(19)
(11)EP 2 685 925 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
04.07.2018 Bulletin 2018/27

(21)Application number: 12758073.6

(22)Date of filing:  16.03.2012
(51)International Patent Classification (IPC): 
A61B 34/30(2016.01)
A61B 90/00(2016.01)
(86)International application number:
PCT/JP2012/057669
(87)International publication number:
WO 2012/124831 (20.09.2012 Gazette  2012/38)

(54)

SURGICAL OPERATION SUPPORT SYSTEM AND SURGICAL INSTRUMENT

SYSTEM ZUR UNTERSTÜTZUNG CHIRURGISCHER EINGRIFFE UND CHIRURGISCHES INSTRUMENT

SYSTÈME DE SUPPORT D'OPÉRATION CHIRURGICALE ET INSTRUMENT CHIRURGICAL


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 17.03.2011 JP 2011059850

(43)Date of publication of application:
22.01.2014 Bulletin 2014/04

(73)Proprietor: Olympus Corporation
Tokyo 192-8507 (JP)

(72)Inventor:
  • KOMURO, Takahiro
    Tokyo 192-8507 (JP)

(74)Representative: Schicker, Silvia 
Wuesthoff & Wuesthoff Patentanwälte PartG mbB Schweigerstraße 2
81541 München
81541 München (DE)


(56)References cited: : 
JP-A- 2003 052 717
JP-A- 2010 220 955
JP-A- 2011 194 129
US-A1- 2007 156 285
US-B1- 6 331 181
JP-A- 2005 237 586
JP-A- 2010 268 844
JP-U- H0 264 962
US-A1- 2008 029 572
US-B1- 6 601 748
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    [Technical Field]



    [0001] The present invention relates to a surgical operation support system on which a surgical instrument is mounted for use, and to a surgical instrument which is used for the surgical operation support system.

    [Description of Related Art]



    [0002] In recent years, in order to reduce invasiveness in surgical operations, robots have been introduced for studying medical treatment and in clinical field. Particularly, in the field of surgery, various medical manipulator systems (surgical operation support systems) which treat a patient by a multi-degrees-of-freedom manipulator including a multi-degrees-of-freedom arm have been suggested. In this medical manipulator system, various surgical instruments such as a gripper (a gripping portion) and forceps, or the like are mounted on the tip of the arm. These surgical instruments have been disposed. However, in recent years, by performing treatment such as sterilization, or the like, it has been possible to use the same surgical instruments more than once by mounting on the tip of the arm. However, these surgical instruments are members deteriorating as they are used more than once, and there is a possibility that the deterioration will cause problems in using the instruments. In order to prevent the problems, it is necessary to use the surgical instrument with the accurate ascertainment of the use limit (life) of the surgical instrument mounted on the tip of the arm.

    [0003] Patent Document 1 discloses a configuration in which the usage count or the like of a surgical instrument can be recorded by mounting a memory on the surgical instrument. In this configuration, when the surgical instrument is mounted on the arm, the usage count of the surgical instrument that is recorded in the memory can be read.

    [0004] U.S. Patent Publication No. 2008/029572 discloses a surgical instrument for use in connection with a pneumatically powered tool having a firing mechanism operably supported therein that is movable between an unactuated position and an actuated position. In various embodiments, a drive system is supported by at least one of a handle assembly and an elongate shaft assembly and is configured to selectively apply a firing motion to the firing mechanism of the pneumatically powered tool to cause the firing mechanism to move from the unactuated position to the actuated position in response to a flow of gas from a source of gas fluidically coupled to the drive system. A travel monitoring member is operably supported by the handle assembly and is linked to the drive system to provide an indication of progress of the firing mechanism of the pneumatically powered tool as the firing mechanism moves from the unactuated position to the actuated position.

    [0005] U.S. Patent Publication No. 2007/156285 discloses a medical robotic system that comprises a number of components that may be monitored to determine their preventive maintenance needs by recording usage-related information for the monitored components into associated non-volatile memories. When usage of the component exceeds a specified usage threshold, the system displays a warning message on its display screen to have preventive maintenance performed for the component. If the usage continues without such maintenance and exceeds a higher usage threshold, the system displays an error message on its display screen and the system transitions into an error state during which medical procedures are not allowed to be performed. The usage-related information may also be communicated to a remote computer which gathers and processes usage-related information from a number of medical robotic systems to estimate resource requirements for timely performing preventive maintenance on the medical robotic systems, and anticipated service revenues from such maintenance.

    [Prior Art Document]


    [Patent Document]



    [0006] [Patent Document 1] Specification of US patent No. 6331181, U.S. Patent Publication No. 2008/029572, and U.S. Patent Publication No. 2007/156285.

    [Summary of the Invention]


    [Problems to be Solved by the Invention]



    [0007] In Patent Document 1, a non-volatile memory is used for ascertaining the usage count of the surgical instrument. In a case of the non-volatile memory, there is a possibility that the memory will be damaged since the temperature and humidity of the non-volatile memory are increased due to autoclaving or the like performed for sterilization.

    [0008] The present invention has been made in consideration of these circumstances, and an object of the present invention is to provide a surgical operation support system, which can measure the usage count of a surgical instrument, having a configuration that is superior in durability, and a surgical instrument used for this surgical operation support system.

    [Means for Solving the Problem]



    [0009] The invention is described in independent claims 1 and 14. Preferred embodiments of the invention are described in the dependent claims.

    [0010] According to a first aspect of the present invention, a surgical operation support system includes a surgical instrument provided with a usage count accumulation portion that includes a moving portion which is movably configured and a moving mechanism which moves the moving portion, and a body in which the surgical instrument is detachably installed and which is provided with a driving portion that moves the moving portion by a predetermined amount through the moving mechanism when the surgical instrument is attached or detached, wherein the usage count accumulation portion accumulates the usage count of the surgical instrument by the movement of the moving portion.

    [0011] According to a second aspect of the present invention, the driving portion is configured so as to move the moving portion by a predetermined amount while contacting the moving portion when the surgical instrument is attached or detached.

    [0012] According to a third aspect of the present invention, the moving portion is a gear that moves while rotating. In addition, the moving mechanism is configured so as to rotate the gear by moving. Moreover, the driving portion is a columnar portion that moves the moving mechanism when the surgical instrument is attached or detached.

    [0013] According to a fourth aspect of the present invention, the moving portion is a first gear that moves while rotating. In addition, the moving mechanism includes a second gear that rotates via a link mechanism, and is configured so as to rotate the first gear by the rotation of the second gear. Moreover, the driving portion is a columnar portion that operates the link mechanism when the surgical instrument is attached or detached.

    [0014] According to a fifth aspect of the present invention, the moving portion is a linear driving member that is provided with concave portions at a constant interval and moves in a linear direction. In addition, the moving mechanism is configured so as to move the linear driving member by moving a member that moves in a direction orthogonal to the movement direction of the linear driving member, and to restrict the linear driving member to move in a constant direction by a restriction member. Moreover, the driving portion is a columnar portion that operates the moving mechanism when the surgical instrument is attached or detached.

    [0015] According to a sixth aspect of the present invention, the driving portion is configured so as to move the moving portion by a predetermined amount without contacting the moving portion when the surgical instrument is attached or detached.

    [0016] According to a seventh aspect of the present invention, the moving portion is a gear that moves while rotating. In addition, the moving mechanism has a first magnet, and is configured so as to rotate the gear by movement due to magnetic force applied by the first magnet. Moreover, the driving portion includes a second magnet that applies magnetic force to the first magnet when the surgical instrument is attached or detached.

    [0017]  According to an eighth aspect of the present invention, in accordance with claim 1, the usage count accumulation portion includes a potentiometer that changes resistance value according to a movement amount of the moving portion. In addition, the surgical instrument further includes an output portion that outputs a resistance value of the potentiometer to the body as a voltage value.

    [0018] According to a ninth aspect of the present invention, the output portion includes electrodes that are connected to the potentiometer and outputs a resistance value of the potentiometer to the body as a voltage value by being electrically connected to the driving portion when the surgical instrument is mounted on the body.

    [0019] According to a tenth aspect of the present invention, the output portion includes a wireless communication portion that is connected to the potentiometer and wirelessly communicates a resistance value of the potentiometer to the body as a voltage value.

    [0020] According to an eleventh aspect of the present invention, each tooth of the gear is formed such that each tooth has a different height from the center of the gear. In addition, the body further includes a sensor that reads the height of a tooth when the body is mounted on the surgical instrument, and a rotation angle detection portion that detects a rotation angle of the gear based on the height of the tooth read by the sensor.

    [0021] According to a twelfth aspect of the present invention, each tooth of the first gear is formed such that each tooth has a different height from the center of the first gear. In addition, the body further includes a sensor that reads the height of a tooth when the body is mounted on the surgical instrument, and a rotation angle detection portion that detects a rotation angle of the first gear based on the height of the tooth read by the sensor.

    [0022] According to a thirteenth aspect of the present invention, the surgical instrument further includes a usage count restriction portion that restricts the usage count of the surgical instrument by restricting the movement amount of the moving portion.

    [0023] According to a fourteenth aspect of the present invention, numbers for indicating the usage count of the surgical instrument are formed in the moving portion. In addition, an opening portion for reading the numbers formed in the moving portion from the outside is formed in the surgical instrument,.

    [0024] According to a fifteenth aspect of the present invention, in accordance with independent claim 14, a surgical instrument is freely attached to or detached from a body of a surgical operation support system, and includes a usage count accumulation portion that includes a moving portion which is movably configured and a moving mechanism which moves the moving portion when the surgical instrument is attached or detached. Moreover, the usage count accumulation portion accumulates the usage count of the surgical instrument by the movement of the moving portion.

