(19)
(11)EP 2 686 707 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
25.03.2020 Bulletin 2020/13

(21)Application number: 12761151.5

(22)Date of filing:  17.02.2012
(51)Int. Cl.: 
G01V 1/28  (2006.01)
G06T 1/00  (2006.01)
(86)International application number:
PCT/US2012/025622
(87)International publication number:
WO 2012/128873 (27.09.2012 Gazette  2012/39)

(54)

SYSTEM AND METHOD FOR SEISMIC IMAGING WITH REDUCED COMPUTATIONAL COST

SYSTEM UND VERFAHREN FÜR SEISMISCHE BILDGEBUNG MIT REDUZIERTEN BERECHNUNGSKOSTEN

SYSTÈME ET PROCÉDÉ D'IMAGERIE SISMIQUE PERMETTANT DE RÉDUIRE LES CALCULS


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 18.03.2011 US 201113051186

(43)Date of publication of application:
22.01.2014 Bulletin 2014/04

(73)Proprietor: Chevron U.S.A. Inc.
San Ramon, CA 94583 (US)

(72)Inventors:
  • SHAN, Guojian
    San Ramon, California 94583 (US)
  • ZHANG, Linbin
    San Ramon, California 94583 (US)

(74)Representative: Haseltine Lake Kempner LLP 
Redcliff Quay 120 Redcliff Street
Bristol BS1 6HU
Bristol BS1 6HU (GB)


(56)References cited: : 
US-A1- 2010 054 082
US-A1- 2010 118 651
US-A1- 2010 302 906
US-B1- 7 196 969
US-A1- 2010 054 082
US-A1- 2010 118 651
US-A1- 2010 302 906
US-B1- 7 400 553
  
  • SHIPP R M ET AL: "Two-dimensional full wavefield inversion of wide-aperture marine seismic streamer data", GEOPHYSICAL JOURNAL INTERNATIONAL, BLACKWELL SCIENTIFIC PUBLICATIONS, OXFORD, GB, vol. 151, no. 2, 1 November 2002 (2002-11-01), pages 325-344, XP002576515, ISSN: 0956-540X
  • WANG Y ET AL: "AN EXPANDING-WAVEFRONT METHOD FOR SOLVING THE EIKONAL EQUATIONS IN GENERAL ANISOTROPIC MEDIA", GEOPHYSICS, SOCIETY OF EXPLORATION GEOPHYSICISTS, US, vol. 71, no. 5, 1 September 2006 (2006-09-01), pages T129-T135, XP001249726, ISSN: 0016-8033, DOI: 10.1190/1.2235563
  
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description

TECHNICAL FIELD



[0001] The present invention relates generally to methods and systems for seismic imaging of the earth's subsurface, and in particular, methods and systems for performing seismic processing such as reverse time migration at a reduced computational cost.

BACKGROUND OF THE INVENTION



[0002] Many prior art migration and inversion methods belong to the class of adjoint state problems where forward and backward propagated wavefields are correlated to obtain an image. Examples of such methods include reverse time migration and waveform inversion. These methods require that forward propagated wavefields be accessed in reverse order, in lockstep with the adjoint, backward-propagated wavefields at each time step.

[0003] This requirement of simultaneous availability of both the forward and backward-propagated wavefields at each time step poses significant computational challenges for large datasets. Calculating the source and receiver wavefields at every point in the subsurface for every time step has huge requirements in both computational operations and computer memory. Prior art has addressed this problem by reducing the wavefield computations according to an expanding box, wherein for each time step, the wavefield is only calculated for subsurface points that contain the expanding wavefield. At subsurface points outside the expanding box, the wavefield is known to be zero, so there is no need to calculate it. This methodology can save up to 30% of the computational cost of reverse time migration. However, even when using an expanding box for the wavefield propagation, the computational cost of methods such as reverse time migration and waveform inversion is very high.

[0004] An expanding box for source wavefield propagation is illustrated by Figure 1. Panel 10 shows a source wavefield that is being propagated. The majority of the panel is dark gray, indicating that the source wavefield is not calculated in that region and that it is presumed to be zero. The source wavefield is only calculated in the light gray region, which is slightly larger than the actual wavefield, thereby ensuring that the entire wavefield is computed. The propagating wavefield in panel 10 is the half-circle centered at the top of the panel. As the wavefield forward propagates to later times in panels 12 and 14, the light gray region expands to allow the wavefield to be calculated within this expanding box and the dark gray region where the wavefield is held to be zero decreases in size. Due to the complexity of the earth model that the wavefield is being propagated through, the expanding box expands at different rates in different directions and the wavefield becomes complex. The backward propagated receiver wavefield can be similarly calculated within an expanding box. Although the expanding box for source and receiver wavefield propagation can reduce the computational cost by up to 30%, seismic imaging methods such as reverse time migration are still computationally expensive.

