(19)
(11)EP 2 694 253 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
05.06.2019 Bulletin 2019/23

(21)Application number: 12767994.2

(22)Date of filing:  04.04.2012
(51)International Patent Classification (IPC): 
B25B 23/00(2006.01)
B25B 21/02(2006.01)
(86)International application number:
PCT/US2012/032116
(87)International publication number:
WO 2012/138721 (11.10.2012 Gazette  2012/41)

(54)

ROTARY IMPACT DEVICE

KRAFTSCHRAUBERVORRICHTUNG

DISPOSITIF D'IMPACT ROTATIF


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 05.04.2011 US 201113080030

(43)Date of publication of application:
12.02.2014 Bulletin 2014/07

(73)Proprietor: Ingersoll-Rand Company
Davidson, NC 28036 (US)

(72)Inventors:
  • SEITH, Warren, Andrew
    Bethlehem, PA 18020 (US)
  • AMEND, Ryan, Scott
    Bethlehem, PA 18045 (US)

(74)Representative: Haseltine Lake Kempner LLP 
Redcliff Quay 120 Redcliff Street
Bristol BS1 6HU
Bristol BS1 6HU (GB)


(56)References cited: : 
WO-A1-2011/017066
GB-A- 930 816
US-A- 338 146
US-A- 2 969 660
US-A- 5 328 308
US-A1- 2011 056 714
DE-C- 940 877
GB-A- 2 443 399
US-A- 2 301 860
US-A- 4 157 120
US-A1- 2010 000 750
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    FIELD OF THE INVENTION



    [0001] The present invention relates generally to a rotary impact device as per the preamble of claim 1. An example of such a device is disclosed by WO 2011/0170266 A.

    BACKGROUND TO THE INVENTION



    [0002] Impact tools, such as an impact wrench, are well known in the art. An impact wrench is one in which an output shaft or anvil is struck by a rotating mass or hammer. The output shaft is coupled to a fastener (e.g. bolt, screw, nut, etc.) to be tightened or loosened, and each strike of the hammer on the anvil applies torque to the fastener. Because of the nature of impact loading of an impact wrench compared to constant loading, such as a drill, an impact wrench can deliver higher torque to the fastener than a constant drive fastener driver.

    [0003] Typically, a fastener engaging element, such as a socket, is engaged to the anvil of the impact wrench for tightening or loosening the fastener. Most fasteners have a polygonal portion for engaging a socket. The socket typically has a polygonal recess for receiving the polygonal portion of the fastener, thus resulting in a selectively secured mechanical connection. This connection or engagement of the socket to the anvil results in a spring effect. Additionally, there is a spring effect between the socket and the fastener. Therefore, it is desirable to increase the amount of torque applied by the socket to overcome the spring effect and to increase the net effect and improve performance of the impact wrench.

    [0004] GB 2443399 discloses a shaft for a power impact tool which includes a shaft base and a shaft body with a diameter smaller than a diameter of the shaft base. The shaft body has two actuating slots symmetrically formed on the periphery thereof at two sides and provided with a middle part and two distal ends disposed relatively closer to the shaft base than the middle part. The shaft base has a second end face on which at least two recesses are symmetrically formed, and a hole 14 coaxially extending from the centre of the second end face toward the inside of the shaft body by a predetermined distance. The recesses and hole reduce the weight of the shaft and may diminish possible vibration during rotation.

    BRIEF SUMMARY OF THE INVENTION



    [0005] The present invention provides a rotary impact device as per claim 1.

    [0006] In another embodiment, the rotary impact device includes an inertia member that includes at least two bores that extend substantially longitudinally along the length of the inertia member.