    [0025] According to a sixteenth aspect of the present invention, the moving portion is a gear that moves while rotating. In addition, the moving mechanism is configured so as to rotate the gear when the surgical instrument is attached or detached.

    [0026] According to a seventeenth aspect of the present invention, the moving portion is a first gear that moves while rotating. In addition, the moving mechanism includes a second gear that rotates via a link mechanism when the surgical instrument is attached or detached, and is configured so as to rotate the first gear by the rotation of the second gear.

    [0027] According to an eighteenth aspect of the present invention, the moving portion is a linear driving member that is provided with concave portions at a constant interval and moves in a linear direction. In addition, the moving mechanism is configured so as to move the linear driving member by moving a member that moves in a direction orthogonal to the movement direction of the linear driving member when the surgical instrument is attached or detached, and to restrict the linear driving member to move in a constant direction by a restriction member.

    [0028] According to a nineteenth aspect of the present invention, the moving portion is a gear that moves while rotating. In addition, the moving mechanism includes a first magnet, and is configured so as to rotate the gear by movement due to magnetic force applied by the first magnet when the surgical instrument is attached or detached.

    [0029] According to a twentieth aspect of the present invention, in accordance with independent claim 14, the usage count accumulation portion includes a potentiometer that changes resistance value according to a movement amount of the moving portion, and an output portion that outputs a resistance value of the potentiometer to the body as a voltage value.

    [0030] According to a twenty-first aspect of the present invention, the output portion includes electrodes that are connected to the potentiometer and that outputs a resistance value of the potentiometer to the body as a voltage value by being electrically connected to the body when the surgical instrument is mounted on the body.

    [0031] According to a twenty-second aspect of the present invention, the output portion includes a wireless communication portion that is connected to the potentiometer and wirelessly communicates a resistance value of the potentiometer to the body as a voltage value.

    [0032] According to a twenty-third aspect of the present invention, each tooth of the gear is formed such that each tooth has a different height from the center of the gear, and is configured such that the height of the tooth is read when the surgical instrument is mounted on the body.

    [0033] According to a twenty-fourth aspect of the present invention, each tooth of the first gear is formed such that each tooth has a different height from the center of the first gear, and is configured such that the height of the tooth is read when the surgical instrument is mounted on the body.

    [0034] According to a twenty-fifth aspect of the present invention, the surgical instrument further includes a usage count restriction portion that restricts the usage count of the surgical instrument by restricting the movement amount of the moving portion.

    [0035] According to a twenty-sixth aspect of the present invention, numbers for indicating the usage count of the surgical instrument are formed in the moving portion. In addition, an opening portion for reading the numbers formed in the moving portion from the outside is formed in the surgical instrument.

    [Effects of the Invention]



    [0036] According to the present invention, it is possible to provide a surgical operation support system, which can measure a usage count of a surgical instrument, having a configuration that is superior in durability, and a surgical instrument used for this surgical operation support system.

    [Brief Description of Drawings]



    [0037] 

    [FIG. 1A] A view showing a configuration of a surgical operation support system according to a first embodiment of the present invention.

    [FIG. 1B] A view showing the configuration of the surgical operation support system according to the first embodiment of the present invention.

    [FIG. 1C] A view showing the configuration of the surgical operation support system according to the first embodiment of the present invention.

    [FIG. 2] A view showing the detail of a usage count accumulation portion of a surgical instrument and an arm portion.

    [FIG. 3] A view showing an example of a relationship between rotation number of a gear and a voltage value measured by a potentiometer.

    [FIG. 4A] A view for illustrating the detail of a gear-moving mechanism in the first embodiment of the present invention.

    [FIG. 4B] A view for illustrating the detail of the gear-moving mechanism in the first embodiment of the present invention.

    [FIG. 4C] A view for illustrating the detail of the gear-moving mechanism in the first embodiment of the present invention.

    [FIG. 5A] A view for illustrating a modified example of the gear-moving mechanism in the first embodiment of the present invention.

    [FIG. 5B] A view for illustrating a modified example of the gear-moving mechanism in the first embodiment of the present invention.

    [FIG. 5C] A view for illustrating a modified example of the gear-moving mechanism in the first embodiment of the present invention.

    [FIG. 6] A view showing a modified example in which the usage count of the surgical instrument can be visually confirmed.

    [FIG. 7] A view showing a modified example in which the usage count of the surgical instrument is measured by a capacity sensor.

    [FIG. 8A] A view showing a modified example in which the usage count of the surgical instrument is wirelessly communicated to the arm portion.

    [FIG. 8B] A view showing a modified example in which the usage count of the surgical instrument is wirelessly communicated to the arm portion.

    [FIG. 9] A view showing the configuration of a surgical operation support system according to a second embodiment of the present invention.

    [FIG. 10A] A view showing the configuration of a surgical operation support system according to a third embodiment of the present invention.

    [FIG. 10B] A view showing the configuration of the surgical operation support system according to the third embodiment of the present invention.

    [FIG. 11] A view showing the configuration of a surgical operation support system according to a fourth embodiment of the present invention.

    [FIG. 12A] A view showing the configuration of a surgical operation support system according to a fifth embodiment of the present invention.

    [FIG. 12B] A view showing the configuration of the surgical operation support system according to the fifth embodiment of the present invention.


    [Description of Embodiments]



    [0038] Hereinafter, the embodiments of the present invention will be described with reference to drawings.

    [First Embodiment]



    [0039] First, the first embodiment of the present invention will be described. FIGS. 1A to 1C are views showing the configuration of the surgical operation support system according to the first embodiment of the present invention. FIG. 1A is a lateral view of the surgical operation support system according to the present embodiment. FIG. 1B shows a portion that is attached to or detached from an arm portion of a surgical instrument. FIG. 1C shows a portion which the surgical instrument of the arm portion is attached to or detached from the arm portion.

    [0040] As shown in FIG. 1A, the surgical operation support system according to the present embodiment includes a surgical instrument 100 and an arm portion 200. The surgical instrument 100 is configured so as to be freely attached to or detached from the arm portion 200. A movable portion 151 is provided at the tip of the surgical instrument 100. This movable portion 151 is connected to a torque transmission portion 152 and operates in conjunction with the operation of the torque transmission portion 152. In the present embodiment, the configuration of the movable portion 151 is not limited. FIGS. 1A to 1C show an example in which as the movable portion 151 that operates in conjunction with the operation of the torque transmission portion 152, a gripping device (gripper) which rotates, bends, and is closed or opened. The movable portion 151 may be a treatment tool such as a needle-holder, scissors, or an electrosurgical knife.

    [0041] FIG. 2 is a view showing the detail of the usage count accumulation portion of the surgical instrument and the arm portion. FIG. 2 also shows a process portion 300 connected to the arm portion. The surgical instrument 100 includes, as the usage count accumulation portion, a gear 101, a potentiometer 102, a gear-moving mechanism 103, and a rotation preventing member 104.

    [0042] The gear 101 as a moving portion includes teeth with numbers corresponding at least to a limit value of the usage count of the surgical instrument. The gear 101 is rotatably supported on the body of the surgical instrument 100. FIG. 2 is an example in which the limit value of the usage count of the surgical instrument 100 is set to 10 times. In this case, at least 10 teeth are formed in the gear 101.

    [0043] The potentiometer 102 is formed on the gear 101, and includes a rotating contact portion and a resistive element portion. The rotating contact portion is a metallic member that is configured so as to rotate in conjunction with the rotation of the gear. The rotating contact portion has an electrode that is electrically connected to an electrode 202a provided to the arm portion 200 when the surgical instrument 100 is mounted on the arm portion 200. The resistive element portion is a resistive element that is configured so as to contact the rotating contact portion. The resistive element portion has electrodes that are electrically connected to electrodes 202b and 202c provided to the arm portion when the surgical instrument 100 is mounted on the arm portion 200. The potentiometer 102 configured in this manner changes resistance value according to the rotation of the gear 101. The resistance value of the potentiometer 102 is detected as a voltage value V between the electrodes 202a and 202b.

    [0044] The gear-moving mechanism 103 as a moving mechanism is a mechanism for rotating the gear 101. The gear-moving mechanism 103 is configured so as to rotate the gear 101 by a predetermined angle whenever the surgical instrument 100 is mounted on the arm portion 200. Accordingly, as shown in FIG. 3, a linear relationship is established between the rotation angle (corresponding to rotation number) of the gear 101 and the resistance value (detected as a voltage value V) of the potentiometer 102. Consequently, in the present embodiment, the rotation number of the gear 101 of the potentiometer 102, that is, the usage count of the surgical instrument can be detected from the resistance value of the potentiometer 102.

    [0045] The gear-moving mechanism 103 will be described in more detail with reference to FIG. 2 and FIGS. 4A to 4C. As shown in FIG. 2, the gear-moving mechanism 103 has a coil spring 103a, a columnar portion 103b, and a movable portion 103c.

    [0046] The coil spring 103a is configured such that when the surgical instrument 100 is mounted on the arm portion 200, the coil spring 103a is compressed by receiving a pressing force from the columnar portion 103b, and when the surgical instrument 100 is detached from the arm portion 200, the coil spring 103a returns to the original position.

    [0047] The columnar portion 103b is provided to the coil spring 103a such that the columnar portion 103b can move in the B direction shown in FIG. 2. The movable portion 103c is provided to the columnar portion 103b. As shown in FIG. 4A, the movable portion 103c is biased by a helical spring 103d so as to be at a right angle to the columnar portion 103b. Due to this configuration, the movable portion 103c is usually engaged with the gear 101 as shown in FIG. 2.

