a crane or the like. In the instance of a pile driver, one end of the vibratory pile driver is supported by the crane, such as via the hook connected to a sling, and the other end of the vibratory pile driver drives against the piling to thereby drive the pile into a ground surface.

    [0003] Generally, the vibratory pile driver can include a set of eccentric weights, such as cams, which are rotated at high speed to cause the vibratory pile driver to vibrate. The vibratory force created by the vibratory pile driver is then transferred against the end of the pile to thereby drive the pile into the ground surface.

    [0004] During start-up and shutdown phases of such vibrating equipment, there is generally a considerable amount of vibratory force that transferred to the support apparatus, such as the crane, via the sling. In particular situations, the vibratory force transferred to the crane can lead to a number of failures. This can include boom failure, excessive wear and tear to major structural components such as pins, sheaves, track gear, and acceleration of structural and metal weld fatigue. These failures can therefore drastically reduce the lifetime of the machines.

    [0005] Whilst a number of dampening devices have been proposed in the past, these devices generally use elastomeric material to absorb a portion of the vibratory force. However, due to shear strain that is applied to the elastomeric material, these components of these device wear. Furthermore, depending upon the vibratory force that is being transferred, dampening properties of the elastomeric material cannot be altered according to operating conditions. Others vibration dampening devices with fluid fillable absorbers are known from the documents: JP H04 258550 A, FR 1 263 909 A, DE 44 47 156 A1.

    [0006] Therefore, there is a need for a vibration dampening device that overcomes or at least alleviates one or more of the above-mentioned problems, or at least provides a useful commercial alternative.

    [0007] The reference in this specification to any prior publication (or information derived from it), or to any matter which is known, is not, and should not be taken as, an acknowledgement or admission or any form of suggestion that that prior publication (or information derived from it) or known matter forms part of the common general knowledge in the field of endeavour to which this specification relates.

    Summary



    [0008] In one broad aspect there is provided a vibration dampening device including:

    a first section having a first section support assembly for supporting vibratory equipment;

    a second section having a second section support assembly for allowing the vibration dampening device to be supported by a support apparatus; and

    one or more fluid fillable absorbers located between the first and second sections, wherein the one or more fluid fillable absorbers are configured to absorb at least a portion of a vibratory force transferred from operation of the vibratory equipment.



    [0009] In one form, the vibratory force transferred to the first section causes the first section to displace toward the second section, wherein the displacement of the first section toward the second section causes the one or more fluid fillable absorbers to compress, thereby at least partially absorbing the vibratory force.

    [0010] In another form, a portion of the first section support assembly protrudes through one or more second section apertures in the second section, and a portion of the second support assembly protrudes through one or more first section apertures in the first section.

    [0011] In one embodiment, the portion of the first section support assembly which protrudes through the second section aperture is one or more first section support arms, and the portion of the second section support assembly which protrudes through the first section aperture is one or more second section support arms.

    [0012] In another embodiment, a first section coupling element is coupled to the one or more first section support arms for coupling the vibratory equipment to vibration dampening device.

    [0013] In an optional form, a second section coupling element is coupled to the one or more second section support arms for coupling the support apparatus to the vibration dampening device.

    [0014] In another optional form, the first section includes a first section plate and the second section includes a second section plate, the first and second section plates being respectively parallel and separated by the one or more fluid fillable absorbers.

    [0015] Optionally, the first section plate and the second section plate respectively include upper and lower rigid sheets.

    [0016] In one form, the first section plate and the second section plate respectively include an embedded rigid sheet.

    [0017] In another form, at least one of the first section plate and the second section plate are made substantially from a polymer material.

    [0018] In one embodiment, the polymer material is polyethylene.

    [0019] In another embodiment, the one or more fluid fillable absorbers includes an inlet for receiving fluid from a fluid source and an outlet for expelling fluid.

    [0020] In an optional form, the vibration dampening device includes a fluid control system in fluid communication with the one or more fluid fillable absorbers, wherein the fluid control system is configured to control at least one of the flow of fluid to and from the one or more fluid fillable absorbers.

    [0021] In another optional form, the fluid expelled from the one or more fluid fillable absorbers is transferred to at least one of:

    the fluid source; and

    an exhaust assembly.



    [0022] In an optional embodiment, the vibration dampening device includes a displacement feedback assembly, operatively connected to the fluid control system, for detecting displacement between the first and second sections, wherein the fluid control system is activated upon the displacement feedback assembly detecting displacement.

    [0023] In another optional embodiment, in the event that the displacement feedback system detects displacement of the second section toward the first section, the fluid control system supplies fluid to the one or more fluid fillable absorbers.

    [0024] Optionally, in the event that the displacement feedback assembly displacement of the second section toward the first section, the fluid control system expels fluid from the one or more fluid fillable absorbers.

    [0025] Optionally, the displacement feedback assembly includes:

    an arm member operatively coupled to the second section at a first end;

    a first leveller operatively coupled to a second end of the arm member and the fluid source, wherein the first leveller is actuated by the arm member when the second section is displaced toward the first section, wherein actuation of the first leveller causes the fluid control system to supply fluid to the one or more fluid fillable absorbers; and

    a second leveller operatively coupled to the second end of the arm member and the fluid source, wherein the second leveller is actuated by the arm member when the second section is displaced away from the first section, wherein actuation of the second leveller causes the fluid control system to expel fluid from the one or more fluid fillable absorbers.



    [0026] In one form, the fluid control system includes a directional control valve unit including:

    a first port in fluid communication with the first leveller;

    a second port in fluid communication with the second leveller;

    a third port in fluid communication with the fluid source;

    a fourth port in fluid communication with the one or more fluid fillable absorbers; and

    a fifth port in fluid communication with one of:

    the exhaust assembly; and

    the fluid source via a one way valve.



    [0027] In another form:

    in the event that the first port is actuated via actuation of the first leveller, the third and fourth ports are actuated by the directional control valve unit to allow fluid to be supplied from the fluid source to the one or more fluid fillable absorbers; and

    in the event that the second port is actuated via actuation of the second leveller, the fourth and fifth ports are actuated by the directional control valve to allow fluid to be expelled from the one or more fluid fillable absorbers.



    [0028] In one embodiment, the fluid source is a pressurised gas source, wherein the fluid fillable absorbers are inflatable with pressurised gas.

    [0029] In another embodiment, the pressurised gas source is a compressed air source.

    [0030] In an optional form, the one or more fluid fillable absorbers are air bags.

    [0031] In another optional form, each air bag includes a rolling-lobe and piston configuration.

    [0032] In one embodiment, the fluid source is a hydraulic fluid source.

    [0033] In another embodiment, the vibration dampening device includes a plurality of fluid fillable absorbers, wherein a first fluid communication line and a second fluid communication line provide fluid from the fluid source to respective portions of the fluid fillable absorbers at different fluid rates.

    [0034] In an optional form, the vibration dampening device includes a motor operatively connected to a compressor, wherein the compressor is operatively connected to the fluid supply.

    [0035] In another optional form, the vibration dampening device includes a receiver unit operatively connected to the motor, wherein the receiver unit is responsive to a remote control unit to control the operation of the motor.

    [0036] Optionally, the first section includes first walls that extend toward the second section, and the second section includes second walls that extend toward the first section, wherein the first and second walls undergo telescopic movement relative to each other when vibratory force is being partially absorbed by the vibration dampening device.

    [0037] Other embodiments will be described throughout the description of the example embodiments.

    Brief Description of the Figures



    [0038] Example embodiments should become apparent from the following description, which is given by way of example only, of at least one preferred but non-limiting embodiment, described in connection with the accompanying figures.