    [0007] Also provided is a method for providing torque to a fastener, as per claim 4.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0008] The present invention is illustrated and described herein with reference to the various drawings, in which like reference numbers denote like method steps and/or system components, respectively, and in which:

    FIG. 1 is a perspective view of one embodiment of the rotary impact device;

    FIG. 2 is a another perspective view of the rotary impact device of FIG 1;

    FIG. 3 is a cut-away view of the rotary impact device of FIGs 1 and 2;

    FIG. 4 is a partial cut-away side view of an impact wrench that may be used with the rotary impact device;

    FIG. 5 is a graph charting the torque vs. socket inertia of a prior art socket and the rotary impact device of the present invention to determine the optimized inertia;

    FIG. 6 is a perspective view of another embodiment of the rotary impact device;

    FIG. 7 is a perspective view of another embodiment of the rotary impact device;

    FIG. 8 is a block diagram indicating a standard prior art socket disposed on the anvil of an impact wrench for removing a fastener; and

    FIG. 9 is block diagram of the present invention indicating an inertia member that adds a substantial mass a large distance from the axis of rotation of the rotary impact device.


    DETAILED DESCRIPTION OF THE INVENTION



    [0009] Referring now specifically to the drawings, an improved rotary impact device is illustrated in FIG. 1 and is shown generally at reference numeral 10. The device 10 may be attached to and driven by an impact tool that is a source of high torque, such as an impact wrench 12. The device 10 is intended to be selectively secured to the impact wrench 12. The device 10 is preferably made of steel.

    [0010] As illustrated in FIGs. 1, 2, and 3, the device 10 has an annular exterior surface and comprises an input member 14, an output member 16, and an inertia member 18. The input member 14 comprises an input recess 20 that extends partially along the axial direction of the device 10. Preferably, the input recess 20 is generally square shaped and is designed to be selectively secured to the anvil 22 of an impact wrench 12. The anvil 22 includes a round body with a generally square drive head. The generally square drive head is designed to be received within the input recess 20 for forming a selectively secured arrangement.

    [0011] The output member 16 includes an output recess 26. As illustrated in Fig. 1, the output recess 26 is a polygonal-shaped output recess 26 for receiving a fastener. The output recess 26 extends partially along the axial direction of the device 10. The fastener may be a bolt, screw, nut, etc. At least a portion of the fastener (e.g. the head of a bolt and the body of a screw) has a polygonal-shape that corresponds with the polygonal-shaped output recess 26. During use, the polygonal-shaped portion of the fastener is inserted into the polygonal-shaped output recess 26 for operation and is selectively secured to one another by friction fit. The fastener is preferably hexagonally shaped.

    [0012] The inertia member 18 is substantially circular and is positioned on the exterior surface of the device 10. Preferably, the inertia member 18 is disposed on the exterior surface of the device 10 nearest the input member 12. However, the inertia member 18 may be disposed on any portion of the exterior surface of the device 10 as desired by the user. The inertia member 18 is preferably positioned as to not interfere with the engagement of the input member 12 to the anvil 22 and the engagement of the output member 14 to the fastener.

    [0013] The device 10 is designed to be engaged to an impact wrench 12. An impact wrench 12 is designed to receive a standard socket and designed to deliver high torque output with the exertion of a minimal amount of force by the user. The high torque output is accomplished by storing kinetic energy in a rotating mass, and then delivering the energy to an output shaft or anvil 22. Most impact wrenches 12 are driven by compressed air, but other power sources may be used such as electricity, hydraulic power, or battery operation.

    [0014] In operation, the power is supplied to the motor that accelerates a rotating mass, commonly referred to as the hammer 28. As the hammer 28 rotates, kinetic energy is stored therein. The hammer 28 violently impacts the anvil 22, causing the anvil 22 to spin and create high torque upon impact. In other words, the kinetic energy of the hammer 28 is transferred to rotational energy in the anvil 22. Once the hammer 28 impacts the anvil 22, the hammer 28 of the impact wrench 12 is designed to freely spin again. Generally, the hammer 28 is able to slide and rotate on a shaft within the impact wrench 12. A biasing element, such as a spring, presses against the hammer 28 and forces the hammer 28 towards a downward position. In short, there are many hammer 28 designs, but it is important that the hammer 28 spin freely, impact the anvil 22, and then freely spin again after impact. In some impact wrench 12 designs, the hammer 28 drives the anvil 22 once per revolution. However, there are other impact wrench 12 designs where the hammer 28 drives the anvil 22 twice per revolution. There are many designs of an impact wrench 12 and most any impact wrench 12 may be selectively secured with the device 10 of the present invention.