    [0048] In the configuration shown in FIG. 4A, when the surgical instrument 100 is mounted on the arm portion 200, the columnar portion 103b of the surgical instrument 100 receives a pressing force in the B1 direction shown in FIG. 4B due to a columnar portion 201 of the arm portion 200. Due to the pressing force in the B1 direction, the movable portion 103c abuts on the tooth of the gear 101 while being at a right angle to the columnar portion 103b, and a torque in the A direction shown in FIG. 4B is applied to the gear 101. Consequently, the gear 101 rotates by a predetermined angle according to the torque in the A direction applied by the movable portion 103c.

    [0049] When the surgical instrument 100 is detached from the arm portion 200, the columnar portion 103b receives a pressing force in the B2 direction shown in FIG. 4C due to the restoring force of the coil spring 103a. Due to the pressing force in the B2 direction, the columnar portion 103b moves in the B2 direction. At this time, the movable portion 103c abuts on the tooth of the gear. However, by the action of the helical spring 103d, the movable portion 103c rotates, whereby the movable portion 103c is temporarily disengaged from the gear 101. Consequently, the gear 101 does not reversely rotate. Subsequently, due to the restoring force of the helical spring 103d, the movable portion 103c rotates in the C1 direction, whereby the movable portion 103c is engaged again with the gear 101.

    [0050] Due to the configuration described above, it is possible to configure the gear-moving mechanism 103 that rotates the gear 101 in the A direction by a predetermined amount only when the surgical instrument 100 is mounted on the arm portion 200.

    [0051] Herein, FIG. 2 is described again. The rotation preventing member 104 as a usage count restriction member is a member for restricting the rotation amount of the gear 101 in the A direction to a predetermined amount. This predetermined amount corresponds to a limit value of the usage count of the surgical instrument 100. For example, when the usage count of the surgical instrument 100 is restricted to 10 times, the position of the rotation preventing member 104 is determined such that the tooth of the gear 101 abuts on the rotation preventing member 104 after the gear 101 rotates by the amount corresponding to the 10 times so as to restrict the gear 101 from rotating any more.

    [0052] The arm portion 200 as the body of the surgical operation support system has a power generation portion 251. The power generation portion 251 includes, for example, a motor and a power transmission mechanism, and is configured so as to be connected to the torque transmission portion 152 of the surgical instrument 100 when the surgical instrument 100 is mounted on the arm portion 200. The power generation portion 251 generates power for driving the movable portion 151 of the surgical instrument 100 by receiving control signals from a control portion (not shown) provided in the process portion 300, and transmits the power to the torque transmission portion 152. The drawing shows an example of a configuration in which the movable portion 151 of the surgical instrument 100 is opened or closed by the torque transmission portion 152. However, the torque transmission portion 152 may carry out another operation such as moving the surgical instrument 100 from front to back and left to right.

    [0053] The arm portion 200 has the columnar portion 201 and the electrodes 202a, 202b, and 202c.

    [0054] The columnar portion 201 as driving portions are formed in the electrode 202a so as to have such a length that the columnar portion 201 applies a pressing force in the B1 direction shown in FIG. 4B to the columnar portion 103b by contacting the columnar portion 103b when the surgical instrument 100 is mounted on the arm portion 200.

    [0055] The columnar portion 201 is an electric conductor. In addition, the electrodes 202a, 202b, and 202c are formed in a ring shape and connected to the potentiometer 102. When the surgical instrument 100 is mounted on the arm portion 200, the columnar portion 201 abuts on the electrodes by being inserted in the ring of the electrodes 202a, 202b, and 202c, whereby the columnar portion 201 is connected to the potentiometer 102. The electrodes 202a and 202b are connected to an analogue/digital (A/D) conversion portion 301 of the process portion 300. In addition, the electrodes 202b and 202c are connected to a DC power supply 303C.

    [0056] The process portion 300 includes the A/D conversion portion 301, a calculation portion 302, and the DC power supply 303.

    [0057] The DC power supply 303 functions to apply voltage to the potentiometer 102. In addition, the A/D conversion portion 301 converts the resistance value (voltage value V) detected in the potentiometer 102 into a digital value. According to the digital value converted in the A/D conversion portion 301, the calculation portion 302 accumulates the mounting count of the surgical instrument 100 as the usage count of the surgical instrument 100. The usage count of the surgical instrument 100 measured in the calculation portion 302 can be displayed on, for example, a predetermined display portion. A configuration can also be made such that when it is found that the usage count of the surgical instrument 100 reaches a limit value from the measurement result of the usage count of the surgical instrument 100, warning is provided.

    [0058] As described above, according to the present embodiment, the usage count of the surgical instrument 100 can be mechanically measured. Accordingly, it is possible to configure a surgical instrument that is resistant to sterilization treatment or the like and is excellent in durability.

    [0059] The configuration of the gear-moving mechanism 103 is not limited to the configuration shown in FIGS. 4A to 4C. For example, the gear-moving mechanism 103 configured as shown in FIGS. 5A to 5C may also be used. In FIG. 4A, the movable portion 103c is provided to the columnar portion 103b by the helical spring 103d. However, in this modified example, the movable portion 103c is provided to the columnar portion 103b by a coil spring 103e, as shown in FIG. 5A. In addition, in FIG. 5A, the movable portion 103c is formed into a right-angled triangular column.

    [0060] In the configuration shown in FIGS. 5A to 5C, when the surgical instrument 100 is mounted on the arm portion 200, the columnar portion 103b of the surgical instrument 100 receives a pressing force in the B1 direction shown in FIG. 5B due to the columnar portion 201. Due to the pressing force in the B1 direction, the movable portion 103c abuts on the tooth of the gear 101 while being at a right angle to the columnar portion 103b, and a torque in the A direction shown in FIG. 5B is applied to the gear 101. Consequently, the gear 101 rotates by a predetermined angle according to the torque in the A direction applied by the movable portion 103c.

    [0061] When the surgical instrument 100 is detached from the arm portion 200, the columnar portion 103b receives a pressing force in the B2 direction shown in FIG. 5C due to the restoring force of the coil spring 103a. Due to this pressing force in the B2 direction, the columnar portion 103b moves in the B2 direction. At this time, the movable portion 103c moves by receiving a pressing force in the C2 direction from the tooth of the gear 101. However, since the movable portion 103c is formed into a right-angled triangular column, a torque 101 in the A direction shown in FIG. 5B is not applied to the gear 101. Consequently, the gear 101 does not reversely rotate. Thereafter, the movable portion 103c moves in the C1 direction due to the restoring force of the coil spring 103e, whereby the movable portion 103c is engaged again with the gear 101.

    [0062] Even in the configuration of FIGS. 5A to 5C described above, it is possible to configure the gear-moving mechanism that rotates the gear 101 in the A direction by a predetermined angle only when the surgical instrument 100 is mounted on the arm portion 200.

    [0063] FIGS. 5A to 5C shows a configuration in which by forming the lower surface of the movable portion 103c into a slope, the gear 101 is caused to rotate when the columnar portion 103b moves in the B1 direction, that is, when the surgical instrument 100 is mounted on the arm portion 200. A configuration may also be made in which by forming the upper surface of the movable portion 103c into a slope contrary to the above configuration, the gear 101 is caused to rotate when the columnar portion 103b moves in the B2 direction, that is, when the surgical instrument 100 is detached from the arm portion 200.

    [0064] In the examples of FIGS. 1A to 5C described above, the rotation number of the gear 101 is measured by the potentiometer 102. However, the potentiometer 102 is not necessarily used, which is not in accordance with the invention.

    [0065] For example, as shown in FIG. 6, a window 100a may be provided to the body of the surgical instrument 100, and a number may be formed (by printing, engraving, or the like) at the position on the gear 101, which is a position corresponding to each rotation angle of the gear per one rotation. In this configuration, the number shown from the window 100a changes whenever the gear 101 rotates once. In this manner, the usage count of the surgical instrument 100 can be visually checked. With this configuration, it is not necessary to provide the potentiometer 102, which falls outside the scope of the claims. In this case, there is no electric contact between the surgical instrument 100 and the arm portion 200, and accordingly, a configuration that is more resistant to sterilization or the like is obtained.

    [0066] It is also possible to provide the potentiometer 102 simultaneously. In this case, when the surgical instrument 100 is detached from the arm portion 200, the remaining usage count can be confirmed by visual checking.

    [0067] The rotation number of the gear 101 may also be measured in a non-contact manner. FIG. 7 is an example of measuring the rotation number of the gear 101 by using a capacity sensor. In the example shown in FIG. 7, the gear 101 is configured with a metallic material, and each tooth formed in the gear 101 is formed such that each tooth has a different height from the center of the gear 101. In addition, to the arm portion 200 formed in the gear 101, a capacity sensor 203 is provided.

    [0068] Since the heights of the teeth formed in the gear 101 are different from each other, the distance between the tooth of the gear 101 and the capacity sensor 203 changes with the rotation number of the gear 101. As a result, capacitance between the tooth of the gear 101 and the capacity sensor 203 changes. The change in capacitance can be detected as the rotation number of the gear 101, that is, as the usage count of the surgical instrument 100. In addition, if the windows 100a and 100b are provided to the surgical instrument 100, it is possible to visually check the height of the tooth formed in the gear 101. Consequently, it is also possible to check the rotation number of the gear 101.

    [0069] As shown in FIG. 8A, an IC for wireless communication as a wireless communication portion may be provided to both the surgical instrument 100 and the arm portion 200. Consequently, the measurement results of the potentiometer 102 can be wirelessly communicated. FIG. 8B shows a configuration example of an IC 105 for wireless communication of the surgical instrument 100 and an IC 204 for wireless communication of the arm portion 200.

    [0070] The IC 105 for wireless communication has loop antennas 105a and 105b.