    Figure 1 illustrates a cross-sectional plan view of an example vibration dampening device;

    Figure 2 illustrates a horizontal cross-sectional view of the vibration dampening device of Figure 1;

    Figure 3 illustrates a side view of an example of a crane supporting the vibration dampening device of Figure 1 supporting a vibratory pile driver;

    Figure 5 illustrates a side view of a further example of a vibration dampening device, wherein the first and second section plates are displaced toward each other;

    Figure 5 illustrates a side view of a further example of a vibration dampening device in an equalised position;

    Figure 6 illustrates a side view of the vibration dampening device of Figure 4, wherein the first and second sections are displaced away from each other; and

    Figure 7 illustrates a block diagram of a plumbing arrangement for the vibration dampening device;

    Figure 8 illustrates a block diagram of an alternate plumbing arrangement for the vibration dampening device;

    Figure 9 illustrates a cross-sectional plan view of another example vibration dampening device;

    Figure 10 illustrates a front view of another example of a vibration dampening device;

    Figure 11 illustrates a side view of the vibration dampening device of Figure 10;

    Figure 12A illustrates a front view of the second section of the vibration dampening device of Figure 10;

    Figure 12B illustrates a side view of the second section of Figure 12A;

    Figure 12C illustrates a front exploded view of the second section of Figure 12A;

    Figure 12D illustrates a side exploded view of the second section of Figure 12A;

    Figure 13A illustrates a front view of the first section of the vibration dampening device of Figure 10;

    Figure 13B illustrates a side view of the first second of Figure 13A;

    Figure 13C illustrates a front exploded view of the first section of Figure 13A;

    Figure 13D illustrates a side exploded view of the first section of Figure 13A;

    Figure 14 illustrates a plan view of the second section plate of the vibration dampening device of Figure 10;

    Figure 15 illustrates a plan view of the first section plate of the vibration dampening device of Figure 10; and

    Figure 16 illustrates a cross-sectional view of another example of a vibration dampening device including a casing.


    Description of Embodiments



    [0039] The following modes, given by way of example only, are described in order to provide a more precise understanding of the subject matter of a preferred embodiment or embodiments. In the figures, incorporated to illustrate features of an example embodiment, like reference numerals are used to identify like parts throughout the figures.

    [0040] Referring to Figure 1 there is shown an example of a vibration dampening device 10. The vibration dampening device 10 includes a first section 20, a second section 30, and one or more fluid fillable absorbers 40. The first section 20 includes a first section support assembly 25 for supporting vibratory equipment 140 (see Figure 3). The second section 30 includes a second section support assembly 35 for allowing the vibration dampening device 10 to be supported by a support apparatus 100 (see Figure 3). The one or more fluid fillable absorbers 40 are located between the first section 20 and second section 30. The one or more fluid fillable absorbers 40 are configured to absorb at least a portion of a vibratory force transferred from operation of the vibratory equipment.

    [0041] Advantageously, the vibration dampening device 10 intercepts and dampens vibratory forces via the compression of the one or more fluid fillable absorbers 40. This configuration is particularly successful at startup and shut down phases of operation of the vibratory equipment 140 where low-frequency vibratory forces are a significant proportion of the vibratory force transferred to the support apparatus 100. Furthermore, the vibratory force that is transferred to the support apparatus 140 during startup and shut down phases of operation of the vibratory equipment 140 is generally significantly greater than during normal operation. Thus, violent shaking of the support apparatus 100 is reduced during these phases utilising the vibration dampening device 10.

    [0042] As shown in Figure 3, the support apparatus 100 which supports the vibration dampening device 10 can be provided in the form of a crane 100. However, other forms of support apparatus can be used to support the vibration dampening device 10 such as an excavator or some other type of hoisting machinery. The vibratory equipment 140 coupled to the first section support assembly 25 can be provided in the form of a vibratory pile driver. However, other forms of vibratory equipment 140 can be used such as a vibratory hammer 140 or the like.

    [0043] In use, the first and second sections 20, 30 are urged toward each other when a downward force is applied to the first section support assembly 25 via a lower sling 130. As the first and second sections 20, 30 are urged together, the first and second sections displace toward each other, thereby causing the one or more fluid fillable absorbers 40 to compress and at least partially absorb the vibratory force. The partial absorption of the urging force by the one or more fluid fillable absorbers 40 reduces the vibratory force transferred to the support apparatus 100 via an upper sling 120.

    [0044] Referring more specifically to Figure 1, the first section 20 can include a first section plate 21 and the second section 30 can include a second section plate 31. The first section plate 21 includes a first section aperture 65 located in a central position thereof. The second section plate 31 includes a plurality of second section apertures 60 located radially thereabout.

    [0045] The first section support assembly 25 can include a plurality of first section support arm 50 that are connected to the first section 20 and extend downwardly therefrom. The first section support arm 50 are located radially about the first section aperture and are spatially distributed evenly. A portion of each first section support arm 50 protrudes through a respective one of the second section apertures 60 provided in the second section plate 21. Each second section aperture 60 may include a substantially frictionless bush 37 on the inner surface thereof, such as a Teflon insert, to reduce friction between the first section support arms 50 and the second section plate 31 during operation.

    [0046] The protruded portions of the first section support arms 50 connect to a stop member 70 which rests under the second section plate 31 to restrict the second section 30 and the first section 20 separating via withdrawal of the first section support arms 50 from the second section plate 31. The stop member 70 may be releasably attached to the first section support arms 50 via coupling elements. For example, each first section support arm 50 may includes a screw thread to allow for threaded element to be coupled thereto. The stop member may be a coupling plate 70 which is releasably secured under the second section plate 31. Alternatively, it will be appreciated the first section support arms 50 can be fixed permanently to the stop member 70.

    [0047] The first section support assembly 25 includes a first section coupling element 26 for coupling the lower sling 130 to the first section support assembly 25. In particular, the first section coupling element 26 is provided in the form of a lug or eyelet which can extend from the stop member 70.

    [0048] The second support assembly 35 includes a second support arm 55 that is centrally located on the second section plate 31 and extends substantially perpendicularly therefrom. Whilst the second section support arm 35 is shown for clarity purposes having a beam-like profile in Figure 1, the second section support arm 55 can have a tapered profile wherein a widened area is provided in contact with the second section plate 31 and tapers away as it extends from the second section plate 31.

    [0049] A portion of the second section support arm 55 protrudes through the first section aperture 65 located centrally in the first section plate 20. The second support assembly 35 includes a second section coupling element 80 for coupling the upper sling 120 to the second section support assembly 35. The second section coupling element 80 is provided in the form of a lug or eyelet which can extend from the second section support arm 55.

    [0050] Whilst it is shown in Figures 1 to 6 that the vibration dampening device 10 includes a single second section support arm 55 that protrudes upwardly from the second section plate 31, in another variation, a plurality of second section support arms 55 can extend upwardly from the second section plate 31 and protrude through the first section plate 21 similarly to the configuration used for the first section support arms 50 but in a reverse arrangement. The first section aperture 25 may include a substantially frictionless bush 67 on the inner surface thereof, such as a Teflon insert, to reduce friction between the second section support arm 55 and the first section plate 21 during operation.

    [0051] As shown in Figure 2, the first section support arms 50 are distributed evenly and radially about the first section plate 21, and the second section support arm 55 is located centrally on the second section plate 31. As shown in Figure 2, the first section support arms 50 are located between adjacent fluid fillable absorbers 40a, 40b, 40c, 40d which extend between the first section plate 21 and the second section plate 31.

    [0052] Referring to Figure 7, the one or more fluid fillable absorbers 40 are in fluid communication with a fluid source 710 so as to be able to at least partially supply and at least partially fill the one or more fluid fillable absorbers70 with fluid. The vibration dampening device includes a fluid control system 740 which controls the supply of fluid to and from the one or more fluid fillable absorbers.

    [0053] The fluid source 710 is preferably a gas source, such as a pressurised gas supply, wherein the fluid fillable absorbers 40 are inflatable with pressurised gas. The pressurised fluid source can be provided in the form of a pressurised fluid reservoir, such as a pressurised air tank, which can be supported on the device 10, such on an upper surface of the first section 20.

