(19)
(11)EP 2 699 163 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
26.06.2019 Bulletin 2019/26

(21)Application number: 12723528.1

(22)Date of filing:  17.04.2012
(51)International Patent Classification (IPC): 
A61B 6/00(2006.01)
(86)International application number:
PCT/IB2012/051914
(87)International publication number:
WO 2012/143852 (26.10.2012 Gazette  2012/43)

(54)

DYNAMIC PERFUSION IMAGING

DYNAMISCHE PERFUSIONSBILDGEBUNG

IMAGERIE DE PERFUSION DYNAMIQUE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 18.04.2011 US 201161476462 P

(43)Date of publication of application:
26.02.2014 Bulletin 2014/09

(73)Proprietors:
  • Koninklijke Philips N.V.
    5656 AE Eindhoven (NL)
    Designated Contracting States:
    AL AT BE BG CH CY CZ DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR 
  • Philips Intellectual Property & Standards GmbH
    20099 Hamburg (DE)
    Designated Contracting States:
    DE 

(72)Inventors:
  • GRASS, Michael
    5656 AE Eindhoven (NL)
  • SCHMITT, Holger
    5656 AE Eindhoven (NL)

(74)Representative: Steffen, Thomas 
Philips Intellectual Property & Standards High Tech Campus 5
5656 AE Eindhoven
5656 AE Eindhoven (NL)


(56)References cited: : 
EP-A1- 2 087 843
WO-A1-2009/115935
US-A1- 2004 082 846
WO-A1-2008/120119
WO-A2-2007/046025
US-A1- 2006 104 406
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    FIELD OF THE INVENTION



    [0001] The following generally relates to dynamic perfusion imaging and is described with application to computed tomography (CT); however, the following is also amenable to other imaging modalities.

    BACKGROUND OF THE INVENTION



    [0002] Perfusion imaging is an imaging technique which captures the transit of an administered contrast agent through vascular tissue of interest such as a vessel and/or an organ like the heart. Generally, for perfusion imaging, a contrast agent bolus is administered to a patient, and the region of interest of the patient including the vascular tissue of interest is scanned. The contrast agent causes the x-ray density in the vascular tissue of interest to temporarily increase as the contrast agent flows through the vascular tissue. A typical perfusion scan includes acquiring data of the same region, over multiple time intervals, covering contrast agent arrival, uptake and wash out. For cardiac applications, the scan has included acquiring data of the same cardiac phase.

    [0003] Analysis of the acquired data can be used to determine a perfusion state of the vascular tissue of interest, for example, based on the observations of the contrast agent dynamics in the scan field of view. For cardiac applications, this may include quantifying the contrast agent distribution in the cardiac muscle over time. Such analysis may include determining various perfusion related information for the vascular tissue of interest such as a time-attenuation curve, blood flow, blood volume, mean transit time, maximum upslope, time to peak, etc. This information can be used to identify ischemic tissue and/or differentiate between irreversibly damaged (or necrotic) tissue and potentially reversibly damaged (or at-risk) tissue.

    [0004] Traditional perfusion imaging included continuously scanning the region of interest from before contrast arrival through contrast washout. More recent perfusion imaging has included temporal intermittent, at equal temporal distances, scanning of the region of interest from contrast arrival through contrast washout. Generally, the frequency of the temporal intermittent sampling is based on the temporal sampling necessary to obtain data suitable for accurately deriving perfusion parameters such as time to peak, maximum upslope, and/or other relevant perfusion parameters. For cardiac applications, this has included scanning during one or more particular cardiac motion phases of interest (e.g., such as a quiet phase) each or every other cardiac cycle.

    [0005] EP 2 087 843 A1 informs about an X-ray CT apparatus and a tomography method pemitting the use of an optimal X-ray dose. The sampling rate in a contrast enhanced scan may be dynamically changed by employing different scanning plans. In response to infliction points, a scanning plan may be skipped in favor of another scanning plan.

    [0006] WO 2007/046025 A2 teaches controlling an imaging system by modifying imaging and data acquisition parameters. Optimized imaging data are obtained by modeling contrast agent dynamics and appearance. The use of different acquisition rates in response to the perfusion state of an organ is outlined.

    [0007] Unfortunately, computed tomography perfusion imaging exposes the patient to ionizing radiation, which can kill or damage cells and which may increase risk of cancer, and the deposited dose with both continuous and temporal intermittent imaging is considered high, and such imaging generally is not used for screening and/or in routine clinical practice. Furthermore, patients who undergo such imaging typically undergo several follow-up imaging procedures, which increases the cumulative radiation dose. Moreover, simply reducing the temporal intermittent sampling may introduce error in perfusion parameters. Thus, there is an unresolved need for other approaches to further reduce patient dose with perfusion imaging.