    [0071] The loop antenna 105a is connected to both ends of the resistive element portion of the potentiometer 102. In addition, the loop antenna 105a supplies power transmitted by inductive coupling between a loop antenna 204a of the IC 204 for wireless communication and the loop antenna 105a to the potentiometer 102. One end of the loop antenna 105b is connected to the rotating contact portion of the potentiometer 102, and the other end thereof is connected to one end (ground side) of the potentiometer 102. By inductive coupling between a loop antenna 204b of the IC 204 for wireless communication and the loop antenna 105b, the loop antenna 105b transmits the voltage value V corresponding to the resistance value of the potentiometer 102 to the loop antenna 204b of the IC 204 for wireless communication.

    [0072] The IC 204 for wireless communication has the loop antennas 204a and 204b, a power supply 204c, and an A/D conversion portion 204d.

    [0073] The loop antenna 204a is connected to the power supply 204c. In addition, by inductive coupling between the loop antenna 204a and the loop antenna 105a of the IC 105 for wireless communication, the loop antenna 204a supplies power generated in the power supply 204c to the potentiometer 102. The loop antenna 204b is connected to the A/D conversion portion 204d. In addition, the loop antenna 204b outputs the voltage value V transmitted by inductive coupling between the loop antenna 204b and the loop antenna 105b of the IC 105 for wireless communication to the A/D conversion portion 204d.

    [0074] The power supply 204c is a power supply for supplying power to the potentiometer 102. The A/D conversion portion 204d converts the voltage value V transmitted through the loop antenna 204b into a digital value.

    [0075] Even in the configuration shown in FIGS. 8A and 8B, electric contact is not necessary between the surgical instrument 100 and the arm portion 200. Accordingly, a configuration that is more resistant to sterilization or the like is obtained.

    [Second Embodiment]



    [0076] Next, the second embodiment of the present invention will be described. FIG. 9 is a view showing the configuration of the surgical operation support system according to the second embodiment of the present invention. Herein, FIG. 9 illustrates particularly the configuration of the usage count accumulation portion in the second embodiment.

    [0077] The surgical instrument 100 in the second embodiment includes, as the usage count accumulation portion, the gear 101 (first gear), the potentiometer 102, the gear-moving mechanism 103, and the rotation preventing member 104. In addition, the gear-moving mechanism 103 in the second embodiment includes a gear 106 (second gear) and a link mechanism 107.

    [0078] The rotation axis of the gear 106 is installed in the link mechanism 107. In the gear 106, one tooth is formed so as to be engaged with the gear 101. The link mechanism 107 is configured so as to convert the pressing force from the columnar portion 201 of the arm portion 200 into a torque of the gear 106.

    [0079] In the configuration shown in FIG. 9, when the surgical instrument 100 is mounted on the arm portion 200, a coil spring that is provided to the link mechanism 107 receives a pressing force in the vertical direction, shown in the drawing, due to the columnar portion 201 of the arm portion 200. Due to this pressing force, the link mechanism 107 operates, and the gear 106 is engaged with the gear 101 while rotating in the B direction shown in FIG. 9. As a result, a torque in the A direction is applied to the gear 101, whereby the gear 101 rotates by a predetermined angle.

    [0080] When the surgical instrument 100 is detached from the arm portion 200, due to the restoring force of the coil spring provided to the link mechanism 107, the gear 101 is disengaged from the gear 106.

    [0081] As described above, in the present embodiment, the usage count of the surgical instrument 100 can also be mechanically measured. Accordingly, it is possible to configure a surgical instrument that is resistant to sterilization treatment or the like and excellent in durability.

    [0082]  FIG. 9 shows an example of measuring the rotation number of the gear 101 by the potentiometer 102. Even in FIG. 9, the rotation number of the gear 101 is not necessarily measured by the potentiometer 102, not in accordance with the invention. In FIG. 9, it is also possible to apply various modified examples shown in the first embodiment.

    [Third Embodiment]



    [0083] Next, the third embodiment of the present invention will be described. FIGS. 10A and 10B are views showing the configuration of the surgical operation support system according to the third embodiment of the present invention. Herein, FIGS. 10A and 10B illustrate particularly the configuration of the usage count accumulation portion in the third embodiment.

    [0084] As shown in FIG. 10A, the surgical instrument 100 in the third embodiment includes, as a usage count accumulation portion, a ratchet type rotation mechanism. The ratchet type rotation mechanism includes a rotation portion 111 and a projection portion 112 as a moving portion, a link 113a as a moving mechanism, and a coil spring 113b.

    [0085] In the rotation portion 111, the potentiometer 102 is formed. In addition, the surgical instrument 100 of the present embodiment is configured so as to change the resistance value (voltage value) measured in the potentiometer 102 by the rotation of the rotation portion 111. Near the rotation axis of the rotation portion 111, a ratchet mechanism which is configured to rotate the body of the rotation portion 111 only in the A direction shown in FIG. 10A is provided. Moreover, in the rotation portion 111, the projection portion 112 is formed. The projection portion 112 is provided such that the projection portion 112 abuts on the rotation preventing member 104 after the rotation portion 111 rotates a predetermined number of times so as to restrict the rotation portion 111 from rotating any more.

    [0086] The link 113a is provided to the rotation axis portion of the rotation portion 111. The link 113a is pushed up in the B1 direction by being pressed by the columnar portion 201 of the arm portion 200, thereby applying a torque for rotating the rotation portion 111 to the rotation portion 111.

    [0087] In the configuration shown in FIGS. 10A and 10B, when the surgical instrument 100 is mounted on the arm portion 200, the link 113a is pushed up by the columnar portion 201 of the arm portion 200 as shown in FIG. 10A, whereby a torque in the A direction shown in FIG. 10A is applied to the rotation portion 111. As a result, the gear 101 rotates in the A direction by a predetermined angle.

    [0088] When the surgical instrument 100 is detached from the arm portion 200, due to the restoring force of the coil spring 113b, the link 113a is pushed down as shown in FIG. 10B, whereby a torque in a direction opposite to the A direction shown in FIG. 10A is applied to the rotation portion 111. However, due to the action of the ratchet mechanism, the rotation of the gear 101 is restricted, whereby the rotation portion 111 does not rotate in a direction opposite to the A direction shown in FIG. 10A.

    [0089] As described above, in the present embodiment, the usage count of the surgical instrument 100 can also be mechanically measured. Accordingly, it is possible to configure a surgical instrument that is resistant to sterilization treatment or the like and excellent in durability.

    [0090] FIGS. 10A and 10B show an example of measuring the rotation number of the gear 101 by the potentiometer 102. Even in FIGS. 10A and 10B, the rotation number of the gear 101 is not necessarily measured by the potentiometer 102, which is not in accordance with the invention. In FIGS. 10A and 10B, it is also possible to apply various modified examples shown in the first embodiment.

    [Fourth Embodiment]



    [0091] Next, the fourth embodiment of the present invention will be described. FIG. 11 is a view showing the configuration of the surgical operation support system of the fourth embodiment of the present invention. Herein, FIG. 11 illustrates particularly the configuration of a usage count accumulation portion in the fourth embodiment.

    [0092] The surgical instrument 100 of the fourth embodiment includes a ratchet type linear driving mechanism as a usage count accumulation portion as shown in FIG. 11. The ratchet type linear driving mechanism includes a linear driving movement portion 121, a linear driving potentiometer 122, a linear driving movement mechanism 123, a restriction member 124, and a columnar portion 125. In addition, the linear driving mechanism 123 includes a coil spring 123a, a columnar portion 123b, and a movable portion 123c.

    [0093] In the linear driving movement portion 121, concave portions formed in the shape of right-angled triangular prism are formed at a constant interval. In addition, the concave portion is formed so as to freely move in the A direction shown in the drawing by a predetermined amount. The linear driving potentiometer 122 is formed on the linear driving movement portion 121, and is configured so as to change the resistance value according to the linear driving movement of the linear driving movement portion 121 in the A direction.

    [0094] The linear driving movement mechanism 123 has same configuration as that of the gear-moving mechanism shown in FIGS. 5A to 5C. The detailed operation thereof will be described later.

    [0095] The restriction member 124 is an approximately rhombic member that is supported on the columnar portion 125 so as to be able to rotate in the D direction shown in FIG. 11 and to be approximately orthogonal to the linear driving movement portion 121. The restriction member 124 is formed so as to fit in the concave portion formed in the linear driving movement portion 121, and restricts the linear driving movement mechanism 123 to move only in the A direction shown in the drawing. The columnar portion 125 is fixed to the body of the surgical instrument 100 so as to support the restriction member 124.

    [0096] In the configuration shown in FIG. 11, when the surgical instrument 100 is mounted on the arm portion 200, the columnar portion 123b of the surgical instrument 100 receives a pressing force in the B direction (upward direction in the drawing) shown in FIG. 11. Due to this pressing force in the upward direction, the movable portion 123c fits into the concave portion formed in the linear driving movement portion 121 while being at a right angle to the columnar portion 123b. At this time, the pressing force in the A direction shown in FIG. 11 is applied to the linear driving movement portion 121. At this time, the state where the restriction member 124 fits in the linear driving movement portion 121 is temporarily released. Due to such operations, the linear driving movement portion 121 linearly moves a predetermined distance according to the pressing force in the A direction applied by the movable portion 123c. At this time, the movable portion 123c fits into the concave portion formed in the linear driving movement portion 121. At this time, the restriction member 124 also fits into the concave portion formed in the linear driving movement portion 121.