    [0054] The fluid source 710 can be in fluid communication with a compressor 760 to resupply fluid to the fluid source 710 when fluid is distributed to the fluid fillable absorbers 40. The compressor may be operably connected to a motor 761, such as a diesel motor. The fluid source 710, compressor 760 and or motor 761 can be supported upon the vibration dampening device 10. Due to the device 10 being able to operate on air pressure only, the device is safe in areas where electrical systems may be hazardous. Additionally the expulsion of air is environmentally advantageous. It will be appreciated that other forms of fluid can be used such as a hydraulic liquid, however gas has been found advantageous for particular applications, particularly due to the relatively light weight of gas.

    [0055] The vibration dampening device 10 can include a displacement feedback assembly 730 for detecting displacement between the first and second section plates 21, 31 and for maintaining the separation of the first and second sections 21, 31 to a particular defined spacing. The defined spacing can generally be defined as a preferred ride level of the fluid fillable absorbers 40.

    [0056] The displacement feedback assembly 730 is operatively connected to the fluid source 710 to selectively supply fluid from the fluid source 710 to maintain the separation between the first and second section plates 21, 31 in the event that the first and second section plates 21, 31 are displaced toward each other. The displacement feedback assembly 730 can be also operatively connected to the exhaust assembly 720, wherein in the event that the displacement feedback assembly 730 detects that the second section plate 31 has been displaced away from the first section plate 21, the exhaust assembly 720 is actuated to allow fluid to be expelled from the one or more fluid fillable absorbers 40.

    [0057] Referring to Figures 4 to 6 there is shown a plurality of positions that the device 10 can be moved between.

    [0058] In particular, Figure 5 illustrates the device 10 in a equalised position wherein the force being applied to the first and second section support assemblies 25, 35 is balanced by the force being applied by the pressure in the fluid fillable absorbers 40.

    [0059] Figure 4 illustrates the situation where the force being applied to the first and second section support assemblies 25, 35 is greater than the pressure being exerted by the fluid fillable absorbers 40. In this position, the device is in a compressed position. The displacement feedback assembly 730 detects this imbalance of forces via the displacement of the first and second section plates 21, 31 toward each other, and actuates the fluid supply to at least partially fill the fluid fillable absorbers 40 to return the device to the equalised position as shown in Figure 5.

    [0060] Figure 6 illustrates the situation where the force being applied to the first and second section support assemblies 25, 35 is less than the pressure being exerted by the fluid fillable absorbers 40. In this illustration, the device is in an expanded position. The displacement feedback assembly 730 detects this imbalance of forces via the displacement of the first and second section plates 21, 31 away from each other, and actuates the exhaust assembly to expel fluid from the fluid fillable absorbers 40 to return the device 10 to the equalised position as shown in Figure 5.

    [0061] The displacement feedback assembly 730 can be constructed using many configurations. Referring to Figures 4 to 6, there is shown by example a specific mechanical arrangement for the displacement feedback assembly 730 that includes an arm member 410, a first leveller 420, and a second leveller 430.

    [0062] The arm member 410 is operatively coupled, at a first end, to the second section plate 31. The first leveller 420 is operatively coupled to a second end of the arm member 410 and the fluid source 710, wherein the first leveller is actuable by displacement of the arm member 410 when the second section 30 is displaced toward the first section 20 as shown in Figure 4. Actuation of the first leveller 420 causes the supply of fluid from the fluid source 710 to the one or more fluid fillable absorbers 40, thus returning the first and second section plates 21, 31 to the predetermined spacing therebetween as shown in Figure 5.

    [0063] The second leveller 430 is operatively coupled to the second end of the arm member 410 and the fluid source 710, wherein the second leveller 430 is actuable by displacement of the arm member 410 when the second member 30 is displaced away from the first section plate 21 as shown in Figure 6. Actuation of the second leveller 430 causes the expulsion of fluid from the one or more fluid fillable absorbers 40 via the exhaust assembly 720 to thereby return the first and second section plates 21, 31 to the predetermined spacing therebetween as shown in Figure 5.

    [0064] Referring to Figure 7, the displacement feedback assembly 730 can be operatively connected to the fluid control system 740. The fluid control system can be provided in the form of a directional control valve unit 740. The directional control valve unit 740 includes a plurality of ports 746. In particular, the directional control valve unit 740 includes a first port 741 in fluid communication with the first leveller 420, a second port 742 in fluid communication with the second leveller 430, a third port 743 in fluid communication with the fluid source 710, a fourth port 744 in fluid communication with the fluid fillable absorbers 40, a fifth port 745 in fluid communication with the exhaust assembly 720. The fifth port 745 can simply be an exhaust vent.

    [0065] The directional control valve unit 740 is configured to allow supply of fluid from the fluid source 710 to the one or more fluid fillable absorbers 40, or to expel fluid from the fluid fillable absorbers 40 via the exhaust assembly 720, based upon whether the first or second leveller 420, 430 is actuated. The directional control valve unit 740 includes a plurality of control elements associated with respective ports 746 which detect fluid being provided thereto wherein the actuation of one of the control elements 747 at a respective port 746 results in opening and/or closing one or more valves at one or more ports 746 of the directional control valve unit 740.

    [0066] In the event that the control element 747 at the first port 741 is actuated via fluid supply from actuation of the first leveller 420, the directional control valve unit 740 actuates valves at the third and fourth port 743, 744, allowing fluid to be supplied from the fluid source 710 to the one or more fluid fillable absorbers 40.

    [0067] Alternatively, in the event that the control element 747 at the second port 742 is actuated via fluid supply from actuation of the second leveller 430, the directional control valve unit 740 actuates valves at the fourth and fifth ports 744, 745, allowing fluid to be expelled from the fluid fillable absorbers 40 via the exhaust assembly 720.

    [0068] As shown in Figure 7 by a double headed arrow, the fluid transfer line between the directional control valve unit 740 and the fluid fillable absorbers 40 is via one or more bidirectional fluid transfer lines. As such, fluid can transfer from the fluid source 710 to the fluid fillable absorbers 40, via the directional control valve unit 740, using the same fluid transfer line that is used to expel fluid from the fluid fillable absorbers 40 to the exhaust vent 720, via the directional control valve unit 740.

    [0069] It will be appreciated that the displacement feedback assembly 730 described above is a mechanical type arrangement which is advantageous due to the type of vibrational forces that are being exerted on the device. Whilst the displacement feedback assembly 730 described above is based on a mechanical arrangement to detect displacement between the first and second section plates 21, 31, other arrangements can be utilised.

    [0070] In particular, one or more electronic sensors (not shown), such as a laser or an ultrasonic sensor, can be used to detect displacement of the first section plate 21 toward or away from the second section plate 31. The one or more electronic sensors can be used as input to an electromechanical directional control valve, wherein depending upon the electrical input from the one or more electronic sensors indicative of the displacement of the first section plate 21 toward or away from the second section plate 31 relative to a displacement threshold, the supply of fluid or expulsion of fluid is actuated by the electromechanical directional control valve. Other arrangements for the displacement feedback assembly 730 are also possible.

    [0071] Referring to Figures 4 to 6, the one or more fluid fillable vibratory force absorbers 40 can be provided in the form of inflatable absorbers such as air bags, specifically truck suspension air bags, which use a rolling-lobe and piston configuration 45. When fluid is supplied to the air bags 40, the air bags 40 extend substantially perpendicularly to the first and second sections 20, 30, as shown in Figure 5 and more predominately in Figure 6, to urge the first and second section plates 21, 31 apart.