    SUMMARY OF THE INVENTION



    [0008] Aspects of the present application address the above-referenced matters and others.

    [0009] The invention is defined in the appended independent claim 1.

    [0010] According to one aspect, a method includes scanning a region of interest, during a contrast agent based perfusion scan, at a predetermined temporal sampling rate during contrast agent uptake in the region of interest, and generating time frame data indicative of the scanned region of interest. The method further includes identifying a predetermined change in an amount of the contrast agent in the region of interest from the time frame data. The method further includes scanning the region of interest at a lower temporal sampling rate, which is lower than the temporal sampling rate during the contrast agent uptake, in response to identifying the predetermined change in the amount of the contrast agent in the region of interest, wherein the predetermined temporal sampling rate is varied during contrast agent uptake and/or the lower temporal sampling rate is varied during scanning the region of interest.

    [0011] In another aspect, a system includes a contrast agent detector with a contrast identifier that identifies a presence of contrast agent in time frame perfusion scan acquisition data and generates a contrast signal indicating the presence of the contrast agent in the time frame acquisition data. The contrast signal is used to vary a temporal sampling rate between a lower temporal sampling rate when the contrast agent is not present in the time frame data and a higher temporal sampling rate when the contrast agent is present in the time frame data, wherein the lower temporal sampling rate is varied when the contrast agent is not present in the time frame data, and/or the higher temporal sampling rate is varied when the contrast agent is present in the time frame data.

    [0012] A computer readable instructions encoded on computer readable medium may be provided, which, when executed by a processor of a computing system causes the processor to: vary a temporal sampling rate of data acquisition during a perfusion scan based on a state of contrast agent in resulting acquisition time frame data, wherein the temporal sampling rate is at least varied between contrast agent uptake and contrast agent washout based on a contrast agent level determined using a model based segmentation of the time frame data.

    [0013] Still further aspects of the present invention will be appreciated to those of ordinary skill in the art upon reading and understand the following detailed description.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0014] The invention may take form in various components and arrangements of components, and in various steps and arrangements of steps. The drawings are only for purposes of illustrating the preferred embodiments and are not to be construed as limiting the invention.

    FIGURE 1 schematically illustrates an example imaging system in which temporal sampling for perfusion imaging is selectively and dynamically varied over time based on a contrast level in the time frame acquisition data.

    FIGURE 2 schematically illustrates an example contrast detector for detecting contrast presence and/or level in the time frame acquisition data.

    FIGURE 3 graphically illustrates an example model approach for detecting the contrast presence and/or contrast level.

    FIGURE 4 graphically illustrates example temporal sampling for a cardiac perfusion scan in which different but constant temporal sampling respectively is used during pre-contrast uptake, contrast uptake and contrast washout based on a contrast level profile.

    FIGURE 5 graphically illustrates example temporal sampling for a cardiac perfusion scan in which the temporal sampling during contrast uptake is varied over time.

    FIGURE 6 graphically illustrates example temporal sampling for a cardiac perfusion scan in which the temporal sampling during contrast washout is varied over time.

    FIGURE 7 graphically illustrates example of temporal sampling for a cardiac perfusion scan in which temporal sampling begins at contrast uptake.

    FIGURE 8 graphically illustrates example of temporal sampling for a late enhancement scan.

    FIGURE 9 illustrates a flow chart for varying temporal sampling of perfusion imaging over time based on a contrast level in the time frame acquisition data.



    [0015] FIGURE 1 illustrates an imaging system 100 such as a computed tomography (CT) scanner.

    [0016] The imaging system 100 includes a stationary gantry 102 and a rotating gantry 104, which is rotatably supported by the stationary gantry 102. The rotating gantry 104 rotates around an examination region 106, and a portion of an object or subject 108 therein, about a longitudinal or z-axis 110.

    [0017] A radiation source 112, such as an x-ray tube, is supported by and rotates with the rotating gantry 104 around the examination region 106. The radiation source 112 emits radiation that is collimated to form a generally fan, wedge, or cone shaped radiation beam that traverses the examination region 106.

    [0018] A source controller 114 controls the radiation source 112. This includes activating the source 112 to emit radiation during time series perfusion imaging to acquire time frame data. Such activation can be temporally continuous or temporally intermittent during an imaging examination for one or more rotations of the source 112, including for the entire or a sub-portion of each rotation of the source 112.

    [0019] A radiation sensitive detector array 116 detects photons emitted by the radiation source 112 that traverse the examination region 106 and generates projection data indicative of the detected radiation. The radiation sensitive detector array 116 may include one or a two dimensional detector array.