    [0015] The output torque of the impact wrench 12 is difficult to measure, since the impact by the hammer 28 on the anvil 22 is a short impact force. In other words, the impact wrench 12 delivers a fixed amount of energy with each impact by the hammer 28, rather than a fixed torque. Therefore, the actual output torque of the impact wrench 12 changes depending upon the operation. The anvil 22 is designed to be selectively secured to a device 10. This engagement or connection of the anvil 22 to the device 10 results in a spring effect when in operation. This spring effect stores energy and releases energy. It is desirable to mitigate the negative consequences of the spring effect because the device 10 utilizes the inertia generated by the inertia member 18 to transmit energy past the connection of the anvil 22 and the device 10. Additionally, there is a spring effect between the device 10 and the fastener. Again, this spring effect stores energy and releases energy. It is again desirable to mitigate the negative consequences of the spring effect because the device 10 utilizes the inertia generated by the inertia member 18 to transmit energy past the connection of the device 10 and fastener.

    [0016] The purpose of the inertia member 18 is to increase the overall performance of an impact wrench 12, containing a rotary hammer 28, by increasing the net effect of the rotary hammer 28 inside the impact wrench 12. The performance is increased as a result of the inertia member 18 functioning as a type of stationary flywheel on the device 10. Stationary flywheel means the flywheel is stationary relative to the device 10, but moves relative to the anvil 22 and the fastener. By acting as a stationary flywheel, the inertia member 18 increases the amount of torque applied to the fastener for loosening or tightening the fastener.

    [0017] In a prior art application, a standard socket is disposed on the anvil 22 of an impact wrench 12 for removing a fastener, as indicated in Figure 8. It should be noted that Figure 8 is shown in a linear system, but the impact wrench 12 and socket is a rotary system. The mass moment of inertia of the impact wrench 12 is designated m2 and represents the mass moment of inertia of the rotary hammer 28 inside the impact wrench. The spring rate of the anvil 22 and socket connection is represented by k2. The spring rate of the socket and fastener connection is represented by k1, and the fastener is represented by ground. As represented in Figure 8, the combined spring rate of k1 and k2, greatly reduces the peak torque delivered by the impact wrench 12 during impact with the fastener. The combined spring rate of k1 and k2 allows the mass m2 to decelerate more slowly, thereby imparting a reduced torque spike.

    [0018] In the present application, as illustrated in Figure 9, the inertia member 18 adds a substantial mass a large distance from the axis of rotation of the rotary impact device 10. Again, it should be noted that Figure 9 is shown in a linear mode, but the impact wrench and socket is a rotary system. The inertia member 18 of the rotary impact device 10 is represented by m1. The inertia member m1 is situated between spring effects k1 and k2. The spring rate of the anvil and socket connection is represented by k2. The spring rate of the socket and fastener connection is represented by k1, and the fastener is represented by ground. The mass moment of inertia of the impact wrench is designated m2 and represents the mass moment of inertia of the rotary hammer inside the impact wrench. The spring rate of k1 is three times that of k1 and k2 combined, causing very high torques to be transmitted from the inertia member m1 to the fastener.

    [0019] The combination of two masses (m1 and m2) and two springs (k1 and k2) is often referred to as a double oscillator mechanical system. In this system, the springs (k1 and k2) are designed to store and transmit potential energy. The masses (m1 and m2) are used to store and transmit kinetic energy. The double oscillator system can be tuned to efficiently and effectively transfer energy from the impact device (m2) through k2, inertia member (m1) and k1 and into the fastener. Proper tuning will ensure most of the energy delivered by the impact wrench m2 is transferred through spring k2 and into the inertia member 18. During use, the rate of deceleration of mass m1 is very high since spring k1 is stiff. Since deceleration is high the torque exerted on the fastener is high.