    [0072] When fluid is expelled from the air bags 40, the air bags 40 allow the first and second section plates 21, 31 to move toward each other, as shown in Figure 4. In one form, the second section plate 31 includes a plurality of legs that extend upwardly from the second section plate 31. The legs support the first section plate 21 above the second section plate 31 a particular distance when the fluid fillable absorbers 40 are substantially empty and cannot support the first section 20. In particular, an underside surface of the first section plate 21 rests against a foot of each leg when the fluid fillable absorbers 40 are substantially empty. It will be appreciated that a reverse arrangement can be utilised wherein the legs downwardly extend from the first section plate 21 and rest against an upper surface of the second section plate 31 when the fluid fillable absorbers 40 are substantially empty and cannot support the first section plate 21.

    [0073] In one optional embodiment 800 as shown in Figure 8, the fluid expelled from the fluid fillable absorbers 40 can be expelled into a holding tank 810 in fluid communication with the exhaust assembly 720. The holding tank 810 is in fluid communication with the fluid source 710, wherein the fluid is recycled by communicating this expelled fluid back into the fluid source 710 for supplying the one or more fluid fillable absorbers 40.

    [0074] The holding tank 810 includes a pair of one-way valves to restrict fluid flowing in from the fluid source 710 and fluid flowing out to the fluid fillable absorbers 40. The holding tank 810 may pressurise the fluid which flows into the holding tank 810 prior to transferring the pressurised fluid back to the fluid source 710 for resupply to the fluid fillable absorbers 40 when required. This optional embodiment 800 thereby reduces the expulsion of fluid to the external environment. In the event that temperature of the environment lowers, the fluid source 710 may need to be topped up with further fluid to adequately provide a sufficient amount of fluid pressure to the one or more fluid fillable absorbers 40. In the event that the temperature of the environment increases, there may be an increase in the fluid pressure in the system 810, wherein a blow-off valve (not shown) may be automatically actuated to expel fluid from the holding tank, fluid source 710, or the exhaust assembly 720.

    [0075] The device 10 can include a casing 1200 as shown in Figure 16. The casing can restrict an external object, such as a user's appendage being placed between the first and second section plates 21, 31. In one form, the casing 1200 may surround at least a portion of the first and second section plates 21, 31.

    [0076] Referring more specifically to Figure 16, the first section plate 21 includes first walls 1210 extending orthogonally from edges thereof toward the second section plate 31. Similarly, the second section plate 31 includes second walls 1220 extending orthogonally from edges thereof toward the first section plate 21. The first and second walls 1210, 1210 are arranged in an overlapping arrangement such that telescopic movement occurs between the first and second walls 1210, 1220 as displacement occurs between the first and second sections 20, 30 in use. The walls can be made from the same material as the first and second plates 21, 31, such as polyethylene. The casing can include a cavity 1230 located above the first section 20 which can house various components of the vibration dampening device, such as the fluid supply 710, the compressor 760 and the motor 761.

    [0077] In an alternative, the casing may be provided in the form of a baffle, in particular a concertinaed baffle, which extends between the edges of the first and second section plates 21, 31 to surround the sides of the device 10.

    [0078] In a preferable form, a substantially constant fluid pressure is to be provided by the fluid source 710 when actuated to supply fluid to the fluid fillable absorbers 40. A selectable control valve may be provided with the fluid source 710 to selectively adjust and control the fluid supplied to the fluid fillable absorbers 40. In one form, the fluid source 710is provided between a pressure range of 90 psi to 110 psi, and more preferably 100 psi. When fluid is provided to the fluid fillable absorbers 40, the fluid source 710 increases the volume of fluid provided in the fluid fillable absorbers 40 at a constant pressure until the displacement feedback assembly detects that the displacement between the first and second section plates 21, 31 is satisfactory.

    [0079] As shown in Figures 2, 7 and 8, four fluid fillable absorbers 40 can be used. In one variation, different fluid flow rates may be provided to at least some of the fluid fillable absorbers 40 to absorb varying frequency components of the vibratory force. In particular, each fluid fillable absorber 40 of a diagonal pairs of fluid fillable absorbers (i.e. 40a and 40d is a first diagonal pair, 40b and 40c is a second diagonal pair) can be supplied with the same fluid flow rate, however the fluid flow rate is different between the pairs of fluid fillable absorbers 40. As shown in Figures 7 and 8, two fluid transfer lines 791, 792 may supply fluid to and receive fluid from the fluid fillable absorbers 40. Each fluid transfer line 791, 792 transfers fluid to a respective pair of diagonally located fluid fillable absorbers, however each fluid transfer line transfers the fluid at a different flow rate. For example, fluid transfer line 791 may supply and receive fluid in relation to fluid fillable absorbers 40a and 40d as shown in Figure 2, and fluid transfer line 792 may supply and receive fluid in relation to fluid fillable absorbers 40b and 40c as shown in Figure 2. Fluid transfer line 791 and 792 can be differently sized to allow for the variation in the flow rates between the respective fluid transfer lines 791, 792. The different fluid flow rates to and from the fluid fillable absorbers results in the fluid fillable absorbers 40 being able to at least partially fill and empty at different rates, thereby allowing for varying frequency components of the vibratory force to be absorbed.

    [0080] In another variation, the vibration dampening device 10 can also include one or more mechanical vibration absorbers. In particular, referring to Figure 9, the one or more mechanical vibration absorbers 90 may be provided in the form of shock absorbers which extend between the first and second section plates 21, 31. Additionally or alternatively, the one or more mechanical vibration absorbers 90 may be provided in the form of heavy duty springs which extend between the first and second section plates 21, 31.

    [0081] In another variation, the fluid source 710 may be provided in the form of a compressor of the support apparatus 100. In particular, a number of support apparatuses 100 such as cranes and excavators include a hydraulic compressor that can be fluidly connected to the device 10 to at least partially fill the one or more fluid fillable absorbers 40.

    [0082] In a further variation, the vibration absorbing device 10 may be integrated within vibratory equipment 140. In this configuration, the vibration absorbing device 10 is integral with the vibratory equipment 140, thereby reducing the need for two separate pieces of equipment.

    [0083] In a further variation, whilst the first and second sections 20, 30 can be made of steel, a polymer material can also be used to lighten the device 10. In particular, the polymer material can have a low coefficient of friction, such as Teflon. Not only is the device lighter, but advantageously due to the low coefficient of friction of the material which the first and second section is made of, the need for substantially frictionless inserts for reducing the friction between the first and second support arms 50, 55 with the second and first section plates 21, 31 is not required.

    [0084] In another variation, the vibration dampening device 10 can operate using a liquid rather than a gas, such hydraulic fluid. The air bags of the previous described embodiments may be substituted for a plurality of hydraulic vibration absorbers which are in fluid communication with a hydraulic accumulator, such as a pulse hydraulic accumulator.

    [0085] As shown in Figures 4, 5 and 6, the underside surface of the second section plate 31 can include a number of ribs 39 that radially extend from a centre point thereof. The ribs form a diagonal arrangement on the underside surface of the second section plate 31. The ribs 39 can provide additional structural support for the second section plate 31.

    [0086] Referring to Figure 10 and 11 there is shown another example of the vibration dampening device 10. For clarity purposes, the displacement feedback assembly 730 has not been shown in the figures, however, it will be appreciated that the displacement feedback assembly 730 can be connected to the vibration dampening device 10 as previously discussed and shown in relation to Figures 4 to 6.

    [0087] The first and second section plates 21, 31 are made from a polymer. In particular, the polymer is ultra high density polyethylene. The first section 20 includes an upper and lower rigid sheet 1040A, 1040B which is generally made from steel or similarly rigid material to provide additional strength. The polymer material of the first section plate 21 is sandwiched between the upper and lower sheets 1040A, 1040B.

    [0088] Similarly, the second section plate includes an upper and lower sheet 1040C, 1040D. The second section 30 includes an upper and lower sheet 1040C, 1040D which is generally made from steel or similar to provide additional strength. The polymer second section plate 31 is sandwiched between the upper and lower plates 1040C, 1040D.

    [0089] The first and second section 20, 30 in this example include no welded joints, but rather a number of keyed arrangements in order to reduce failures to welded components when under significant load.