[0005] There exists a need to process wavefields and to generate images of a subsurface region of interest in a more efficient computational manner.

[0006] Reference may be made to:

a paper by Shipp R M et al, entitled "Two-dimensional full wavefield inversion of wide-aperture marine seismic streamer data", Geophysical Journal International, Blackwell Scientific Publications, Oxford, GB, vol. 151, no. 2, pages 325-344;

US 7196969 B1, which discloses three-dimensional two-way acoustic wave equation pre-stack imaging systems and methods;

US 2010/302906 A1, which discloses a method for wavefield-based data processing including utilizing multiples to determine subsurface characteristics of a suburface region;

US 2010/054082 A1, which discloses reverse-time depth migration with reduced memory requirement;

US 2010/118651 A1, which discloses a method for generation of images related to a subsurface region of interest; and

a paper by Wang Y et al, entitled "An Expanding-Wavefront Method For Solving The Eikonal Equations In General Anisotropic Media", Geophysics, Society Of Exploration Geophysicists, US, vol. 71, no. 5, pages T129-T135 .


SUMMARY OF THE INVENTION



[0007] One aspect of the present invention is defined in claim 1.

[0008] Another aspect of the present invention is defined in claim 2, with a preferred embodiment defined in dependent claim 3.

[0009] Further aspects of the present invention are defined in claims 4 and 5.

[0010] Embodiments are further described below in the detailed description section.

BRIEF DESCRIPTION OF THE DRAWINGS



[0011] These and other features of the present invention will become better understood with regard to the following description, pending claims and accompanying drawings where:

Figure 1 demonstrates the prior art of an expanding box for propagating the source wavefield;

Figure 2 is a flowchart illustrating a method in accordance with an embodiment of the invention;

Figure 3 is a diagram displaying the travel times used in accordance with an embodiment of the invention;

Figure 4 illustrates the result of using an embodiment of the invention; and

Figure 5 schematically illustrates a system for performing a method in accordance with an embodiment of the invention.


DETAILED DESCRIPTION OF THE INVENTION



[0012] The present invention may be described and implemented in the general context of a system and computer methods to be executed by a computer. Such computer-executable instructions may include programs, routines, objects, components, data structures, and computer software technologies that can be used to perform particular tasks and process abstract data types. Software implementations of the present invention may be coded in different languages for application in a variety of computing platforms and environments. It will be appreciated that the scope and underlying principles of the present invention are not limited to any particular computer software technology.

[0013] Moreover, those skilled in the art will appreciate that the present invention may be practiced using any one or combination of hardware and software configurations, including but not limited to a system having single and/or multiple computer processors, hand-held devices, programmable consumer electronics, mini-computers, mainframe computers, and the like. The invention may also be practiced in distributed computing environments where tasks are performed by servers or other processing devices that are linked through a one or more data communications network. In a distributed computing environment, program modules may be located in both local and remote computer storage media including memory storage devices.

[0014] Also, an article of manufacture for use with a computer processor, such as a CD, pre-recorded disk or other equivalent devices, may include a computer program storage medium and program means recorded thereon for directing the computer processor to facilitate the implementation and practice of the present invention. Such devices and articles of manufacture also fall within the scope of the present invention as defined by the appended claims.

[0015] Referring now to the drawings, embodiments of the present invention will be described. The invention can be implemented in numerous ways, including for example as a system (including a computer processing system), a method (including a computer implemented method), an apparatus, a computer readable medium, a computer program product, a graphical user interface, a web portal, or a data structure tangibly fixed in a computer readable memory. Several embodiments of the present invention are discussed below. The appended drawings illustrate only typical embodiments of the present invention and therefore are not to be considered limiting of its scope and breadth.

[0016] The present invention relates to seismic imaging of the earth's subsurface and, by way of example and not limitation, can be used to reduce the computational cost of seismic imaging by reverse time migration or waveform inversion. This may be accomplished through the use of a dual-expanding box which limits the time range over which the source and receiver wavefields are calculated.