    [0020] A reconstructor 118 reconstructs the projection data and generates time series volumetric image data indicative of the examination region 106. Various reconstruction algorithms can be employed such as filtered backprojection, statistical, iterative, sparse sampling, and/or other reconstruction algorithms.

    [0021] An injector 120 is configured to inject or administer a material such as one or more contrast agents to the subject 108 or an object (e.g., a phantom) to be scanned. A contrast agent can additionally or alternatively be manually administered by a clinician or the like. Where the contrast agent is manually administered to the subject 108, the injector 120 can be omitted.

    [0022] A motion sensor 122 detects motion of moving structure of the subject 108 and generates a motion signal indicative thereof. Examples of moving structure include the heart, the lungs, and/or other moving structure. For cardiac applications, the motion sensor 122 may include an electrocardiograph (ECG), and for respiratory applications, the motion sensor 122 may include a respiratory belt, light emitting landmarks, etc. Where motion is not taken into account during scanning, the motion sensor 122 can be omitted.

    [0023] A motion phase identifier 124 identifies a motion state(s) in the motion signal and generates a motion phase signal indicative thereof. For cardiac applications, this may include identifying a time duration of a cardiac cycle, identifying a landmark in the cardiac cycle such as an "R" wave, and then identifying a phase based on a predetermined percentage (e.g., 40%, 70%, etc.) of the cardiac cycle and the "R" wave. The phase may be a quiet state where cardiac motion is lower relative to other states or another phase.

    [0024] A contrast agent detector 126 generates a signal indicative of a presence of a contrast agent and/or a contrast agent level in the acquisition time frame data. As described in greater detail below, in one non-limiting instance, this includes determining the pixel intensity of structure, a sub-set of the structure, or a sub-region of a sub-set of the structure in the acquisition time frame data, based on a model for the structure and/or otherwise.

    [0025] A subject support 128, such as a couch, supports the subject 108 or an object in the examination region 106 and is movable along the x, y and z-axis directions in coordination with the rotation of the rotating gantry 104 to facilitate helical, axial, or other desired scanning trajectories.

    [0026] A general purpose computing system serves as an operator console 130. Software resident on the console 130 and executed by a processor allows an operator to control operation of the system 100, for example, by allowing the operator to employ a scan protocol from scan protocol storage 132 such as a (motion phase or non-motion phase based) adaptive temporal sampling dynamic perfusion scan protocol.

    [0027] As described in greater detail below, one such protocol includes dynamically adjusting the temporal sampling during a perfusion scan based on the contrast in the acquisition time frame data. This allows acquiring data at a lower temporal sampling during pre-contrast uptake and/or contrast washout, and a higher temporal sampling (suitable for determining relevant perfusion parameters) during contrast uptake. This may facilitate decreasing dose relative to a configuration in which a single temporal sampling is used throughout pre-contrast uptake, contrast uptake and contrast washout.

    [0028] For a motion phase based perfusion scan such as a cardiac perfusion scan, data acquisition may also include acquiring data for an entire or for one or more phases (e.g., systole and/or diastole, and/or a portion thereof) of a cardiac cycle for a time frame acquisition. The motion phase signal from the motion phase identifier 124 can be used to trigger data acquisition within a cardiac cycle based on cardiac phase. Scanning only during a sub-portion (or phase) of a cardiac cycle may further reduce dose relative to scanning during the entire cardiac cycle.

    [0029] Dose can be further reduced through reducing spatial sampling and/or tube current. For spatial sampling, this includes reducing the spatial sampling to a sparse sampling and using any known or other sparse sampling reconstruction algorithms to reconstruct the data. In one instance, the sparse spatial sampling can be about one tenth of full spatial sampling. Tube current can be reduced during pre-contrast uptake and/or contrast washout. In one instance, the tube current can be reduced to about one third of that used during contrast uptake.

    [0030] FIGURE 2 schematically illustrates an example of the contrast agent detector 126 in connection with the source 112, the source controller 114, the reconstructor 118, and the console 130.

    [0031] The illustrated contrast agent detector 126 includes a contrast identifier 202, which is configured to evaluate the acquisition time frame data and generate a contrast signal indicative of a presence (and/or absence) and/or a degree of contrast in the data, for example, based on a contrast identification algorithm from a contrast algorithm storage 204.

    [0032] By way of non-limiting example, with one contrast identification algorithm, the contrast identifier 202 determines an average pixel intensity of structure in acquisition time frame data. The contrast identifier 202 then compares the determined intensity with a baseline threshold intensity. In this instance, if the determined intensity satisfies the threshold, the contrast identifier 202 generates a contrast signal indicating that contrast is present. Otherwise, the contrast identifier 202 may not generate a contrast signal or may generate a contrast signal that indicates contrast is not present (or is absent).