    [0097] When the surgical instrument 100 is detached from the arm portion 200, the columnar portion 123b receives a pressing force in the B direction (downward direction in the drawing) due to the resilience of the coil spring 123a. Due to the pressing force in the downward direction, the columnar portion 123b moves one step downward. At this time, the movable portion 123c receives a pressing force in the C direction (in the right direction) of the drawing from the linear driving movement portion 121, and consequently, the state where the movable portion 123c fits in the linear driving portion 121 is temporarily released. However, the state where the restriction member 124 fits in the linear driving movement portion 121 is not released, and the movement of the linear driving movement portion 121 in a direction opposite to the A direction is restricted. As a result, the position of the restriction portion 121 is held. Subsequently, due to the restoring force of a coil spring (not shown) provided between the columnar portion 123b and the movable portion 123c, the movable portion 123c moves in the C direction (left direction in the drawing). In addition, the movable portion 123c fits into the concave portion formed in the linear driving movement portion 121.

    [0098] As described above, in the present embodiment, the usage count of the surgical instrument 100 can also be mechanically measured. Accordingly, it is possible to configure a surgical instrument that is resistant to sterilization treatment or the like and excellent in durability.

    [0099] In FIG. 11, the measurement results of the potentiometer 102 may be wirelessly communicated, or numbers may be formed in the linear driving movement portion 121.

    [Fifth Embodiment]



    [0100] Next, the fifth embodiment of the present invention will be described. FIGS. 12A and 12B are views showing the configuration of the surgical operation support system according to the fifth embodiment of the present invention. Herein, FIGS. 12A and 12B illustrate particularly the configuration of the usage count accumulation portion in the fifth embodiment.

    [0101] The configuration of the surgical instrument 100 in the fifth embodiment is almost the same as the configuration of the surgical instrument shown in FIG. 2. The surgical instrument 100 according to the fifth embodiment is different in that the columnar portion 103b is configured with a magnet. In addition, in the fifth embodiment, a magnet 205 is provided to the arm portion 200. The magnet 205 is disposed such that a side of the columnar portion 103b and a side of the magnet 205, which are sides facing each other, exhibit the same polarity.

    [0102] In the configuration shown in FIGS. 12A and 12B, when the surgical instrument 100 is mounted on the arm portion 200, the columnar portion 103b of the surgical instrument 100 receives a pressing force in the B1 direction shown in FIG. 12A by the magnet 205, in a non-contact manner. Due to the pressing force in the B1 direction, the movable portion 103c abuts on the tooth of the gear 101 while maintaining a right angle to the columnar portion 103b, whereby a torque in the A direction shown in FIG. 12A is applied to the gear 101. As a result, the gear 101 rotates by a predetermined angle according to the torque in the A direction applied by the movable portion 103c.

    [0103] When the surgical instrument 100 is detached from the arm portion 200, due to the restoring force of the coil spring 103a, the columnar portion 103b receives a pressing force in the B2 direction shown in FIG. 12B. Due to the pressing force in the B2 direction, the columnar portion 103b moves in the B2 direction. At this time, the movable portion 103c abuts on the tooth of the gear. However, due to the action of the helical spring 103d, a torque in the A direction shown in FIG. 12A is not applied to the gear 101, and the movable portion 103c rotates, whereby the gear 101 is temporarily disengaged from the movable portion 103c. Consequently, the gear 101 does not rotates in a direction opposite to the A direction shown in FIG. 12A. Thereafter, due to the restoring force of the helical spring 103d, the movable portion 103c rotates in the C1 direction, whereby the movable portion 103c is engaged again with the gear 101.

    [0104] As described above, in the present embodiment, the usage count of the surgical instrument 100 can also be mechanically measured. Accordingly, it is possible to configure a surgical instrument that is resistant to sterilization treatment or the like and excellent in durability. In addition, in the fifth embodiment, it is not necessary to provide the portion for inserting the columnar portion 201 to the surgical instrument 100. Therefore, it is possible to configure a surgical instrument that is more resistant to sterilization treatment and excellent in durability, compared to the first embodiment.

    [0105] In the present embodiment, the magnet 205 is disposed such that a side of the columnar portion 103b and a side of the magnet 205, which are sides facing each other, exhibit the same polarity, whereby the usage count of the surgical instrument 100 is measured. Contrary to this, the magnet 205 may be disposed such that a side of the columnar portion 103b and a side of the magnet 205, which are sides facing each other, exhibit the opposite polarity, whereby the usage count of the surgical instrument 100 may be measured. In this case, when the surgical instrument 100 is mounted on the arm portion 200, due to the magnetization power between the columnar portion 103b and the magnet 205, the columnar portion 103b of the surgical instrument 100 moves in the B2 direction shown in FIG. 12B. In addition, the gear 101 rotates in a direction opposite to the A direction, whereby the usage count of the surgical instrument 100 is measured. Accordingly, the direction of the biasing force of the coil spring 103a or the rotation state of the movable portion 103c becomes opposite to that of the present embodiment.

    [0106] FIGS. 12A and 12B show an example of measuring the rotation number of the gear 101 by the potentiometer 102. Even in FIGS. 12A and 12B, the rotation number of the gear 101 is not necessarily measured by the potentiometer 102, which is not in accordance with the invention. In FIGS. 12A and 12B, it is also possible to apply various modified examples shown in the first embodiment.

    [0107] The present invention has been described so far based on the embodiments. However, the present invention is not limited to the embodiments described above, and various modifications and applications can be made within the scope of the present invention, as claimed.

    Industrial Applicability



    [0108] According to the present invention, a surgical operation support system which can measure the usage count of a surgical instrument by a configuration that is superior in durability, and a surgical instrument used for this surgical operation support system can be obtained.

    Reference Signs List



    [0109] 
    100
    surgical instrument
    101
    gear
    102
    potentiometer
    103
    gear-moving mechanism
    104
    rotation preventing member
    105
    IC for wireless communication
    106
    gear
    107
    link mechanism
    111
    rotation portion
    113a
    link
    121
    linear driving movement portion
    122
    linear driving potentiometer
    123
    linear driving movement mechanism
    124
    restriction member
    200
    arm portion
    201
    columnar portion
    202a, 202b, 202c
    electrodes
    203
    capacity sensor
    204
    IC for wireless communication
    205
    magnet
    300
    process portion
    301
    analogue/digital (A/D) conversion portion
    302
    calculation portion



    Claims

    1. A surgical operation support system, comprising:

    a surgical instrument (100) provided with a usage count accumulation portion that includes a moving portion (112) which is movably configured and a moving mechanism (113a) which moves the moving portion (112); and

    a body in which the surgical instrument (100) is detachably installed and which includes a driving portion (121) that moves the moving portion (112) by a predetermined amount through the moving mechanism (113a) when the surgical instrument (100) is attached or detached, wherein the usage count accumulation portion accumulates the usage count of the surgical instrument (100) by the movement of the moving portion (112) and includes a potentiometer (102) that changes a resistance value according to a movement amount of the moving portion (112), and

    the surgical instrument (100) further includes an output portion that outputs the resistance value of the potentiometer (102) to the body as a voltage value.


     
    2. The surgical operation support system according to Claim 1,
    wherein the driving portion (121) is configured so as to move the moving portion (112) by a predetermined amount while contacting the moving portion (112) when the surgical instrument (100) is attached or detached.
     
    3. The surgical operation support system according to Claim 2,
    wherein the moving portion (112) is a gear (101, 106) that moves while rotating,
    the moving mechanism (113a) is configured so as to rotate the gear (101, 106) by moving, and
    the driving portion (121) is a columnar portion (201) that moves the moving mechanism (113a) when the surgical instrument (100) is attached or detached.
     
    4. The surgical operation support system according to Claim 2,
    wherein the moving portion (112) is a first gear (101) that moves while rotating,
    the moving mechanism (113a) includes a second gear (106) that rotates via a link mechanism (107), and is configured so as to rotate the first gear (101) by the rotation of the second gear (106), and
    the driving portion (121) is a columnar portion (201) that operates the link mechanism (107) when the surgical instrument (100) is attached or detached.
     
    5. The surgical operation support system according to Claim 2,
    wherein the moving portion (112) is a linear driving member that is provided with concave portions at a constant interval and moves in a linear direction,
    the moving mechanism (113a) is configured so as to move the linear driving member by moving a member that moves in a direction orthogonal to the movement direction of the linear driving member, and to restrict the linear driving member to move in a constant direction by a restriction member (124), and
    the driving portion (121) is a columnar portion (201) that operates the moving mechanism (113a) when the surgical instrument is attached or detached.
     
    6. The surgical operation support system according to Claim 1,
    wherein the driving portion (121) is configured so as to move the moving portion (112) by a predetermined amount without contacting the moving portion (112) when the surgical instrument (100) is attached or detached.
     
    7. The surgical operation support system according to Claim 6,
    wherein the moving portion (112) is a gear (101, 106) that moves while rotating,
    the moving mechanism (113a) has a first magnet (205), and is configured so as to rotate the gear (101, 106) by movement due to magnetic force applied by the first magnet (205), and
    the driving portion (121) includes a second magnet (205) that applies magnetic force to the first magnet (205) when the surgical instrument (100) is attached or detached.
     
    8. The surgical operation support system according to Claim 1,
    wherein the output portion includes electrodes (202a, 202b, 202c) that are connected to the potentiometer (102) and output a resistance value of the potentiometer (102) to the body as a voltage value by being electrically connected to the driving portion (121) when the surgical instrument (100) is mounted on the body.
     
    9. The surgical operation support system according to Claim 1,
    wherein the output portion includes a wireless communication portion that is connected to the potentiometer (102) and wirelessly communicates a resistance value of the potentiometer (102) to the body as a voltage value.
     
    10. The surgical operation support system according to Claim 3,
    wherein each tooth of the gear (101, 106) is formed such that each tooth has a different height from the center of the gear (101, 106), and
    the body further includes a sensor (203) that reads the height of a tooth when the body is mounted on the surgical instrument, and a rotation angle detection portion that detects a rotation angle of the gear (101, 106) based on the height of the tooth read by the sensor (203).
     