    [0090] In particular, referring to the exploded view in Figures 12C and 12D, the second section 30 includes a plurality of second section support arms 50 that extend between a second section coupling arrangement 85 for attachment to the crane or the like and the second section plate 31. Each second section support arm 50 includes a first hole 51 and a second hole 52. A triangular lifting plate 1035 is placed between first ends of the second section support arms 50 and a lifting plate pin 1030 is received through the respective first holes 51 of the arms 50. A second end of the second section support arm 50 protrudes through a respective aperture in the second section plate 31 wherein a pin 1010 is located in the first hole 52 to prevent the second section support arm 50 being withdrawn therefrom. The first hole 52 Lifting eyelets 80 are coupled at apertures 1037 of the triangular lifting plate 1035. The coupling arrangement to the crane allows for swivelling movement in a first and second plane which are orthogonal to a longitudinal axis of the second section support arms 50.

    [0091] Similarly, referring to the exploded view in Figures 13C and 13D, the first section 21 includes a plurality of first section support arms 55 that extend between a first section coupling pin 25 for attachment to the vibratory equipment and the first section plate 21. Each first section support arm 55 includes a first hole 56 and a second hole 57. Each end 26 of the first section coupling pin 25 is received through a respective second hole 57 of the first section support arms. A first end of the first section support arm 55 protrudes through a respective aperture in the first section plate 21 wherein a pin 1010 is located in the first holes 52 to prevent the second section support arm 50 being withdrawn therefrom.

    [0092] As shown in Figure 14, the second section plate 31 includes apertures 1080, 1085. Apertures 1080 are used to allow the first section support arms to pass through the second section plate 31 when displacement occurs between the first and second sections 20, 30. Apertures 1085 are used for securing, via keying, the second section support arms. Apertures 1081, 1086 are used for securing an underside of a respective fluid fillable absorber 40.

    [0093] Similarly, as shown in Figure 15, the first section plate 21 includes apertures 1090, 1095. Apertures 1090 are used to allow the second section support arms to pass through the first section plate 21 when displacement occurs between the first and second sections 20, 30. Apertures 1095 are used for securing, via keying, the first section support arms. Apertures 1097 are used for securing an underside of a respective fluid fillable absorber 40.

    [0094] In another variation, the vibration dampening device 10 can include a battery source 716 electrically connected to a heat source 715. The heat source 715 can be selectively activated to thermally heat the fluid supply 710 due to changes in environmental temperature which can effect pressure within the plumbing arrangement of the vibration dampening device 10. The vibration dampening device 10 may include a thermometer to measure the environmental temperature, wherein in the event that the temperature is below a threshold temperature, the heat source 715 is activated.

    [0095] In another variation, the vibration dampening device 10 includes a remote control unit 763 and a receiver unit 762. The receiver unit 762 is operatively coupled to the motor 761. The remote control unit 763 can be operated by a user thereby controlling the operation of the vibration dampening device 10. In one form, the remote control unit 763 includes an interface to activate the motor 761, wherein the remote control unit 763 generates and emits a radio signal indicative of an activation command. The receiver unit 762 receives the radio signal indicative of the activation command, and in response activates the motor 761. The activation of the motor 761 thereby activates the compressor 760, thereby activating the supply of fluid to the fluid fillable absorbers 40. The remote control unit 763 can also include an interface to deactivate the motor 761, wherein the remote control unit 763 generates and emits a radio signal indicative of a deactivation command. The receiver unit 762 receives the radio signal indicative of the deactivation command, and in response deactivates the motor 761, thereby deactivating the compressor 760 and the supply of fluid to the fluid fillable absorbers 40. The fluid control system 740 may also expel the fluid contained in the fluid fillable absorbers in response to the deactivation signal being received by the receiver unit 762.

    [0096] In another variation, a rigid sheet 1099, such as a steel sheet, may be embedded within the polymer plate of the first and second section plates 21, 31. The embedded rigid sheet 1099 may be embedded during the manufacturing process of the polymer plates 21, 31. The embedded rigid sheet may have apertures cut therein prior to embedding in the plates, wherein the apertures correspond to apertures of the first and second plates.


    Claims

    1. A vibration dampening device (10) including:

    a first section (20) having a first section support assembly (25) configured to support vibratory machinery (140);

    a second section (30) having a second section support assembly (35) configured to allow the vibration dampening device (10) to be suspended by a support apparatus (100);

    wherein a portion (50) of the first section support assembly protrudes through one or more second section apertures (60) in the second section (30), and a portion (55) of the second support assembly protrudes through one or more first section apertures (65) in the first section (20); and

    wherein the portion (50) of the first section support assembly which protrudes through the second section aperture (60) is one or more first section support arms, and the portion (55) of the second section support assembly which protrudes through the first section aperture (65) is one or more second section support arms

    characterised in that

    a plurality of fluid fillable absorbers (40), in fluid communication with a fluid source (710), located between the first and second sections for absorbing at least a portion of a vibratory force transferred from operation of the vibratory machinery (140) including a first pair (40a, 40d) and a second pair (40b, 40c) of fluid fillable absorbers, wherein a fluid flow rate is different for the pairs (40a, 40d; 40b, 40c) of the plurality of fluid fillable absorbers (40) such that the pairs are:

    configured to fill with fluid at a different rate; and

    configured to expel fluid at a different rate; thereby allowing for varying frequency components of the vibratory force to be absorbed;

    a displacement feedback assembly (730) for detecting displacement between the first and second sections (20, 30), wherein the vibratory force from the operation of the vibratory machinery (140) causes the displacement of the first section (20) relative to the second section (30); and

    a fluid control system (740), operatively connected to the displacement feedback assembly (730) and in fluid communication with the one or more fluid fillable absorbers (40), wherein the displacement feedback assembly (730) actuates the fluid control system (740) to control the flow of fluid for the one or more fluid fillable absorbers (40) by supplying fluid to and expelling fluid from the one or more fluid fillable absorbers (40) in response to detection of the displacement; and

    at least one of:

    a first section coupling element (26) is coupled to the one or more first section support arms (50) for coupling the vibratory machinery (140) to the vibration dampening device (10); and

    a second section coupling element (80) is coupled to the one or more second section support arms (55) for coupling the support apparatus (100) to the vibration dampening device (10).


     
    2. The vibration dampening device (10) according to claim 1, wherein the first section (20) includes a first section plate (21) and the second section (30) includes a second section plate (31), the first and second section plates (21, 31) being respectively parallel and separated by the one or more fluid fillable absorbers (40).
     
    3. The vibration dampening device (10) according to any one of claims 1 to 2, wherein the fluid expelled from the one or more fluid fillable absorbers (40) is transferred to at least one of:

    the fluid source (710); and

    an exhaust assembly (720).


     
    4. The vibration dampening device (10) according to any one of claims 1 to 3, wherein in the event that the displacement feedback assembly (730) detects the displacement of the second section (30) toward the first section (20), the fluid control system (740) controls the supply of fluid to the one or more fluid fillable absorbers (40), and wherein in the event that the displacement feedback assembly (730) detects the displacement of the second section (30) away from the first section (20), the fluid control system (740) controls the expulsion of fluid from the one or more fluid fillable absorbers (40).
     
    5. The vibration dampening device (10) according to any one of claims 1 to 4, wherein the displacement feedback assembly (730) includes:

    an arm member (410) operatively coupled to the second section (30) at a first end;

    a first leveller (420) operatively coupled to a second end of the arm member (410) and the fluid source (710), wherein the first leveller (420) is actuated by the arm member (410) when the second section (30) is displaced toward the first section (20), wherein actuation of the first leveller (420) causes the fluid control system (740) to control supply of fluid to the one or more fluid fillable absorbers (40); and

    a second leveller (430) operatively coupled to the second end of the arm member (410) and the fluid source (710), wherein the second leveller (430) is actuated by the arm member (310) when the second section (30) is displaced away from the first section (20), wherein actuation of the second leveller (430) causes the fluid control system (740) to control expulsion of fluid from the one or more fluid fillable absorbers (40).