    [0033] With another contrast identification algorithm, the contrast identifier 202 employs an anatomical model based segmentation approach to segment the acquisition time frame data into sub-structure (e.g., heart, lungs, etc.). The contrast identifier 202 then determines an average pixel intensity of a sub-set of the sub-structure, and compares the intensity with the threshold. Likewise, the contrast identifier 202 generates the contrast signal indicating that contrast is present and either generates the contrast signal indicating that contrast is absence or does not generate the signal.

    [0034] In yet another algorithm, the contrast identifier 202 further segments sub-structure (e.g., the heart) into sub-regions (e.g., left ventricle, right ventricle, left atrium, right atrium, etc.) based in the model. An example of this is shown in FIGURE 3, which graphically illustrates an image 300 of a heart segmented into sub-regions 302, 304, 306 and 308. The contrast identifier 202 determines an average pixel intensity of one or more of the sub-regions (e.g., the sub-region reached last by the contrast), compares the intensity with the predetermined threshold, and generates the contrast signal as discussed above based thereon.

    [0035] Other approaches for identifying the presence and/or level of contrast are also contemplated herein.

    [0036] A peak contrast identifier 206 is configured to evaluate the contrast signal and generate a peak contrast signal in response to identifying a peak contrast from the contrast signal. Various approaches can be used to identify the peak. By way of non-limiting example, the peak contrast identifier 206 can identify the peak based on a comparison of consecutively determined contrast levels, a contrast level rate of change, and/or other approaches.

    [0037] The contrast agent detector 126 conveys the contrast signal and/or the peak contrast signal, individual or in combination as the signal output by the contrast agent detector 126, to the console 130, which employs the signal to control the source controller 114 to activate the source 112 so as to adapt the temporal sampling during perfusion imaging.

    [0038] FIGURE 4 graphically illustrates an example of varying temporal sampling during a perfusion scan in connection with FIGURES 2 and 3.

    [0039] A y-axis includes an upper portion 402 that represents the amount (density) of contrast and a lower portion 404 that represents image acquisition, an x-axis 406 represents time, a profile 408 represents contrast uptake and wash out as a function of time, and a profile 409 represents temporal sampling (or, data acquisition as a function of time).

    [0040] A region 410 represents a region in which contrast has been administered but has not yet reached the region of interest being scanned and no contrast has been detected. In this example, during this region, the source controller 114 controls the source 112 to emit radiation at a first or pre-contrast uptake temporal sampling 412.

    [0041] The temporal sampling 412 can be lower in this region, relative to the temporal sampling during uptake, since this region is primarily used to establish a baseline intensity in order to identify when contrast reaches the scanned region of interest. The lower sampling reduces dose in this region relative to using the same temporal sampling as that used during contrast uptake. Tube current can also be reduced for this region.

    [0042] A region 414 represents a region in which contrast reaches the scanned region of interest and the signal from the contrast agent detector 126 (e.g., the contrast signal from the contrast identifier 202) indicates a presence of contrast in the scanned region of interest. In this example, during this region, the source controller 114 controls the source 112 to emit radiation at a second or contrast uptake temporal sampling 416.

    [0043] The temporal sampling 416 that is used for perfusion scanning to acquire data at a temporal sampling at which the relevant perfusion information (e.g., time to peak, maximum upslope, etc.) can be determined for the region 414. In the case of cardiac perfusion, the temporal sampling 416 can be based on an average heart cycle of the patient being scanned. By way of example, the temporal sampling 416 may be on the order of every heart cycle to every other heart cycle (e.g., 1 to 2 seconds).

    [0044] A region 418 represents a region in which peak contrast is identified by the contrast agent detector 126 (e.g., the peak contrast signal from the peak contrast identifier 206).

    [0045] A region 420 represents a region in which contrast washes out of the scanned region of interest and the signal from the contrast agent detector 126 (e.g., the contrast signal from the contrast identifier 202) indicates a decreasing presence of contrast in the scanned region of interest. In this example, during this region, the source controller 114 controls the source 112 to emit radiation at a third or contrast washout temporal sampling 422, which is equal to or greater than the first temporal sampling 412 and lower than the second temporal sampling 416.

    [0046] Generally, with this approach, temporal sampling for image acquisition is adapted to a perfusion time curve (FIGURE 4), where the temporal sampling is more dense during contrast uptake (the upslope in FIGURE 4) and less dense than during contrast uptake for pre-contrast uptake and contrast wash out (the downslope in FIGURE 4), and the decision on when to use which sampling pattern is based on a model based image analysis (FIGURES 2 and 3) using pixel intensity of certain structures.