    11. The surgical operation support system according to Claim 4,
    wherein each tooth of the first gear (101) is formed such that each tooth has a different height from the center of the first gear (101), and
    the body further includes a sensor (203) that reads the height of a tooth when the body is mounted on the surgical instrument, and a rotation angle detection portion that detects a rotation angle of the first gear (101) based on the height of the tooth read by the sensor (203).
     
    12. The surgical operation support system according to any one of Claims 1 to 11,
    wherein the surgical instrument (100) further includes a usage count restriction portion that restricts the usage count of the surgical instrument (100) by restricting the movement amount of the moving portion.
     
    13. The surgical operation support system according to any one of Claims 1 to 12,
    wherein numbers for indicating the usage count of the surgical instrument (100) are formed in the moving portion, and
    an opening portion for reading the numbers formed in the moving portion (112) from the outside is formed in the surgical instrument.
     
    14. A surgical instrument (100) which is freely attached to or detached from a body of a surgical operation support system, comprising:

    a usage count accumulation portion that includes a moving portion (112) which is movably configured and a moving mechanism (113a) which moves the moving portion (112) when the surgical instrument (100) is attached to or detached from the body portion; wherein an output portion that outputs a resistance value of a potentiometer (102) to the body as a voltage value,

    wherein the usage count accumulation portion accumulates a usage count of the surgical instrument (100) by a movement of the moving portion (112) and includes the potentiometer (102) that changes the resistance value according to a movement amount of the moving portion.


     
    15. The surgical instrument (100) according to Claim 14,
    wherein the moving portion (112) is a gear (101, 106) that moves while rotating, and
    the moving mechanism (113a) is configured so as to rotate the gear (101, 106) when the surgical instrument (100) is attached or detached.
     
    16. The surgical instrument (100) according to Claim 14,
    wherein the moving portion (112) is a first gear (101) that moves while rotating, and
    the moving mechanism (113a) includes a second gear (106) that rotates via a link mechanism (107) when the surgical instrument (100) is attached or detached, and is configured so as to rotate the first gear (101) by the rotation of the second gear (106).
     
    17. The surgical instrument (100) according to Claim 14,
    wherein the moving portion (112) is a linear driving member that is provided with concave portions at a constant interval and moves in a linear direction, and
    the moving mechanism (113a) is configured so as to move the linear driving member by moving a member that moves in a direction orthogonal to the movement direction of the linear driving member when the surgical instrument (100) is attached or detached, and to restrict the linear driving member to move in a constant direction by a restriction member (124).
     
    18. The surgical instrument (100) according to Claim 14,
    wherein the moving portion (112) is a gear (101, 106) that moves while rotating, and
    the moving mechanism (113a) includes a first magnet (205), and is configured so as to rotate the gear (101, 106) by movement due to magnetic force applied by the first magnet (205) when the surgical instrument (100) is attached or detached.
     
    19. The surgical instrument (100) according to Claim 14,
    wherein the output portion includes electrodes (202a, 202b, 202c) that are connected to the potentiometer (102) and output a resistance value of the potentiometer (102) to the body as a voltage value by being electrically connected to the body when the surgical instrument (100) is mounted on the body.
     
    20. The surgical instrument (100) according to Claim 14,
    wherein the output portion includes a wireless communication portion that is connected to the potentiometer (102) and wirelessly communicates a resistance value of the potentiometer (102) to the body as a voltage value.
     
    21. The surgical instrument (100) according to Claim 15,
    wherein each tooth of the gear (101, 106) is formed such that each tooth has a different height from the center of the gear (101, 106), and is configured such that the height of the tooth is read when the surgical instrument (100) is mounted on the body.
     
    22. The surgical instrument (100) according to Claim 16,
    wherein each tooth of the first gear (101) is formed such that each tooth has a different height from the center of the first gear (101), and is configured such that the height of the tooth is read when the surgical instrument (100)is mounted on the body.
     
    23. The surgical instrument (100) according to any one of Claims 14 to 22, further comprising:
    a usage count restriction portion that restricts the usage count of the surgical instrument (100) by restricting the movement amount of the moving portion.
     
    24. The surgical instrument (100) according to any one of Claims 14 to 23,
    wherein numbers for indicating the usage count of the surgical instrument (100) are formed in the moving portion, and
    an opening portion for reading the numbers formed in the moving portion (112) from the outside is formed in the surgical instrument.
     


    Ansprüche

    1. System zur Unterstützung chirurgischer Eingriffe, das umfasst:

    ein chirurgisches Instrument (100), das mit einem Verwendungsanzahlakkumulationsabschnitt versehen ist, der einen beweglichen Abschnitt (112), der beweglich konfiguriert ist, und einen Bewegungsmechanismus (113a), der den beweglichen Abschnitt (112) bewegt, umfasst; und

    einen Körper, in dem das chirurgische Instrument (100) lösbar angebracht ist und der einen Antriebsabschnitt (121) umfasst, der den beweglichen Abschnitt (112) durch den Bewegungsmechanismus (113a) in einem vorgegebenen Maß bewegt, wenn das chirurgische Instrument (100) angebracht oder gelöst wird,

    wobei der Verwendungsanzahlakkumulationsabschnitt die Verwendungsanzahl des chirurgischen Instruments (100) durch die Bewegung des beweglichen Abschnitts (112) akkumuliert und ein Potentiometer (102) umfasst, das einen Widerstandswert gemäß einem Bewegungsausmaß des beweglichen Abschnitts (112) ändert, und

    das chirurgische Instrument (100) ferner einen Ausgabeabschnitt umfasst, der den Widerstandswert des Potentiometers (102) als einen Spannungswert an den Körper ausgibt.


     
    2. System zur Unterstützung chirurgischer Eingriffe nach Anspruch 1,
    wobei der Antriebsabschnitt (121) dafür konfiguriert ist, den beweglichen Abschnitt (112) während der Berührung des beweglichen Abschnitts (112) in einem vorgegebenen Maß zu bewegen, wenn das chirurgische Instrument (100) angebracht oder gelöst wird.
     
    3. System zur Unterstützung chirurgischer Eingriffe nach Anspruch 2,
    wobei der bewegliche Abschnitt (112) ein Zahnrad (101, 106) ist, das sich während der Drehung bewegt,
    der Bewegungsmechanismus (113a) dafür konfiguriert ist, das Zahnrad (101, 106) durch Bewegen zu drehen, und
    der Antriebsabschnitt (121) ein säulenförmiger Abschnitt (201) ist, der den Bewegungsmechanismus (113a) bewegt, wenn das chirurgische Instrument (100) angebracht oder gelöst wird.
     
    4. System zur Unterstützung chirurgischer Eingriffe nach Anspruch 2,
    wobei der bewegliche Abschnitt (112) ein erstes Zahnrad (101) ist, das sich während der Drehung bewegt,
    der Bewegungsmechanismus (113a) ein zweites Zahnrad (106) umfasst, das sich über einen Verbindungsmechanismus (107) dreht und dafür konfiguriert ist, das erste Zahnrad (101) durch die Drehung des zweiten Zahnrads (106) zu drehen, und der Antriebsabschnitt (121) ein säulenförmiger Abschnitt (201) ist, der den Verbindungsmechanismus (107) betätigt, wenn das chirurgische Instrument (100) angebracht oder gelöst wird.
     
    5. System zur Unterstützung chirurgischer Eingriffe nach Anspruch 2,
    wobei der bewegliche Abschnitt (112) ein lineares Antriebselement ist, das mit konkaven Abschnitten in einem konstanten Intervall vorgesehen ist und sich in eine lineare Richtung bewegt,
    der Bewegungsmechanismus (113a) dafür konfiguriert ist, das lineare Antriebselement durch Bewegen eines Elements, das sich in eine Richtung rechtwinklig zu der Bewegungsrichtung des linearen Antriebselements bewegt, zu bewegen, und dafür, das lineare Antriebselement durch ein Beschränkungselement (124) darauf zu beschränken, sich in eine konstante Richtung zu bewegen, und
    der Antriebsabschnitt (121) ein säulenförmiger Abschnitt (201) ist, der den Bewegungsmechanismus (113a) betätigt, wenn das chirurgische Instrument (100) angebracht oder gelöst wird.
     
    6. System zur Unterstützung chirurgischer Eingriffe nach Anspruch 1,
    wobei der Antriebsabschnitt (121) dafür konfiguriert ist, den beweglichen Abschnitt (112) in einem vorgegebenen Maß zu bewegen, ohne den beweglichen Abschnitt (112) zu berühren, wenn das chirurgische Instrument (100) angebracht oder gelöst wird.
     
    7. System zur Unterstützung chirurgischer Eingriffe nach Anspruch 6,
    wobei der bewegliche Abschnitt (112) ein Zahnrad (101, 106) ist, das sich während der Drehung bewegt,
    der Bewegungsmechanismus (113a) einen ersten Magneten (205) aufweist und dafür konfiguriert ist, das Zahnrad (101, 106) durch Bewegung aufgrund von durch den ersten Magneten (205) aufgebrachter magnetischer Kraft zu bewegen, und
    der Antriebsabschnitt (121) einen zweiten Magneten (205) umfasst, der magnetische Kraft auf den ersten Magneten (205) aufbringt, wenn das chirurgische Instrument (100) angebracht oder gelöst wird.
     
    8. System zur Unterstützung chirurgischer Eingriffe nach Anspruch 1,
    wobei der Ausgabeabschnitt Elektroden (202a, 202b, 202c) umfasst, die mit dem Potentiometer (102) verbunden sind und einen Widerstandswert des Potentiometers (102) als einen Spannungswert durch elektrische Verbindung mit dem Antriebsabschnitt (121) an den Körper ausgeben, wenn das chirurgische Instrument (100) an dem Körper montiert wird.
     