     
    6. The vibration dampening device (10) according to claim 5, wherein the fluid control system (740) includes a directional control valve unit including:

    a first port (741) in fluid communication with the first leveller (420);

    a second port (742) in fluid communication with the second leveller (420);

    a third port (743) in fluid communication with the fluid source (710);

    a fourth port (744) in fluid communication with the one or more fluid fillable absorbers (40); and

    a fifth port (755) in fluid communication with one of:

    the exhaust assembly (720); and

    the fluid source (710) via a one way valve.


     
    7. The vibration dampening device (10) according to claim 6, wherein:

    in the event that the first port (741) is actuated via actuation of the first leveller (420), the third and fourth ports (743, 744) are actuated by the directional control valve unit (740) to allow fluid to be supplied from the fluid source (710) to the one or more fluid fillable absorbers (40); and

    in the event that the second port (742) is actuated via actuation of the second leveller (430), the fourth and fifth ports (744, 745) are actuated by the directional control valve (740) to allow fluid to be expelled from the one or more fluid fillable absorbers (40).


     
    8. The vibration dampening device (10) according to any one of claims 1 to 7, wherein the fluid source (710) is a compressed air source.
     
    9. The vibration dampening device according to any one of claims 1 to 8, wherein the vibration dampening device (10) includes:

    a motor (761) operatively connected to a compressor (760), wherein the compressor (760) is operatively connected to the fluid source (710); and

    a receiver unit (762) operatively connected to the motor (761), wherein the receiver unit (762) is responsive to a remote control unit (763) to control the operation of the motor (761).


     
    10. The vibration dampening device (10) according to claim 1, wherein the first section support assembly (25) includes a first section coupling element (26) for coupling a lower sling (130) to the first section support assembly (25) to allow the vibratory machinery (140) to be supported from the vibration dampening device (10), and wherein the second section support assembly (35) includes a second section coupling element (80) for coupling an upper sling (120) to the second section support assembly (35) to allow the vibration dampening device (10) to be suspended by the support apparatus (100), wherein the support apparatus (100) is hoisting machinery, and wherein the vibratory machinery (140) is a vibratory pile driver or a vibratory hammer.
     
    11. The vibration dampening device (10) according to claim 1, including differently sized fluid transfer lines (791, 792) to supply the fluid to and receive the fluid from the pairs (40a, 40d; 40b, 40c) of fluid fillable absorbers (40) at different flow rates, thereby allowing for varying frequency components of the vibratory force to be absorbed.
     


    Ansprüche

    1. Schwingungsdämpfungsvorrichtung (10), die umfasst:

    ein erstes Teilstück (20) mit einer Haltevorrichtung (25) des ersten Teilstücks,

    die zum Halten von Vibrationstechnik (140) gestaltet ist;

    ein zweites Teilstück (30) mit einer Haltevorrichtung (35) des zweiten Teilstücks, die gestaltet ist, um die Schwingungsdämpfungsvorrichtung (10) durch einen Halteapparat (100) herunterhängen lassen zu können;

    wobei ein Abschnitt (50) der Haltevorrichtung des ersten Teilstücks durch eine oder mehrere Öffnungen (60) des zweiten Teilstücks im zweiten Teilstück (30) hervorsteht, und ein Abschnitt (55) der zweiten Haltevorrichtung durch eine oder mehrere Öffnungen (65) des ersten Teilstücks im ersten Teilstück (20) hervorsteht; und

    wobei der Abschnitt (50) der Haltevorrichtung des ersten Teilstücks, der durch die Öffnung (60) des zweiten Teilstücks hervorsteht, ein oder mehrere Haltearme des ersten Teilstücks ist, und der Abschnitt (55) der Haltevorrichtung des zweiten Teilstücks, der durch die Öffnung (65) des ersten Teilstücks hervorsteht, ein oder mehrere Haltearme des zweiten Teilstücks ist,

    dadurch gekennzeichnet, dass

    eine Vielzahl von mit Fluid befüllbaren Dämpfern (40) in fluidleitender Verbindung mit einer Fluidquelle (710) zwischen dem ersten und dem zweiten Teilstück angeordnet ist, um zumindest einen Teil einer Schwingungskraft zu dämpfen, die vom Betrieb der Vibrationstechnik (140) übertragen wird, umfassend ein erstes Paar (40a, 40d) und ein zweites Paar (40b, 40c) von mit Fluid befüllbaren Dämpfern, wobei eine Durchflussmenge des Fluides unterschiedlich ist für die Paare (40a, 40d; 40b, 40c) der Vielzahl von mit Fluid befüllbaren Dämpfern (40), so dass die Paare gestaltet sind:

    sich mit Fluid in einem unterschiedlichen Verhältnis zu befüllen; und

    Fluid in einem unterschiedlichen Verhältnis auszustoßen;

    wodurch Komponenten veränderlicher Frequenz der Schwingungskraft gedämpft werden können;

    eine Verschiebungsrückmeldungsvorrichtung (730) zur Erfassung einer Verschiebung zwischen dem ersten und dem zweiten Teilstück (20, 30), wobei die Schwingungskraft vom Betrieb der Vibrationstechnik (140) die Verschiebung des ersten Teilstücks (20) relativ zu dem zweiten Teilstück (30) bewirkt; und

    eine Fluidregelung (740), die betriebsfähig mit der Verschiebungsrückmeldungsvorrichtung (730) verbunden ist und sich in fluidleitender Verbindung mit dem einen oder mehreren mit Fluid befüllbaren Dämpfern (40) befindet, wobei die Verschiebungsrückmeldungsvorrichtung (730) die Fluidregelung (740) auslöst, um den Fluidstrom für den einen oder mehrere mit Fluid befüllbare Dämpfer (40) zu steuern, indem als Reaktion auf die Erfassung der Verschiebung dem einen oder mehreren mit Fluid befüllbaren Dämpfern (40) Fluid zugeführt wird und Fluid ausgestoßen wird; und

    ein Kupplungselement (26) des ersten Teilstücks mit dem einen oder mehreren Haltearmen (50) des ersten Teilstücks zum Zusammenfügen der Vibrationstechnik (140) mit der Schwingungsdämpfungsvorrichtung (10) verbunden wird; und/oder

    ein Kupplungselement (80) des zweiten Teilstücks mit dem einen oder mehreren Haltearmen (55) des zweiten Teilstücks zum Zusammenfügen des Halteapparates (100) mit der Schwingungsdämpfungsvorrichtung (10) verbunden wird.


     
    2. Schwingungsdämpfungsvorrichtung (10) nach Anspruch 1, wobei das erste Teilstück (20) eine Platte (21) des ersten Teilstücks enthält und das zweite Teilstück (30) eine Platte (31) des zweiten Teilstücks enthält, wobei die Platten (21, 31) des ersten und des zweiten Teilstücks jeweils parallel sind und durch den einen oder mehrere mit Fluid befüllbare Dämpfer (40) getrennt sind.
     
    3. Schwingungsdämpfungsvorrichtung (10) nach einem der Ansprüche 1 bis 2, wobei das von dem einen oder mehreren mit Fluid befüllbaren Dämpfern (40) ausgestoßene Fluid zu:

    der Fluidquelle (710) und/oder

    einer Auslassvorrichtung (720) übertragen wird.


     
    4. Schwingungsdämpfungsvorrichtung (10) nach einem der Ansprüche 1 bis 3, wobei in dem Fall, dass die Verschiebungsrückmeldungsvorrichtung (730) die Verschiebung des zweiten Teilstücks (30) zu dem ersten Teilstück (20) hin erfasst, die Fluidregelung (740) die Fluidzuführung zu dem einen oder mehreren mit Fluid befüllbaren Dämpfern (40) regelt, und wobei in dem Fall, dass die Verschiebungsrückmeldungsvorrichtung (730) die Verschiebung des zweiten Teilstücks (30) von dem ersten Teilstück (20) weg erfasst, die Fluidregelung (740) den Fluidausstoß von dem einen oder mehreren mit Fluid befüllbaren Dämpfern (40) regelt.
     