    [0020] The preexisting elements of the double oscillator system are predetermined. The rotary hammer inside the impact wrench m2 and springs k1 and k2 have defined values. For tuning the system, the only value which needs to be determined is the inertia member m1 (18) of the rotary impact device 10 for achieving optimized inertia. The impact wrench, depending upon the drive size (i.e. 1/2" (12.7mm), 3/4" (19.02 mm), 1" (25.4 mm), has a different optimal inertia for each drive size. The spring rate k2 and the rotary hammer inside the impact wrench m2 are coincidentally the same for all competitive tools. As illustrated in Fig. 5, the optimal inertia for a ½" drive impact wrench is charted by comparing the performance torque with the socket inertia. A standard socket is charted and the rotary impact device is charted in Fig. 5. As is clearly evidenced in Fig. 5, the rotary impact device 10 of the present invention has a higher torque output than a standard, prior art socket. Additionally, the optimized inertia for a ½" drive impact wrench is 1.938 kg/cm2 (0.0046 1b/ft2).

    [0021] The inertia member 18 may have any configuration that would increase the torque output of the rotary impact device 10. One exemplary embodiment of the inertia member 18 is illustrated in Figs. 1 and 2. The inertia member 18 has a front surface 30, a top surface 32, and a back surface 34. In this exemplary embodiment, the inertia member 18 contains three-spaced apart bores 36 that extend substantially longitudinally along the inertia member 18. In other words, the three-spaced apart bores 36 extend along the front surface 30 and back surface 34. The three spaced-apart bores 36 extend through the inertia member 18 from the front surface 30 to the back surface 34. The transition from the front surface 30 of the inertia member 18 contains a chamfer 38 that circumscribes the spaced apart bores 36. Although three-spaced apart bores 36 are illustrated in Fig. 1, any number of spaced apart bores 36 may be utilized.

    [0022] Additionally, the output member 16 contains a beveled outer edge 40. The beveled outer edge 40 allows for easily inserting the fastener into the output recess 26 of the output member 16. When the output member 16 comes in contact with the fastener for forming a selectively secured arrangement, the beveled outer edge 40 of the output recess 26 aids in guiding the fastener into the output recess 26.

    [0023] Another exemplary embodiment of the rotary impact device is shown in Fig. 6 as is referred to generally as reference number 110. The inertia member 118 of this exemplary embodiment has a ring 142, which may be solid, containing three (3) ribs 144 for keeping the ring 142 stationary and engaged to the exterior surface of the device 110. The three ribs 144 are engaged to the exterior surface of the device 110 for positioning the ring 142 in a spaced apart relationship with the device 110. The ribs 144 extend radially outward from the exterior surface of the device 110 and include a collar 146 prior to the rib 144 engaging the ring 142. The rib 144 extends slightly beyond the front surface 130, top surface, 132, and back surface 134 of the ring 142 forming a step 148 upon these surfaces (130,132,134) of the ring 140.

    [0024] Another exemplary embodiment of the rotary impact device is shown in Fig. 7 and is referred to generally as reference number 210. The inertia member 218 of this exemplary embodiment is a ring 242 containing five (5) ribs 244. The ribs 244 keep the ring 244 stationary and engaged to the exterior surface of the device 210. The five (5) ribs 244 are engaged to the exterior surface of the device 210 for positioning the ring 244 in a spaced apart relationship with the device 210. The ribs 244 extend radially outward from the exterior surface of the device 210 and include an inset 250 within the interior of each rib 244. A shelf 252 is positioned on the front surface 230 of the ring 242 for receiving each rib 244. Likewise, a shelf 252 may be positioned on the back surface 234 of the ring 242 for receiving each rib 244.