    9. System zur Unterstützung chirurgischer Eingriffe nach Anspruch 1,
    wobei der Ausgabeabschnitt einen Drahtloskommunikationsabschnitt umfasst, der mit dem Potentiometer (102) verbunden ist und drahtlos einen Widerstandswert des Potentiometers (102) als einen Spannungswert an den Körper kommuniziert.
     
    10. System zur Unterstützung chirurgischer Eingriffe nach Anspruch 3,
    wobei jeder Zahn des Zahnrads (101, 106) derart gebildet ist, dass jeder Zahn eine unterschiedliche Höhe von der Mitte des Zahnrads (101, 106) aufweist, und
    der Körper ferner einen Sensor (203), der die Höhe eines Zahns liest, wenn der Körper an dem chirurgischen Instrument montiert wird, und einen Drehwinkelerfassungsabschnitt, der einen Drehwinkel des Zahnrads (101, 106) auf Grundlage der von dem Sensor (203) gelesenen Höhe des Zahns erfasst, umfasst.
     
    11. System zur Unterstützung chirurgischer Eingriffe nach Anspruch 4,
    wobei jeder Zahn des ersten Zahnrads (101) derart gebildet ist, dass jeder Zahn eine unterschiedliche Höhe von der Mitte des ersten Zahnrads (101) aufweist, und
    der Körper ferner einen Sensor (203), der die Höhe eines Zahns liest, wenn der Körper an dem chirurgischen Instrument (100) montiert wird, und einen Drehwinkelerfassungsabschnitt, der einen Drehwinkel des ersten Zahnrads (101) auf Grundlage der von dem Sensor (203) gelesenen Höhe des Zahns erfasst, umfasst.
     
    12. System zur Unterstützung chirurgischer Eingriffe nach einem der Ansprüche 1 bis 11,
    wobei das chirurgische Instrument (100) ferner einen Verwendungsanzahlbeschränkungsabschnitt umfasst, der die Verwendungsanzahl des chirurgischen Instruments (100) durch Beschränken des Bewegungsausmaßes des beweglichen Abschnitts beschränkt.
     
    13. System zur Unterstützung chirurgischer Eingriffe nach einem der Ansprüche 1 bis 12,
    wobei Zahlen zur Angabe der Verwendungsanzahl des chirurgischen Instruments (100) in dem beweglichen Abschnitt gebildet werden und
    ein Öffnungsabschnitt zum Lesen der in dem beweglichen Abschnitt (112) gebildeten Zahlen von außerhalb in dem chirurgischen Instrument gebildet ist.
     
    14. Chirurgisches Instrument (100), das frei an einem Körper eines Systems zur Unterstützung chirurgischer Eingriffe angebracht oder davon gelöst wird, das umfasst:

    einen Verwendungsanzahlakkumulationsabschnitt, der einen beweglichen Abschnitt (112), der beweglich konfiguriert ist, und einen Bewegungsmechanismus (113a), der den beweglichen Abschnitt (112) bewegt, wenn das chirurgische Instrument (100) an dem Körperabschnitt angebracht oder davon gelöst wird, umfasst;

    wobei ein Ausgabeabschnitt einen Widerstandswert eines Potentiometers (102) als einen Spannungswert an den Körper ausgibt,

    wobei der Verwendungsanzahlakkumulationsabschnitt eine Verwendungsanzahl des chirurgischen Instruments (100) durch eine Bewegung des beweglichen Abschnitts (112) akkumuliert und ein Potentiometer (102) umfasst, das den Widerstandswert gemäß eines Bewegungsausmaßes des beweglichen Abschnitts ändert.


     
    15. Chirurgisches Instrument (100) nach Anspruch 14,
    wobei der bewegliche Abschnitt (112) ein Zahnrad (101, 106) ist, das sich während der Drehung bewegt, und
    der Bewegungsmechanismus (113a) dafür konfiguriert ist, das Zahnrad (101, 106) zu drehen, wenn das chirurgische Instrument (100) angebracht oder gelöst wird.
     
    16. Chirurgisches Instrument (100) nach Anspruch 14,
    wobei der bewegliche Abschnitt (112) ein erstes Zahnrad (101) ist, das sich während der Drehung bewegt, und
    der Bewegungsmechanismus (113a) ein zweites Zahnrad (106) umfasst, das sich über einen Verbindungsmechanismus (107) dreht, wenn das chirurgische Instrument (100) angebracht oder gelöst wird, und dafür konfiguriert ist, das erste Zahnrad (101) durch die Drehung des zweiten Zahnrads (106) zu drehen.
     
    17. Chirurgisches Instrument (100) nach Anspruch 14,
    wobei der bewegliche Abschnitt (112) ein lineares Antriebselement ist, das mit konkaven Abschnitten in einem konstanten Intervall vorgesehen ist und sich in eine lineare Richtung bewegt, und
    der Bewegungsmechanismus (113a) dafür konfiguriert ist, das lineare Antriebselement durch Bewegen eines Elements, das sich in eine Richtung rechtwinklig zu der Bewegungsrichtung des linearen Antriebselements bewegt, zu bewegen, wenn das chirurgische Instrument (100) angebracht oder gelöst wird, und dafür, das lineare Antriebselement durch ein Beschränkungselement (124) darauf zu beschränken, sich in eine konstante Richtung zu bewegen.
     
    18. Chirurgisches Instrument (100) nach Anspruch 14,
    wobei der bewegliche Abschnitt (112) ein Zahnrad (101, 106) ist, das sich während der Drehung bewegt, und
    der Bewegungsmechanismus (113a) einen ersten Magneten (205) umfasst und dafür konfiguriert ist, das Zahnrad (101, 106) durch Bewegung aufgrund von durch den ersten Magneten (205) aufgebrachter magnetischer Kraft zu bewegen, wenn das chirurgische Instrument (100) angebracht oder gelöst wird.
     
    19. Chirurgisches Instrument (100) nach Anspruch 14,
    wobei der Ausgabeabschnitt Elektroden (202a, 202b, 202c) umfasst, die mit dem Potentiometer (102) verbunden sind und einen Widerstandswert des Potentiometers (102) als einen Spannungswert durch elektrische Verbindung mit dem Körper an den Körper ausgeben, wenn das chirurgische Instrument (100) an dem Körper montiert wird.
     
    20. Chirurgisches Instrument (100) nach Anspruch 14,
    wobei der Ausgabeabschnitt einen Drahtloskommunikationsabschnitt umfasst, der mit dem Potentiometer (102) verbunden ist und drahtlos einen Widerstandswert des Potentiometers (102) als einen Spannungswert an den Körper kommuniziert.
     
    21. Chirurgisches Instrument (100) nach Anspruch 15,
    wobei jeder Zahn des Zahnrads (101, 106) derart gebildet ist, dass jeder Zahn eine unterschiedliche Höhe von der Mitte des Zahnrads (101, 106) aufweist, und so konfiguriert ist, dass die Höhe des Zahns gelesen wird, wenn das chirurgische Instrument (100) an dem Körper montiert wird.
     
    22. Chirurgisches Instrument (100) nach Anspruch 16,
    wobei jeder Zahn des ersten Zahnrads (101) derart gebildet ist, dass jeder Zahn eine unterschiedliche Höhe von der Mitte des ersten Zahnrads (101) aufweist, und so konfiguriert ist, dass die Höhe des Zahns gelesen wird, wenn das chirurgische Instrument (100) an dem Körper montiert wird.
     
    23. Chirurgisches Instrument (100) nach einem der Ansprüche 14 bis 22, das ferner umfasst:
    einen Verwendungsanzahlbeschränkungsabschnitt, der die Verwendungsanzahl des chirurgischen Instruments (100) durch Beschränken des Bewegungsausmaßes des beweglichen Abschnitts beschränkt.
     
    24. Chirurgisches Instrument (100) nach einem der Ansprüche 14 bis 23,
    wobei Zahlen zur Angabe der Verwendungsanzahl des chirurgischen Instruments (100) in dem beweglichen Abschnitt gebildet werden und
    ein Öffnungsabschnitt zum Lesen der in dem beweglichen Abschnitt (112) gebildeten Zahlen von außerhalb in dem chirurgischen Instrument (100) gebildet ist.
     


    Revendications

    1. Système de support d'opération chirurgicale, comprenant :

    un instrument chirurgical (100) muni d'une partie d'accumulation du nombre d'utilisations qui comprend une partie mobile (112) qui est configurée de manière mobile et un mécanisme de déplacement (113a) qui déplace la partie mobile (112) ;
    et

    un corps dans lequel l'instrument chirurgical (100) est installé de manière détachable et qui comprend une partie d'entraînement (121) qui déplace la partie mobile (112) d'une grandeur prédéterminée par l'intermédiaire du mécanisme de déplacement (113a) lorsque l'instrument chirurgical (100) est attaché ou détaché,

    la partie d'accumulation du nombre d'utilisations accumulant le nombre d'utilisations de l'instrument chirurgical (100) par le mouvement de la partie mobile (112) et

    comprend un potentiomètre (102) qui change une valeur de résistance selon une grandeur de mouvement de la partie mobile (112), et

    l'instrument chirurgical (100) comprenant en outre une partie de sortie qui délivre en sortie la valeur de résistance du potentiomètre (102) au corps sous la forme d'une valeur de tension.


     
    2. Système de support d'opération chirurgicale selon la revendication 1,
    dans lequel la partie d'entraînement (121) est configurée de façon à déplacer la partie mobile (112) d'une grandeur prédéterminée tout en venant en contact avec la partie mobile (112) lorsque l'instrument chirurgical (100) est attaché ou détaché.
     