    5. Schwingungsdämpfungsvorrichtung (10) nach einem der Ansprüche 1 bis 4, wobei die Verschiebungsrückmeldungsvorrichtung (730) umfasst:

    ein Armelement (410), das an einem Ende betriebsfähig mit dem zweiten Teilstück (30) verbunden ist;

    eine erste Nivelliervorrichtung (420), die betriebsfähig mit einem zweiten Ende des Armelements (410) und der Fluidquelle (710) verbunden ist, wobei die erste Nivelliervorrichtung (420) durch das Armelement (410) ausgelöst wird, wenn das zweite Teilstück (30) zu dem ersten Teilstück (20) hin verschoben wird, wobei eine Betätigung der ersten Nivelliervorrichtung (420) bewirkt, dass die Fluidregelung (740) eine Fluidzufuhr zu dem einen oder mehreren mit Fluid befüllbaren Dämpfern (40) regelt; und

    eine zweite Nivelliervorrichtung (430), die betriebsfähig mit dem zweiten Ende des Armelements (410) und der Fluidquelle (710) verbunden ist, wobei die zweite Nivelliervorrichtung (430) durch das Armelement (310) ausgelöst wird, wenn das zweite Teilstück (30) von dem ersten Teilstück (20) weg verschoben wird, wobei eine Betätigung der zweiten Nivelliervorrichtung (430) bewirkt, dass die Fluidregelung (740) einen Fluidausstoß von dem einen oder mehreren mit Fluid befüllbaren Dämpfern (40) regelt.


     
    6. Schwingungsdämpfungsvorrichtung (10) nach Anspruch 5, wobei die Fluidregelung (740) eine Wegeventileinheit einschließt, die umfasst:

    eine erste Durchgangsöffnung (741) in fluidleitender Verbindung mit der ersten Nivelliervorrichtung (420);

    eine zweite Durchgangsöffnung (742) in fluidleitender Verbindung mit der zweiten Nivelliervorrichtung (420);

    eine dritte Durchgangsöffnung (743) in fluidleitender Verbindung mit der Fluidquelle (710);

    eine vierte Durchgangsöffnung (744) in fluidleitender Verbindung mit dem einen oder mehreren mit Fluid befüllbaren Dämpfern (40); und

    eine fünfte Durchgangsöffnung (755) in fluidleitender Verbindung mit einer von:

    der Auslassvorrichtung (720); und

    der Fluidquelle (710) über ein Einwegventil.


     
    7. Schwingungsdämpfungsvorrichtung (10) nach Anspruch 6, wobei:

    in dem Fall, dass die erste Durchgangsöffnung (741) durch Betätigung der ersten Nivelliervorrichtung (420) gesteuert wird, die dritte und die vierte Durchgangsöffnung (743, 744) durch die Wegeventileinheit (740) gesteuert werden, um Fluid von der Fluidquelle (710) zu dem einen oder mehreren mit Fluid befüllbaren Dämpfern (40) zuführen zu können; und

    in dem Fall, dass die zweite Durchgangsöffnung (742) durch Betätigung der zweiten Nivelliervorrichtung (430) gesteuert wird, die vierte und die fünfte Durchgangsöffnung (744, 745) durch das Wegeventil (740) gesteuert werden, um Fluid von dem einen oder mehreren mit Fluid befüllbaren Dämpfern (40) ausstoßen zu können.


     
    8. Schwingungsdämpfungsvorrichtung (10) nach einem der Ansprüche 1 bis 7, wobei die Fluidquelle (710) eine Druckluftquelle ist.
     
    9. Schwingungsdämpfungsvorrichtung nach einem der Ansprüche 1 bis 8, wobei die Schwingungsdämpfungsvorrichtung (10) enthält:

    einen Motor (761), der betriebsfähig mit einem Kompressor (760) verbunden ist, wobei der Kompressor (760) betriebsfähig mit der Fluidquelle (710) verbunden ist; und

    eine Empfängereinheit (762), die betriebsfähig mit dem Motor (761) verbunden ist, wobei die Empfängereinheit (762) auf eine Fernsteuerungseinheit (763) anspricht, um den Betrieb des Motors (761) zu regeln.


     
    10. Schwingungsdämpfungsvorrichtung (10) nach Anspruch 1, wobei die Haltevorrichtung (25) des ersten Teilstücks ein Kupplungselement (26) des ersten Teilstücks zum Zusammenfügen eines unteren Anschlagmittels (130) mit der Haltevorrichtung (25) des ersten Teilstücks enthält, um die Vibrationstechnik (140) von der Schwingungsdämpfungsvorrichtung (10) halten zu können, und wobei die Haltevorrichtung (35) des zweiten Teilstücks ein Kupplungselement (80) des zweiten Teilstücks zum Zusammenfügen eines oberen Anschlagmittels (120) mit der Haltevorrichtung (35) des zweiten Teilstücks enthält, um die Schwingungsdämpfungsvorrichtung (10) durch den Halteapparat (100) herunterhängen lassen zu können, wobei der Halteapparat (100) ein Hebezeug ist, und wobei die Vibrationstechnik (140) eine Vibrationspfahlramme oder eine Vibrationsramme ist.
     
    11. Schwingungsdämpfungsvorrichtung (10) nach Anspruch 1, die unterschiedlich dimensionierte Fluidübertragungsleitungen (791, 792) enthält zum Zuführen des Fluides zu und Aufnehmen des Fluides von den Paaren (40a, 40d; 40b, 40c) der mit Fluid befüllbaren Dämpfer (40) mit unterschiedlichen Durchflussmengen, wodurch Komponenten veränderlicher Frequenz der Schwingungskraft gedämpft werden können.
     


    Revendications

    1. Dispositif d'amortissement de vibration (10) incluant :

    une première section (20) ayant un assemblage de support de première section (25) configuré pour supporter une machinerie vibratoire (140) ;

    une seconde section (30) ayant un assemblage de support de seconde section (35) configuré pour permettre au dispositif d'amortissement de vibration (10) d'être suspendu par un appareil de support (100) ;

    dans lequel une portion (50) de l'assemblage de support de première section se projette à travers une ou plusieurs ouvertures de seconde section (60) dans la seconde section (30), et une portion (55) de l'assemblage de support de seconde section se projette à travers une ou plusieurs ouvertures de première section (65) dans la première section (20) ; et

    dans lequel la portion (50) de l'assemblage de support de première section qui se projette à travers l'ouverture de seconde section (60) est constituée d'un ou plusieurs bras de support de première section, et la portion (55) de l'assemblage de support de seconde section qui se projette à travers l'ouverture de première section (65) est constituée d'un ou plusieurs bras de support de seconde section,

    caractérisé en ce que

    une pluralité d'absorbeurs susceptibles d'être remplis par un fluide (40), en communication fluidique avec une source de fluide (710), situés entre la première et la seconde section pour absorber au moins une portion d'une force vibratoire transférée par le fonctionnement de la machinerie vibratoire (140), incluant une première paire (40a, 40b) et une seconde paire (40b, 40c) d'absorbeurs susceptibles d'être remplis par un fluide, dans lequel un débit de fluide est différent pour les paires (40a, 40b ; 40b, 40c) de la pluralité d'absorbeurs susceptibles d'être remplis par un fluide (40) de telle manière que les paires sont :

    configurées pour se remplir avec un fluide à une vitesse différente ; et

    configurées pour chasser le fluide à une vitesse différente ;

    permettant ainsi de faire varier des composantes de fréquence de la force vibratoire à absorber ;