    [0047] Variations are contemplated.

    [0048] FIGURE 5 graphically illustrates another example of varying temporal sampling during a perfusion scan. FIGURE 5 is substantially similar to FIGURE 4; however, in FIGURE 5, a varying temporal sampling 502 is used during contrast uptake.

    [0049] FIGURE 6 graphically illustrates another example of varying temporal sampling during a perfusion scan. FIGURE 6 is also substantially similar to FIGURE 4; however, in FIGURE 6, a varying temporal sampling 602 is used during contrast washout.

    [0050] FIGURE 7 is substantially similar to FIGURE 4 except that scanning is not performed during the pre-contrast uptake region 410. Instead, data acquisition begins after lapse of a predetermined time delay from administration of the contrast agent, which can be determined based on a test bolus, a previous perfusion scan of the patient, historical perfusion scans for other patients, and/or otherwise.

    [0051] In another variation, the temporal sampling is a combination of FIGURES 4, 5, 6, and/or 7 and/or other temporal sampling.

    [0052] In the illustrated embodiment, the contrast agent identifier 126 evaluates the reconstructed time frame data. In a variation, the contrast agent identifier 126 can evaluate the projection data, individually and/or in connection with the reconstructed time frame data, and generates the contrast signal.

    [0053] In the illustrated embodiment, the motion phase identifier 124 evaluates the motion signal to identify one or more motion states therein. In a variation, the motion phase identifier 124 evaluates the projection data, individually and/or in connection with the reconstructed time frame data, to identify the one or more motion states. This may include comparing successively acquired time frames (e.g., determining a difference image) to identify quiet, similar, and/or other motion phases.

    [0054] In another variation, the contrast uptake temporal sampling can be extended beyond peak contrast, for example, by a predetermined temporal delay, for example, in order to scan late enhancement at the contrast uptake temporal sampling. Figure 8 shows an example of a late enhancement scan 802 at a fixed temporal distance 804 from the peak 418. In other embodiments, the fixed temporal distance 804 can be from another parameter such as maximum upslope, time to maximum upslope, or any other parameter. The scan data for the late enhancement can be used to identify irreversibly damaged tissue.

    [0055] In FIGURES 2 and 3, the peak contrast identifier 206 was used to identify a peak contrast level, and then the temporal sampling was changed. In another instance, the data is analyzed to locate when a predetermined level of contrast has been reached in the image 300 and/or sub-regions 302-308. In this instance, the temporal sampling is changed in response to the predetermined level of contrast reaching the predetermined level of contrast. In yet another instance, the data is analyzed to determine when a contrast level of a predetermined one or more of the sub-regions 302-308 reaches or exceeds (or falls below) a contrast level of one or more of the other sub-regions 302-308. In this instance, the temporal sampling is changed in response to the relationship of level of contrast between the sub-regions satisfying the condition.

    [0056] FIGURE 9 illustrates an example perfusion imaging flow chart.

    [0057] It is to be appreciated that the ordering of the acts is not limiting. As such, in other embodiment, the order may be different, including concurrent. Furthermore, one or more of the acts may be omitted and/or one or more acts can be added.

    [0058] At 902, a contrast agent is administered to a subject.

    [0059] At 904, a region of interest of the subject is scanned based on a pre-contrast uptake temporal sampling. By way of non-limiting example, with cardiac perfusion imaging, the subject may be scanned to acquire data at least during a sub-portion of every fifth cardiac cycle. The sub-portion may correspond to one or more particular motion phases of structure of interest of the region of interest. The tube current may also be set to a pre-contrast uptake level.

    [0060] At 906, the contrast level of the acquisition time frame scan data is determined. As described herein, the level of contrast can be determined based on an average pixel intensity of the structure in the data, an average pixel intensity of a sub-set of the structure in the data, an average pixel intensity of one or more sub-regions of the sub-set of the structure, and/or otherwise. The intensity of initial data is used to determine a baseline non-contrast level.

    [0061] At 908, it is determined whether contrast is present in the acquisition time frame scan data based on the contrast level and the baseline non-contrast level. In one instance, this is achieved by comparing the contrast level with the baseline non-contrast level.

    [0062] If the administered contrast is not present in the acquisition time frame data (e.g., the contrast level is less than or within a predetermined tolerance of the baseline non-contrast level), then acts 904-908 are repeated.