    [0025] Although the present invention has been illustrated and described herein with reference to preferred embodiments and specific examples thereof; it will be readily apparent to those of ordinary skill in the art that other embodiments and examples may perform similar functions and/or achieve like results.


    Claims

    1. A rotary impact device (10) having an annular exterior surface, comprising an input member (14), an output member (16, 116, 216), and a stationary, exterior member (18, 118, 218), wherein (i) the stationary, exterior member (18, 118, 218) is stationary relative to the rotary impact device (10), and (ii) the stationary, exterior member (18, 118, 218) is positioned on the exterior surface of the rotary impact device (10), wherein the rotary impact device (10) is for use with an impact wrench (12) having an anvil (22) for providing torque to a fastener, the output member (16, 116, 216) having a polygonal-shaped output recess (26) for receiving the fastener; and in that the stationary, exterior member (18, 118, 218) is an inertia member for increasing the torque provided to the fastener, characterized in that
    the inertia member comprises a ring (142) and at least two ribs (144) having a first end and a second end, wherein the first end of the ribs (144) are positioned on the exterior surface of the rotary impact device and the second end is positioned on the ring, and in that the input member (14) has a square-shaped input recess (20) for receiving the anvil (22) of the impact wrench.
     
    2. The rotary impact device of any preceding claim, wherein an outer edge (40) of the output member (16, 116, 216) is beveled for guiding a fastener into the output recess (26).
     
    3. The rotary impact device of any preceding claim, wherein the inertia member (18, 118, 218) comprises at least two bores (36) that extend substantially longitudinally along the length of the inertia member (18, 118, 218).
     
    4. A method of providing torque to a fastener, comprising:

    providing an impact wrench having a rotary hammer that rotates an anvil (22),

    providing a rotary impact device having an annular exterior surface and comprising an input member (14), an output member (16, 116, 216), and an inertia member (18, 118, 218), wherein the inertia member (18, 118, 218) is stationary relative to the rotary impact device (10) and the inertia member (18, 118, 218) is positioned on the exterior surface of the rotary impact device;

    engaging the input member (14), to the anvil (22) of the impact wrench by engaging the anvil (22) with a square-shaped input recess (20) of the input member (14);

    engaging the output member (16, 116, 216) to a fastener by engaging the fastener with a polygonal-shaped output recess (26) of the output member (16, 116, 216);

    applying power to the impact wrench to advance the rotary hammer into contact with the anvil (22) and cause the anvil (22) to rotate; and

    rotating the input member (14) and output member (16, 116, 216) in conjunction with the rotation of the anvil (22), wherein the inertia member (18, 118, 218) increases the torque provided to the fastener and comprises a ring and at least two ribs (144) having a first end and a second end, wherein the first end of the ribs (144) are positioned on the exterior surface of the rotary impact device and the second end is positioned on the ring (142).


     
    5. The method of providing torque to a fastener of Claim 4, further comprising providing an outer edge (40) of the output member (16, 116, 216) that is beveled for guiding the fastener into the output recess (26).
     