    un assemblage de rétroaction à déplacement (730) pour détecter un déplacement de la première et de la seconde section (20, 30), dans lequel la force vibratoire provenant du fonctionnement de la machinerie vibratoire (140) provoque le déplacement de la première section (20) par rapport à la seconde section (30) ; et

    un système de commande de fluide (740), fonctionnellement connecté à l'assemblage de rétroaction à déplacement (730) et en communication fluidique avec lesdits un ou plusieurs absorbeurs (40) susceptibles d'être remplis avec un fluide, dans lequel l'assemblage de rétroaction à déplacement (730) actionne le système de commande de fluide (740) pour commander l'écoulement du fluide pour lesdits un ou plusieurs absorbeurs susceptibles d'être remplis par un fluide (40), en alimentant un fluide et en expulsant le fluide depuis lesdits un ou plusieurs absorbeurs (40) susceptibles d'être remplis par un fluide, en réponse à la détection du déplacement ; et

    au moins un élément parmi :

    un élément de couplage de première section (26) qui est couplé auxdits un ou plusieurs bras de support de première section (50) pour coupler la machinerie vibratoire (140) au dispositif d'amortissement de vibration (10) ; et

    un élément de couplage de seconde section (80) qui est couplé auxdits un ou plusieurs bras de support de seconde section (55) pour coupler l'appareil de support (100) au dispositif d'amortissement de vibration (10).


     
    2. Dispositif d'amortissement de vibration (10) selon la revendication 1, dans lequel la première section (20) inclut une plaque de première section (21) et la seconde section (30) inclut une plaque de seconde section (31) la plaque de première section et la plaque de seconde section (21, 31) étant respectivement parallèles et séparées par lesdits un ou plusieurs absorbeurs susceptibles d'être remplis par un fluide (40).
     
    3. Dispositif d'amortissement de vibration (10) selon l'une quelconque des revendications 1 et 2,
    dans lequel le fluide expulsé depuis lesdits un ou plusieurs absorbeurs (40) susceptibles d'être remplis avec un fluide est transféré vers l'un au moins des suivants :

    la source de fluide (710) ; et

    un assemblage d'évacuation (720).


     
    4. Dispositif d'amortissement de vibration (10) selon l'une quelconque des revendications 1 à 3, dans lequel, dans le cas où l'assemblage de rétroaction à déplacement (730) détecte le déplacement de la seconde section (30) vers la première section (20), le système de commande de fluide (740) commande l'alimentation de fluide vers lesdits un ou plusieurs absorbeurs susceptibles d'être remplis par un fluide (40), et dans lequel, dans le cas où l'assemblage de rétroaction à déplacement (730) détecte le déplacement de la seconde section (30) en éloignement de la première section (20), le système de commande de fluide (740) commande l'expulsion de fluide depuis lesdits un ou plusieurs absorbeurs susceptibles d'être remplis par un fluide (40).
     
    5. Dispositif d'amortissement de vibration (10) selon l'une quelconque des revendications 1 à 4, dans lequel l'assemblage de rétroaction à déplacement (730) inclut :

    un élément en forme de bras (410) fonctionnellement couplé à la seconde section (30) à une première extrémité ;

    un premier dispositif de mise à niveau (420) fonctionnellement couplé à une seconde extrémité de l'élément en forme de bras (410) et à la source de fluide (710), dans lequel le premier dispositif de mise à niveau (420) est actionné par l'élément en forme de bras (410) quand la seconde section (30) est déplacée vers la première section (20), dans lequel l'actionnement du premier dispositif de mise à niveau (420) amène le système de commande de fluide (740) à commander l'alimentation de fluide vers lesdits un ou plusieurs absorbeurs susceptibles d'être remplis par un fluide (40) ; et

    un second dispositif de mise à niveau (430) fonctionnellement couplé à la seconde extrémité de l'élément en forme de bras (410) et à la source de fluide (710), dans lequel le second dispositif de mise à niveau (430) est actionné par l'élément en forme de bras (70) quand la seconde section (30) est déplacée en éloignement de la première section (20), dans lequel l'actionnement du second dispositif de mise à niveau (430) amène le système de commande de fluide (740) à commander l'expulsion de fluide depuis lesdits un ou plusieurs absorbeurs susceptibles d'être remplis par un fluide (40).


     
    6. Dispositif d'amortissement de vibration (10) selon la revendication 5, dans lequel le système de commande de fluide (740) inclut une unité à valve de commande directionnelle incluant :

    un premier orifice (741) en communication fluidique avec le premier dispositif de mise à niveau (420) ;

    un second orifice (742) en communication fluidique avec le second dispositif de mise à niveau (430) ;

    un troisième orifice (743) en communication fluidique avec la source de fluide (710) ;

    un quatrième orifice (744) en communication fluidique avec lesdits un ou plusieurs absorbeurs susceptibles d'être remplis par un fluide (40) ; et

    un cinquième orifice (755) en communication fluidique avec un élément parmi :

    l'assemblage d'échappement (730) ; et

    la source de fluide (710) via un clapet antiretour.


     
    7. Dispositif d'amortissement de vibration (10) selon la revendication 6, dans lequel :

    dans le cas où le premier orifice (741) est actionné via un actionnement du premier dispositif de mise à niveau (420), le troisième orifice et le quatrième orifice (743, 744) sont actionnés par l'unité formant valve de commande directionnelle (740) pour permettre au fluide d'être alimenté depuis la source de fluide (710) vers lesdits un ou plusieurs absorbeurs susceptibles d'être remplis par un fluide (40) ; et

    dans le cas où le second orifice (742) est actionné via un actionnement du second dispositif de mise à niveau (430), le quatrième et le cinquième orifice (744, 745) sont actionnés par la valve de commande directionnelle (740) pour permettre au fluide d'être expulsé depuis lesdits un ou plusieurs absorbeurs susceptibles d'être remplis par un fluide (40).


     
    8. Dispositif d'amortissement de vibration (10) selon l'une quelconque des revendications 1 à 7, dans lequel la source de fluide (710) et une source d'air comprimé.
     
    9. Dispositif d'amortissement de vibration selon l'une quelconque des revendications 1 à 8, dans lequel le dispositif d'amortissement de vibration (10) inclut :

    un moteur (761) fonctionnellement connecté à un compresseur (760), dans lequel le compresseur (760) est fonctionnellement connecté à la source de fluide (710) ; et

    une unité réceptrice (762) fonctionnellement connectée au moteur (761), dans lequel l'unité réceptrice (762) est capable de réagir à une unité de commande à distance (763) pour commander le fonctionnement du moteur (761).


     
    10. Dispositif d'amortissement de vibration (10) selon la revendication 1, dans lequel l'assemblage de support de première section (25) inclut un élément de couplage de première section (26) pour coupler une boucle inférieure (130) à l'assemblage de support de première section (25) pour permettre de supporter la machinerie vibratoire (140) depuis le dispositif d'amortissement de vibration (10), et dans lequel l'assemblage de support de seconde section (35) inclut un élément de couplage de seconde section (80) pour coupler une boucle supérieure (120) à l'assemblage de support de seconde section (35) pour permettre au dispositif d'amortissement de vibration (10) être suspendu par l'appareil de support (100), dans lequel l'appareil de support (100) est une machinerie de levage, et dans lequel la machinerie vibratoire (140) est un dispositif d'entraînement à poils vibratoires d'un marteau vibratoire.
     
    11. Dispositif d'amortissement de vibration (19) selon la revendication 1, incluant des lignes de transfert de fluide de tailles différentes (791, 792) pour alimenter le fluide vers et recevoir le fluide depuis les paires (40a, 40b ; 40b, 40c) des absorbeurs (40) susceptibles d'être remplis par des fluides à des vitesses différentes, en permettant ainsi de faire varier les composantes de fréquence de la force vibratoire qu'il s'agit d'absorber.
     




    Drawing



























































    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description