    [0063] If the administered contrast is present in the acquisition time frame data (e.g., the contrast level is greater than the baseline non-contrast level with the predetermined tolerance), then at 910, the region of interest of the subject is scanned based on a predetermined contrast uptake temporal sampling, which is greater than the pre-contrast uptake temporal sampling. By way of non-limiting example, with cardiac perfusion imaging, the contrast uptake temporal sampling may be every or every other cardiac cycle.

    [0064] At 912, the contrast level of the acquisition time frame data is determined, for example, as discussed in connection with act 906.

    [0065] At 914, it is determined whether peak contrast uptake is reached based on the acquisition time frame data. This can be achieved by comparing the current contrast level with the previously determined contrast level and detecting a decreasing contrast level, and/or otherwise.

    [0066] If the peak contrast level is not reached in the acquisition time frame data, then acts 910-914 are repeated.

    [0067] If the peak contrast is reached in the acquisition time frame data, then at 916, the region of interest of the subject is scanned based on a predetermined contrast washout temporal sampling, which is less than the contrast uptake temporal sampling. By way of non-limiting example, with cardiac perfusion imaging, the contrast washout temporal sampling may be every fifth cardiac cycle.

    [0068] At 918, the contrast level of the acquisition time frame data is determined, for example, as discussed in connection with acts 906 and 912.

    [0069] At 920, it is determined whether the contrast washed out of the region of interest. This can be achieved by comparing the contrast level with the baseline non-contrast level.

    [0070] If the contrast is still present in the acquisition time frame data, then acts 916-920 are repeated.

    [0071] If contrast is not present in the acquisition time frame data, then at 922, scanning is stopped.

    [0072] The above may be implemented by way of computer readable instructions, which when executed by a computer processor(s), cause the processor(s) to carry out the described acts. In such a case, the instructions are stored in a computer readable storage medium associated with or otherwise accessible to the relevant computer. The acts need not be performed concurrently with data acquisition.

    [0073] Although the above has been described in connection with a conventional scanner, it is to be understood that the system 100 may include a spectral CT scanner. Such a scanner may include one or more of the following: multiple x-ray tubes configured to emit radiation having different emission spectra, tube voltage switching circuitry configured to switch an x-ray tube of the system between at least two different emission spectra, and/or an energy resolving detector (e.g., a photon counting detector, a detector with a plurality of scintillator/photodiode pairs, each configured to detect photons within a different predetermined energy range). In this instance, the perfusion data represent contrast agent concentration per tissue volume, and the concentration can be determined by multi-energy imaging, material separation, and/or k-edge imaging.

    [0074] The invention has been described herein with reference to the various embodiments. Modifications and alterations may occur to others upon reading the description herein. It is intended that the invention be construed as including all such modifications and alterations insofar as they come within the scope of the appended claims.


    Claims

    1. A method, comprising:

    scanning (910) a region of interest, during a contrast agent based computed tomography perfusion scan, at a predetermined temporal sampling rate during contrast agent uptake in the region of interest, and generating time frame data indicative of the scanned region of interest;

    identifying (914) a predetermined change in an amount of contrast agent in the region of interest from the time frame data;

    scanning (916) the region of interest at a lower temporal sampling rate during pre-contrast agent uptake;

    scanning the region of interest at a second lower temporal sampling rate during contrast agent washout, wherein the lower temporal sampling rate and the second lower temporal sampling rate are lower than the predetermined temporal sampling rate during the contrast agent uptake, respectively; and

    switching from the predetermined temporal sampling rate to the second lower temporal sampling rate in response to identifying the predetermined change being a decrease in the amount of the contrast agent in the region of interest, wherein the decrease is indicative of contrast agent washout, wherein the predetermined temporal sampling rate is varied during contrast agent uptake,

    wherein the second temporal sampling rate is equal to the lower sampling rate and lower than the higher temporal sampling rate, and

    wherein the method further comprises

    sensing a motion cycle of the region of interest;

    identifying a sub-portion of the motion cycle;

    scanning the region of interest only during the sub-portion of the motion cycle;

    scanning using a sparse spatial sampling;

    reconstructing the time frame data using a sparse reconstruction algorithm; and

    using a lower tube current during pre-contrast agent uptake scanning and contrast agent washout scanning and using a higher tube current during contrast agent uptake scanning, wherein the higher tube current is greater than the lower tube current.


     
    2. The method of any of claim 1, further comprising:

    determining an average pixel intensity of structure in the time frame data;

    comparing the average pixel intensity with an average pixel intensity of previous time frame data; and

    identifying the predetermined change based on a result of the comparison, preferably further comprising:
    identifying the predetermined change in the amount of the contrast agent in the region of interest in response to the average pixel intensity of previous time frame data exceeding the average pixel intensity of the time frame data.