    3. Système de support d'opération chirurgicale selon la revendication 2, dans lequel la partie mobile (112) est un engrenage (101, 106) qui se déplace tout en tournant, le mécanisme de déplacement (113a) est configuré de façon à faire tourner l'engrenage (101, 106) par déplacement, et
    la partie d'entraînement (121) est une partie en colonne (201) qui déplace le mécanisme de déplacement (113a) lorsque l'instrument chirurgical (100) est attaché ou détaché.
     
    4. Système de support d'opération chirurgicale selon la revendication 2, dans lequel la partie mobile (112) est un premier engrenage (101) qui se déplace tout en tournant,
    le mécanisme de déplacement (113a) comprend un second engrenage (106) qui tourne par l'intermédiaire d'un mécanisme de liaison (107), et qui est configuré de façon à faire tourner le premier engrenage (101) par la rotation du second engrenage (106), et
    la partie d'entraînement (121) est une partie en colonne (201) qui actionne le mécanisme de liaison (107) lorsque l'instrument chirurgical (100) est attaché ou détaché.
     
    5. Système de support d'opération chirurgicale selon la revendication 2, dans lequel la partie mobile (112) est un élément d'entraînement linéaire qui comporte des parties concaves à intervalle constant et qui se déplace dans une direction linéaire, le mécanisme de déplacement (113a) est configuré de façon à déplacer l'élément d'entraînement linéaire par déplacement d'un élément qui se déplace dans une direction orthogonale à la direction de mouvement de l'élément d'entraînement linéaire, et à limiter un mouvement de l'élément d'entraînement linéaire dans une direction constante par un élément de limitation (124), et
    la partie d'entraînement (121) est une partie en colonne (201) qui actionne le mécanisme de déplacement (113a) lorsque l'instrument chirurgical est attaché ou détaché.
     
    6. Système de support d'opération chirurgicale selon la revendication 1,
    dans lequel la partie d'entraînement (121) est configurée de façon à déplacer la partie mobile (112) d'une grandeur prédéterminée sans entrer en contact avec la partie mobile (112) lorsque l'instrument chirurgical (100) est attaché ou détaché.
     
    7. Système de support d'opération chirurgicale selon la revendication 6, dans lequel la partie mobile (112) est un engrenage (101, 106) qui se déplace tout en tournant, le mécanisme de déplacement (113a) a un premier aimant (205), et est configuré de façon à faire tourner l'engrenage (101, 106) par un mouvement dû à une force magnétique appliquée par le premier aimant (205), et
    la partie d'entraînement (121) comprend un second aimant (205) qui applique une force magnétique au premier aimant (205) lorsque l'instrument chirurgical (100) est attaché ou détaché.
     
    8. Système de support d'opération chirurgicale selon la revendication 1,
    dans lequel la partie de sortie comprend des électrodes (202a, 202b, 202c) qui sont reliées au potentiomètre (102) et délivrent en sortie une valeur de résistance du potentiomètre (102) au corps sous la forme d'une valeur de tension par connexion électrique à la partie d'entraînement (121) lorsque l'instrument chirurgical (100) est monté sur le corps.
     
    9. Système de support d'opération chirurgicale selon la revendication 1,
    dans lequel la partie de sortie comprend une partie de communication sans fil qui est reliée au potentiomètre (102) et qui communique sans fil une valeur de résistance du potentiomètre (102) au corps sous la forme d'une valeur de tension.
     
    10. Système de support d'opération chirurgicale selon la revendication 3, dans lequel chaque dent de l'engrenage (101, 106) est formée de telle sorte que chaque dent a une hauteur, à partir du centre de l'engrenage (101, 106), différente, et
    le corps comprend en outre un capteur (203) qui lit la hauteur d'une dent lorsque le corps est monté sur l'instrument chirurgical, et une partie de détection d'angle de rotation qui détecte un angle de rotation de l'engrenage (101, 106) sur la base de la hauteur de la dent lue par le capteur (203).
     
    11. Système de support d'opération chirurgicale selon la revendication 4, dans lequel chaque dent du premier engrenage (101) est formée de telle sorte que chaque dent a une hauteur, à partir du centre du premier engrenage (101), différente, et
    le corps comprend en outre un capteur (203) qui lit la hauteur d'une dent lorsque le corps est monté sur l'instrument chirurgical, et une partie de détection d'angle de rotation qui détecte un angle de rotation du premier engrenage (101) sur la base de la hauteur de la dent lue par le capteur (203).
     
    12. Système de support d'opération chirurgicale selon l'une quelconque des revendications 1 à 11,
    dans lequel l'instrument chirurgical (100) comprend en outre une partie de limitation du nombre d'utilisations qui limite le nombre d'utilisations de l'instrument chirurgical (100) par limitation de la grandeur de mouvement de la partie mobile.
     
    13. Système de support d'opération chirurgicale selon l'une quelconque des revendications 1 à 12, dans lequel
    des chiffres pour indiquer le nombre d'utilisations de l'instrument chirurgical (100) sont formés dans la partie mobile, et
    une partie d'ouverture pour lire les chiffres formés dans la partie mobile (112) depuis l'extérieur est formée dans l'instrument chirurgical.
     
    14. Instrument chirurgical (100) qui est librement attaché à ou détaché d'un corps d'un système de support d'opération chirurgicale, comprenant :

    une partie d'accumulation du nombre d'utilisations qui comprend une partie mobile (112) qui est configurée de manière mobile et un mécanisme de déplacement (113a) qui déplace la partie mobile (112) lorsque l'instrument chirurgical (100) est attaché à ou détaché de la partie de corps ;

    une partie de sortie qui délivre en sortie une valeur de résistance d'un potentiomètre (102) au corps sous la forme d'une valeur de tension,

    la partie d'accumulation du nombre d'utilisation accumulant un nombre d'utilisations de l'instrument chirurgical (100) par un mouvement de la partie mobile (112) et

    comprenant le potentiomètre (102) qui change la valeur de résistance selon une grandeur de mouvement de la partie mobile.


     
    15. Instrument chirurgical (100) selon la revendication 14, dans lequel la partie mobile (112) est un engrenage (101, 106) qui se déplace tout en tournant,
    et
    le mécanisme de déplacement (113a) est configuré de façon à faire tourner l'engrenage (101, 106) lorsque l'instrument chirurgical (100) est attaché ou détaché.
     
    16. Instrument chirurgical (100) selon la revendication 14, dans lequel la partie mobile (112) est un premier engrenage (101) qui se déplace tout en tournant, et
    le mécanisme de déplacement (113a) comprend un second engrenage (106) qui tourne par l'intermédiaire d'un mécanisme de liaison (107) lorsque l'instrument chirurgical (100) est attaché ou détaché, et qui est configuré de façon à faire tourner le premier engrenage (101) par la rotation du second engrenage (106).
     
    17. Instrument chirurgical (100) selon la revendication 14, dans lequel la partie mobile (112) est un élément d'entraînement linéaire qui comporte des parties concaves à intervalle constant et qui se déplace dans une direction linéaire, et le mécanisme de déplacement (113a) est configuré de façon à déplacer l'élément d'entraînement linéaire par déplacement d'un élément qui se déplace dans une direction orthogonale à la direction de mouvement de l'élément d'entraînement linéaire lorsque l'instrument chirurgical (100) est attaché ou détaché, et à limiter un mouvement de l'élément d'entraînement linéaire dans une direction constante par un élément de limitation (124).
     
    18. Instrument chirurgical (100) selon la revendication 14, dans lequel la partie mobile (112) est un engrenage (101, 106) qui se déplace tout en tournant, et
    le mécanisme de déplacement (113a) comprend un premier aimant (205), et est configuré de façon à faire tourner l'engrenage (101, 106) par un mouvement dû à une force magnétique appliquée par le premier aimant (205) lorsque l'instrument chirurgical est attaché ou détaché.
     
    19. Instrument chirurgical (100) selon la revendication 14,
    dans lequel la partie de sortie comprend des électrodes (202a, 202b, 202c) qui sont reliées au potentiomètre (102) et qui délivrent en sortie une valeur de résistance du potentiomètre (102) au corps sous la forme d'une valeur de tension par connexion électrique au corps lorsque l'instrument chirurgical (100) est monté sur le corps.
     
    20. Instrument chirurgical (100) selon la revendication 14,
    dans lequel la partie de sortie comprend une partie de communication sans fil qui est reliée au potentiomètre (102) et qui communique sans fil une valeur de résistance du potentiomètre (102) au corps sous la forme d'une valeur de tension.
     
    21. Instrument chirurgical (100) selon la revendication 15,
    dans lequel chaque dent de l'engrenage (101, 106) est formée de telle sorte que chaque dent a une hauteur, à partir du centre de l'engrenage (101, 106), différente, et est configurée de telle sorte que la hauteur de la dent est lue lorsque l'instrument chirurgical (100) est monté sur le corps.
     
    22. Instrument chirurgical (100) selon la revendication 16,
    dans lequel chaque dent du premier engrenage (101) est formée de telle sorte que chaque dent a une hauteur, à partir du centre du premier engrenage (101), différente, et est configurée de telle sorte que la hauteur de la dent est lue lorsque l'instrument chirurgical (100) est monté sur le corps.
     
    23. Instrument chirurgical (100) selon l'une quelconque des revendications 14 à 22, comprenant en outre :
    une partie de limitation du nombre d'utilisations qui limite le nombre d'utilisations de l'instrument chirurgical (100) par limitation de la grandeur de mouvement de la partie mobile.
     
    24. Instrument chirurgical (100) selon l'une quelconque des revendications 14 à 23, dans lequel
    des chiffres pour indiquer le nombre d'utilisations de l'instrument chirurgical (100) sont formés dans la partie mobile, et
    une partie d'ouverture pour lire les chiffres formés dans la partie mobile (112) depuis l'extérieur est formée dans l'instrument chirurgical.
     




    Drawing



































    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description