    Ansprüche

    1. Kraftschraubervorrichtung (10) mit einer ringförmigen Außenfläche, umfassend ein Eingangselement (14), ein Ausgangselement (16, 116, 216) und ein stationäres, äußeres Element (18, 118, 218), wobei (i) das stationäre, äußere Element (18, 118, 218) relativ zu der Kraftschraubervorrichtung (10) stationär ist, und (ii) das stationäre, äußere Element (18, 118, 218) auf der Außenfläche der Kraftschraubervorrichtung (10) positioniert ist, wobei die Kraftschraubervorrichtung (10) zur Nutzung mit einem Kraftschrauber (12) mit einem Mutterstück (22) zum Bereitstellen von Drehmoment für ein Befestigungsmittel dient, wobei das Ausgangselement (16, 116, 216) eine mehrecksförmige Ausgangsvertiefung (26) zum Aufnehmen des Befestigungsmittels aufweist; und das stationäre, äußere Element (18, 118, 218) ein Trägheitselement zum Erhöhen des dem Befestigungsmittel bereitgestellten Drehmoments ist, dadurch gekennzeichnet, dass
    das Trägheitselement einen Ring (142) und mindestens zwei Rippen (144) umfasst, die ein erstes Ende und ein zweites Ende aufweisen, wobei das erste Ende der Rippen (144) an der Außenfläche der Kraftschraubervorrichtung positioniert ist und das zweite Ende an dem Ring positioniert ist, und dadurch, dass das Eingangselement (14) eine quadratförmige Eingangsvertiefung (20) zum Aufnehmen des Mutterstücks (22) des Kraftschraubers umfasst.
     
    2. Kraftschraubervorrichtung nach einem der vorangehenden Ansprüche, wobei eine äußere Kante (40) des Ausgangselements (16, 116, 216) abgeschrägt ist, um ein Befestigungsmittel in die Ausgangsvertiefung (26) zu führen.
     
    3. Kraftschraubervorrichtung nach einem der vorangehenden Ansprüche, wobei das Trägheitselement (18, 118, 218) mindestens zwei Bohrungen (36) umfasst, die sich entlang der Länge des Trägheitselements (18, 118, 218) im Wesentlichen längs erstrecken.
     
    4. Verfahren zum Bereitstellen von Drehmoment für ein Befestigungsmittel, umfassend:

    Bereitstellen eines Kraftschraubers mit einem Bohrhammer, der ein Mutterstück (22) dreht,

    Bereitstellen einer Kraftschraubervorrichtung mit einer ringförmigen Außenfläche und umfassend ein Eingangselement (14), ein Ausgangselement (16, 116, 216) und ein Trägheitselement (18, 118, 218), wobei das Trägheitselement (18, 118, 218) relativ zu der Kraftschraubervorrichtung (10) stationär ist, und das Trägheitselement (18, 118, 218) auf der Außenfläche der Kraftschraubervorrichtung positioniert ist;

    Eingreifen des Eingangselements (14) in das Mutterstück (22) des Kraftschraubers durch Eingreifen des Mutterstücks (22) in eine quadratförmige Eingangsvertiefung (20) des Eingangselements (14);

    Eingreifen des Ausgangselements (16, 116, 216) in ein Befestigungsmittel durch Eingreifen des Befestigungsmittels in eine mehrecksförmige Ausgangsvertiefung (26) des Ausgangselements (16, 116, 216) ;

    Anwenden von Energie auf den Kraftschrauber, um den Bohrhammer in Kontakt mit dem Mutterstück (22) vorzutreiben und das Mutterstück (22) zu veranlassen, sich zu drehen; und

    Drehen des Eingangselements (14) und des Ausgangselements (16, 116, 216) zusammen mit der Drehung des Mutterstücks (22), wobei das Trägheitselement (18, 118, 218) das dem Befestigungsmittel bereitgestellte Drehmoment erhöht und einen Ring und mindestens zwei Rippen (144) umfasst, die ein erstes Ende und ein zweites Ende aufweisen, wobei das erste Ende der Rippen (144) auf der Außenfläche der Kraftschraubervorrichtung positioniert ist und das zweite Ende auf dem Ring (142) positioniert ist.


     
    5. Verfahren zum Bereitstellen von Drehmoment für ein Befestigungsmittel nach Anspruch 4, ferner umfassend ein Bereitstellen einer äußeren Kante (40) des Ausgangselements (16, 116, 216), die abgeschrägt ist, um das Befestigungsmittel in die Ausgangsvertiefung (26) zu führen.
     