[0017] The present invention uses a dual-expanding box to reduce the computational cost of seismic wave propagation during seismic processing such as reverse time migration. In this regard, an example of a method 200 in accordance with the present invention is illustrated in the flowchart of Figure 2. At step 20, seismic data and an earth model is obtained. The earth model includes the information about the subsurface attributes that are needed to forward and backward propagate the source and receiver wavefields. It may include, for example, any of these attributes: seismic velocity, density, and/or anisotropic parameters. The seismic data may be obtained directly from a seismic survey or may be obtained by transmitting, storing or delivering the seismic data through network connections, computer hard disk, USB devices, and the like. Alternatively, the seismic data may be synthetic seismic data obtained through seismic data modeling such as finite difference modeling. The earth model may also be obtained by transmitting, storing or delivering the subsurface attributes through network connections, computer hard disk, USB devices, and the like, or may be obtained by modeling done prior to the steps of the present invention.

[0018] At step 22, the source wavefield is propagated through a limited time range. The receiver wavefield is propagated through the same limited time range at step 24, which may occur before, after or concurrently with step 22. In the case of reverse time migration, step 22 may be done, for example, with a finite difference modeling algorithm based on a finite difference solution to a wave equation, moving forward in time. Step 24 might be done, for example, by finite difference modeling backwards in time. The limited time range for both the forward and backward propagation is described with reference to Figure 3.

[0019] The travel times used by the present invention to determine the extent of the calculations for the forward and backward propagating wavefields are shown in Figure 3. The source 30 is where a wave begins propagating to image point 32. The amount of time it takes for the forward propagated wave to travel from the source 30 to the image point 32 is t1, represented by line 31. The receiver 34 is the point from which the receiver wavefield is backward propagated to image point 32. The amount of time it takes for the backward propagated receiver wavefield to travel from the receiver 34 to the image point 32 is t2, represented by line 33. The maximum traveltime recorded at the receiver is T.

[0020] Now consider the source and receiver wavefields at the image point 32. The forward propagation of the source wavefield begins at source 30 at time 0 and proceeds forward in time. The backward propagation of the receiver wavefield begins at receiver 34 at time T and proceeds backward in time. The source wavefield and receiver wavefield is zero everywhere until the propagation arrives; this means that for image point 32, the source wavefield will be zero until time t1 and the receiver wavefield will be zero until time T-t2. As the forward and backward propagation continues, the source and receiver wavefields will continue to be non-zero and therefore must be calculated at the image point 32.

[0021] Referring again to Figure 2, at step 26 an imaging condition is applied to the source and receiver wavefields. In the case of reverse time migration, this imaging condition is often a zero-lag cross-correlation. When applying such an imaging condition at the image point 32 in Figure 3, where the source wavefield is zero until time t1 and the receiver wavefield is zero until time T-t2, the zero-lag cross-correlation will be zero for times less than t1 and greater than T-t2. Therefore, to obtain an image for image point 32, the source and receiver wavefields only need to be calculated for times between t1 and T-t2. For both the source and receiver wavefield propagation, the computing area initially grows, then becomes smaller. Therefore, in the case of reverse time migration, the present invention may save about 60% of whole migration cost.

[0022] The results of using the present invention can be seen in Figure 4. Panel 40 shows the result of reverse time migration of a single shot wherein the source and receiver wavefields were calculated for all times at all imaging points. Panel 42 shows the result of using the present invention in which the source and receiver wavefields are calculated in a limited time range. The result in panel 42 required only 40% of the computations of panel 40 and the results are substantially the same.

[0023] A system 500 for performing the method is schematically illustrated in Figure 5. The system includes a data storage device or memory 50. The stored data, such as seismic data and an earth model, may be made available to a processor 52, such as a programmable general purpose computer. The processor 52 is configured to execute a forward propagation module 55, a backward propagation module 56, and an imaging condition module 57. These modules may be implemented separately or as part of one or more inclusive modules. The forward propagation module 55 may be the adjoint operation of the backward propagation module 56, and the propagation operations may be done within one inclusive module. Using the modules, the processor 52 executes the method of the present invention. The processor is also configured to be in communication with the user interface 58. The user interface may be used both to display data and processed data products and to allow the user to select among options for implementing aspects of the method. The wavefields and images computed on the processor 52 may be displayed on the user interface 58, stored on the data storage device or memory 50, or both displayed and stored.

[0024] In the foregoing specification this invention has been described in relation to certain preferred embodiments thereof, and many details have been set forth for purpose of illustration. The scope of the present invention is defined by the appended claims.