     
    3. The method of claim 1, further comprising:

    segmenting the time frame data into sub-structure;

    determining an average pixel intensity of a sub-set of the sub-structure;

    comparing the average pixel intensity with an average pixel intensity of corresponding previous time frame data; and

    identifying the predetermined change based on a result of the comparison, preferably further comprising:

    identifying the predetermined change in the amount of the contrast agent in the region of interest in response to the average pixel intensity of previous time frame data exceeding the average pixel intensity of the time frame data; or

    segmenting the time frame data into sub-structure;

    segmenting at least one sub-structure into sub-regions;

    determining an average pixel intensity of a sub-set of the sub-regions;

    comparing the average pixel intensity with an average pixel intensity of corresponding previous time frame data; and

    identifying the predetermined change based on a result of the comparison, preferably further comprising:

    identifying the predetermined change in the amount of the contrast agent in the region of interest in response to the average pixel intensity of previous time frame data exceeding the average pixel intensity of the time frame data; or

    segmenting the time frame data into sub-structure;

    segmenting at least one sub-structure into sub-regions;

    determining an average pixel intensity of at least one of the sub-regions;

    determining an average pixel intensity of at least another of the sub-regions;

    comparing the average pixel intensities; and

    identifying the predetermined change based on a result of the comparison.


     
    4. The method of any of claims 1 to 3, further comprising:
    performing a data acquisition at a predetermined fixed temporal distance from the predetermined change to capture late contrast agent enhancement.
     
    5. The method of any of claims 1 to 4, wherein the sub-portion corresponds to a lower motion phase of the motion cycle.
     
    6. The method of claim 5, further comprising:
    scanning the region of interest during at least two of the sub-portions.
     


    Ansprüche

    1. Verfahren, umfassend:

    Scannen (910) eines interessierenden Bereichs während eines kontrastmittelbasierten Computertomographie-Perfusionsscans mit einer vorbestimmten zeitlichen Abtastrate während der Kontrastmittelaufnahme in dem interessierenden Bereich und Erzeugen von Zeitrahmendaten, die den gescannten Bereich von Interesse anzeigen;

    Identifizieren (914) einer vorbestimmten Änderung in einer Menge an Kontrastmittel in dem interessierenden Bereich aus den Zeitrahmendaten;

    Scannen (916) des interessierenden Bereichs mit einer niedrigeren zeitlichen Abtastrate während vor der Kontrastmittelaufnahme;

    Scannen des interessierenden Bereichs mit einer zweiten niedrigeren zeitlichen Abtastrate während des Kontrastmittelauswaschens, wobei die niedrigere zeitliche Abtastrate und die zweite niedrigere zeitliche Abtastrate jeweils niedriger sind als die vorbestimmte zeitliche Abtastrate während der Kontrastmittelaufnahme; und

    Umschalten von der vorbestimmten zeitlichen Abtastrate auf die zweite niedrigere zeitliche Abtastrate als Reaktion auf das Identifizieren der vorbestimmten Änderung, die eine Verringerung der Menge des Kontrastmittels im interessierenden Bereich ist, wobei die Verringerung auf ein Kontrastmittelauswaschen hinweist, wobei die vorbestimmte zeitliche Abtastrate während der Kontrastmittelaufnahme variiert wird,

    wobei die zweite zeitliche Abtastrate gleich der niedrigeren Abtastrate und niedriger als die höhere zeitliche Abtastrate ist, und

    wobei das Verfahren weiter umfasst

    Erfassen eines Bewegungszyklus des interessierenden Bereichs;

    Identifizieren eines Teilabschnitts des Bewegungszyklus;

    Scannen des interessierenden Bereichs nur während des Teilabschnitts des Bewegungszyklus;

    Scannen mit einer räumlichen Abtastung mit geringer Datendichte;

    Rekonstruieren der Zeitrahmendaten mit einem Rekonstruktionsalgorithmus mit geringer Datendichte; und

    Verwenden eines niedrigeren Röhrenstroms während des Scannens vor der Kontrastmittelaufnahme und während der Kontrastmittelauswaschung und Verwenden eines höheren Röhrenstroms während des Kontrastmittelaufnahme-Scannens, wobei der höhere Röhrenstrom größer ist als der niedrigere Röhrenstrom.