    Revendications

    1. Dispositif d'impact rotatif (10) présentant une surface extérieure annulaire, comprenant un élément d'entrée (14), un élément de sortie (16, 116, 216) et un élément extérieur stationnaire (18, 118, 218), dans lequel (i) l'élément extérieur stationnaire (18, 118, 218) est stationnaire par rapport au dispositif d'impact rotatif (10), et (ii) l'élément extérieur stationnaire (18, 118, 218) est positionné sur la surface extérieure du dispositif d'impact rotatif (10), dans lequel le dispositif d'impact rotatif (10) est conçu pour être utilisé avec une clé à chocs (12) présentant une enclume (22) pour appliquer un couple à un élément de fixation, l'élément de sortie (16, 116, 216) comportant un évidement de sortie de forme polygonale (26) destiné à recevoir l'élément de fixation; et l'élément extérieur stationnaire (18, 118, 218) est un élément d'inertie servant à augmenter le couple appliqué à l'élément de fixation,
    caractérisé en ce que l'élément d'inertie comprend un anneau {142) et au moins deux nervures (144) présentant une première extrémité et une seconde extrémité, dans lequel la première extrémité des nervures (144) est positionnée sur la surface extérieure du dispositif d'impact rotatif, et la seconde extrémité est positionnée sur l'anneau, et en ce que l'élément d'entrée (14) comporte un évidement d'entrée de forme carrée (20) destiné à recevoir l'enclume (22) de la clé à chocs.
     
    2. Dispositif d'impact rotatif selon l'une quelconque des revendications précédentes, dans lequel un bord extérieur (40) de l'élément de sortie (16, 116, 216) est biseauté de manière à guider un élément de fixation dans l'évidement de sortie (26).
     
    3. Dispositif d'impact rotatif selon l'une quelconque des revendications précédentes, dans lequel l'élément d'inertie (18, 118, 218) comporte au moins deux alésages (36) qui s'étendent de façon sensiblement longitudinale le long de la longueur de l'élément d'inertie (18, 118, 218).
     
    4. Procédé d'application d'un couple à un élément de fixation, comprenant les étapes suivantes:

    fournir une clé à chocs présentant un marteau rotatif qui fait tourner une enclume (22),

    prévoir un dispositif d'impact rotatif présentant une surface extérieure annulaire et comprenant un élément d'entrée (14), un élément de sortie (16, 116, 216) et un élément d'inertie (18, 118, 218), dans lequel l'élément d'inertie (18, 118, 218) est stationnaire par rapport au dispositif d'impact rotatif (10), et l'élément d'inertie (18, 118, 218) est positionné sur la surface extérieure du dispositif d'impact rotatif;

    engager l'élément d'entrée (14) sur l'enclume (22) de la clé à chocs en engageant l'enclume (22) dans un évidement d'entrée de forme carrée (20) de l'élément d'entrée (14);

    engager l'élément de sortie (16, 116, 216) sur un élément de fixation en engageant l'élément de fixation dans un évidement de sortie de forme polygonale (26) de l'élément de sortie (16, 116, 216);

    appliquer de la puissance à la clé à chocs afin de faire avancer le marteau rotatif en contact avec l'enclume (22) et d'amener l'enclume {22) à tourner; et

    faire tourner l'élément d'entrée (14) et l'élément de sortie (16, 116, 216) en conjonction avec la rotation de l'enclume (22), dans lequel l'élément d'inertie (18, 118, 218) augmente le couple appliqué à l'élément de fixation et comprend un anneau et au moins deux nervures (144) présentant une première extrémité et une seconde extrémité, dans lequel la première extrémité des nervures (144) est positionnée sur la surface extérieure du dispositif d'impact rotatif, et la seconde extrémité est positionnée sur l'anneau (142).


     
    5. Procédé d'application d'un couple à un élément de fixation selon la revendication 4, comprenant en outre la formation d'un bord extérieur (40) de l'élément de sortie (16, 116, 216) qui est biseauté de manière à guider l'élément de fixation dans l'évidement de sortie (26).
     




    Drawing


























    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description