Claims

1. A computer-implemented method (200) for generating images of a subsurface region, the method comprising:

obtaining (20) seismic data and an earth model related to the subsurface region;

forward propagating (22), via a computer, a source wavefield through the earth model for a limited time range dependent on a first travel time and a second travel time;

backward propagating (24), via a computer, a receiver wavefield through the earth model for the limited time range dependent on the first travel time and the second travel time; and

applying (26), via a computer, an imaging condition to the forward propagated source wavefield and backward propagated receiver wavefield to generate images related to the subsurface region,

wherein the first travel time is a length of time taken by seismic energy to travel from a seismic source (30) to an image point (32) in the subsurface region and the second travel time is a length of time taken by seismic energy to travel from a seismic receiver (34) to the image point (32) in the subsurface region,

and wherein said limited time range is between the first travel time and the second travel time subtracted from a maximum travel time recorded at the seismic receiver.


 
2. A system (500) for generating images of a subsurface region, comprising:

a data source (50) configured to contain seismic data and an earth model related to the subsurface region; and

at least one computer processor (52) configured to communicate with the data source (50) and to execute computer program modules, the computer modules comprising:

i. a forward propagation module (55);

ii. a backward propagation module (56); and

iii. an imaging condition module (57),

wherein the forward propagation module (55) and the backward propagation module (56) are configured to propagate wavefields for a limited time range dependent on a first travel time and a second travel time,
wherein the first travel time is a length of time taken by seismic energy to travel from a seismic source (30) to an image point (32) in the subsurface region and the second travel time is a length of time taken by seismic energy to travel from a seismic receiver (34) to the image point (32) in the subsurface region,
and wherein said limited time range is between the first travel time and the second travel time subtracted from a maximum travel time recorded at the seismic receiver.


 
3. The system of claim 2 further comprising a user interface (58).
 
4. A computer program for estimating fluid distribution in a subterranean reservoir, the computer program comprising instructions which, when the program is executed by a computer, cause the computer to carry out the method of claim 1.
 
5. A computer-readable medium having stored thereon the computer program of claim 4.
 


Ansprüche

1. Rechnerimplementiertes Verfahren (200) für die Erzeugung von Bildern einer unterirdischen Region, das Verfahren umfassend:

Erhalten (20) seismischer Daten und eines Erdmodells, bezogen auf die unterirdische Region;

Vorwärtspropagieren (22), über einen Rechner, eines Quellenwellenfelds durch das Erdmodell für einen beschränkten Zeitbereich, der von einer ersten Reisezeit und einer zweiten Reisezeit abhängt;

Rückwärtspropagieren (24), über einen Rechner, eines Empfängerwellenfelds durch das Erdmodell für den beschränkten Zeitbereich, der von der ersten Reisezeit und der zweiten Reisezeit abhängt; und

Anwenden (26), über einen Rechner, einer Bildgebungsbedingung auf das vorwärtspropagierte Quellenwellenfeld und das rückwärtspropagierte Empfängerwellenfeld, um Bilder zu erzeugen, bezogen auf die unterirdische Region,

worin die erste Reisezeit eine Zeitlänge ist, die von seismischer Energie in Anspruch genommen wird, um von einer seimischen Quelle (30) zu einem Bildpunkt (32) in der unterirdischen Region zu gelangen, und die zweite Reisezeit eine Zeitlänge ist, die von seismischer Energie in Anspruch genommen wird, um von einem seimischen Empfänger (34) zu einem Bildpunkt (32) in der unterirdischen Region zu gelangen,

und worin der beschränkte Zeitbereich zwischen der ersten Reisezeit und der zweiten Reisezeit ist, subtrahiert von einer am seismischen Empfänger aufgenommenen maximalen Reisezeit.


 
2. System (500) für das Erzeugen von Bildern einer unterirdischen Region, umfassend:

eine Datenquelle (50), konfiguriert, um seismische Daten und ein Erdmodell zu enthalten, bezogen auf die unterirdische Region; und

mindestens einen Rechnerprozessor (52), konfiguriert, um mit der Datenquelle (50) zu kommunizieren und Rechnerprogrammmodule auszuführen, die Rechnermodule umfassend:

i. ein Vorwärtspropagierungsmodul (55);

ii. ein Rückwärtspropagierungsmodul (56); und

iii. ein Bildgebungsbedingungsmodul (57),

worin das Vorwärtspropagierungsmodul (55) und das Rückwärtspropagierungsmodul (56) konfiguriert sind, um Wellenfelder für einen beschränkten Zeitbereich zu propagieren, die von einer ersten Reisezeit und einer zweiten Reisezeit abhängen,

worin die erste Reisezeit eine Zeitlänge ist, die von seismischer Energie in Anspruch genommen wird, um von einer seimischen Quelle (30) zu einem Bildpunkt (32) in der unterirdischen Region zu gelangen, und die zweite Reisezeit eine Zeitlänge ist, die von seismischer Energie in Anspruch genommen wird, um von einem seimischen Empfänger (34) zu einem Bildpunkt (32) in der unterirdischen Region zu gelangen,

und worin der beschränkte Zeitbereich zwischen der ersten Reisezeit und der zweiten Reisezeit ist, subtrahiert von einer am seismischen Empfänger aufgenommenen maximalen Reisezeit.


 
3. System gemäß Anspruch 2, ferner umfassend eine Benutzeroberfläche (58).
 
4. Rechnerprogramm für das Abschätzen der Fluidverteilung in einem unterirdischen Reservoir, das Rechnerprogramm umfassend Anweisungen die, wenn das Programm durch einen Rechner ausgeführt wird, den Rechner dazu veranlassen, das Verfahren gemäß Anspruch 1 auszuführen.
 
5. Rechnerlesbares Medium, auf dem das Rechnerprogramm gemäß Anspruch 4 gespeichert ist.
 


Revendications

1. Un procédé mis en Ĺ“uvre par ordinateur (200) pour générer des images d'une région souterraine, le procédé comprenant:

obtenir (20) des données sisimiques et un modèle terrestre liés à la région souterraine;

propager vers l'avant (22) à travers le modèle terrestre, par un ordinateur, un champ d'onde source pendant un intervalle de temps limité en fonction d'un premier temps de trajet et d'un deuxième temps de trajet;

propager vers l'arrière (24) à travers le modèle terrestre, par un ordinateur, un champ d'onde récepteur pendant un intervalle de temps limité en fonction d'un premier temps de trajet et d'un deuxième temps de trajet; et

appliquer (26), par un ordinateur, une condition d'imagerie au champ d'onde source propagé vers l'avant et au champ d'onde récepteur propagé vers l'arrière pour générer des images liées à la région souterraine,

dans lequel le premier temps de trajet est une durée de temps pris par l'énergie sismique pour voyager à partir d'une source sismique (30) à un point d'image (32) dans la région souterraine et le deuxième temps de trajet est une durée de temps pris par l'énergie sismique pour voyager à partir d'un récepteur sismique (34) à un point d'image (32) dans la région souterraine,

et dans lequel l'intervalle de temps limité est entre le premier temps de trajet et le deuxième temps de trajet soustrait d'un temps de trajet maximum enregistré au récepteur sismique.


 
2. Un système (500) pour générer des images d'une région souterraine, comprenant:

une source de données (50) configurée pour contenir des données sismiques et un modèle terrestre liés à la région souterraine; et

au moins un processeur d'ordinateur (52) configuré pour communiquer avec une source de données (50) et pour exécuter des modules de logiciel informatique, les modules informatiques comprenant:

i. un module de propagation vers l'avant (55);

ii. un module de propagation vers l'arrière (56); et

iii. un module de condition d'imagerie (57),

dans lesquels le module de propagation vers l'avant (55) et le module de propagation vers l'arrière (56) sont configurés pour propager des champs d'onde pour un intervalle de temps limité en fonction d'un premier temps de trajet et d'un deuxième temps de trajet,

dans lesquels le premier temps de trajet est une durée de temps pris par l'énergie sismique pour voyager d'une source sismique (30) à un point d'image (32) dans la région souterraine et le deuxième temps de trajet est une durée de temps pris par l'énergie sismique pour voyager d'un récepteur sismique (34) à un point d'image (32) dans la région souterraine,

et dans lesquels l'intervalle de temps limité est entre le premier temps de trajet et le deuxième temps de trajet soustrait d'un temps de trajet maximum enregistré au récepteur sismique.


 
3. Le système selon la revendication 2 comprenant en outre une interface utilisateur (58).
 
4. Un logiciel informatique pour estimer la distribution de fluide dans un réservoir souterrain, le logiciel informatique comprenant des instructions qui, lorsque le logiciel est exécuté par un ordinateur, amènent l'ordinateur à executer le procédé selon la revendication 1.
 
5. Un support pouvant être lu par ordinateur sur lequel est stocké le logiciel informatique selon la revendication 4.
 




Drawing


















REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description




Non-patent literature cited in the description