     
    2. Verfahren nach einem der Ansprüche 1, weiter umfassend:

    Bestimmen einer durchschnittlichen Pixelintensität der Struktur in den Zeitrahmendaten;

    Vergleichen der durchschnittlichen Pixelintensität mit einer durchschnittlichen Pixelintensität früherer Zeitrahmendaten; und

    Identifizieren der vorbestimmten Änderung basierend auf einem Ergebnis des Vergleichs, vorzugsweise weiter umfassend:
    Identifizieren der vorbestimmten Änderung der Menge des Kontrastmittels in dem interessierenden Bereich als Reaktion auf die durchschnittliche Pixelintensität früherer Zeitrahmendaten, die die durchschnittliche Pixelintensität der Zeitrahmendaten übersteigt.


     
    3. Verfahren nach Anspruch 1, weiter umfassend:

    Segmentieren der Zeitrahmendaten in eine Teilstruktur;

    Bestimmen einer durchschnittlichen Pixelintensität einer Teilmenge der Teilstruktur;

    Vergleichen der durchschnittlichen Pixelintensität mit einer durchschnittlichen Pixelintensität entsprechender früherer Zeitrahmendaten; und

    Identifizieren der vorbestimmten Änderung basierend auf einem Ergebnis des Vergleichs, vorzugsweise weiter umfassend:

    Identifizieren der vorbestimmten Änderung der Menge des Kontrastmittels in dem interessierenden Bereich als Reaktion auf die durchschnittliche Pixelintensität früherer Zeitrahmendaten, die die durchschnittliche Pixelintensität der Zeitrahmendaten übersteigt; oder

    Segmentieren der Zeitrahmendaten in eine Teilstruktur;

    Segmentieren mindestens einer Teilstruktur in Teilbereiche;

    Bestimmen einer durchschnittlichen Pixelintensität einer Teilmenge der Teilbereiche;

    Vergleichen der durchschnittlichen Pixelintensität mit einer durchschnittlichen Pixelintensität entsprechender früherer Zeitrahmendaten; und

    Identifizieren der vorbestimmten Änderung basierend auf einem Ergebnis des Vergleichs, vorzugsweise weiter umfassend:

    Identifizieren der vorbestimmten Änderung der Menge des Kontrastmittels in dem interessierenden Bereich als Reaktion auf die durchschnittliche Pixelintensität früherer Zeitrahmendaten, die die durchschnittliche Pixelintensität der Zeitrahmendaten übersteigt; oder

    Segmentieren der Zeitrahmendaten in eine Teilstruktur;

    Segmentieren mindestens einer Teilstruktur in Teilbereiche;

    Bestimmen einer durchschnittlichen Pixelintensität von mindestens einem der Teilbereiche;

    Bestimmen einer durchschnittlichen Pixelintensität von mindestens einem weiteren der Teilbereiche;

    Vergleichen der durchschnittlichen Pixelintensitäten; und

    Identifizieren der vorbestimmten Änderung basierend auf einem Ergebnis des Vergleichs.


     
    4. Verfahren nach einem der Ansprüche 1 bis 3, weiter umfassend:
    Durchführen einer Datenerfassung in einem vorbestimmten festen zeitlichen Abstand von der vorbestimmten Änderung, um eine späte Verstärkung des Kontrastmittels aufzunehmen.
     
    5. Verfahren nach einem der Ansprüche 1 bis 4, wobei der Teilabschnitt einer niedrigeren Bewegungsphase des Bewegungszyklus entspricht.
     
    6. Verfahren nach Anspruch 5, weiter umfassend:
    Scannen des interessierenden Bereichs während mindestens zwei der Teilabschnitte.
     


    Revendications

    1. Procédé, comprenant les étapes consistant à :

    balayer (910) une région d'intérêt, pendant un balayage de perfusion de tomodensitométrie à base d'agent de contraste, à une vitesse d'échantillonnage temporel prédéterminée pendant une absorption d'agent de contraste dans la région d'intérêt, et générer des données de trame temporelle indiquant la région d'intérêt balayée ;

    identifier (914) un changement prédéterminé d'une quantité d'agent de contraste dans la région d'intérêt à partir des données de trame temporelle ;

    balayer (916) la région d'intérêt à une vitesse d'échantillonnage temporel inférieure pendant l'absorption de l'agent avant contraste ;

    balayer la région d'intérêt à une seconde vitesse d'échantillonnage temporel inférieure pendant un lavage d'agent de contraste, dans lequel la vitesse d'échantillonnage temporel et la seconde vitesse d'échantillonnage temporel inférieure sont inférieures à la vitesse d'échantillonnage temporel prédéterminée pendant l'absorption de l'agent de contraste, respectivement ; et

    commuter la vitesse d'échantillonnage temporel prédéterminée à la seconde vitesse d'échantillonnage temporel inférieure en réponse à l'identification du changement prédéterminé qui est une diminution de la quantité de l'agent de contraste dans la région d'intérêt, dans lequel la diminution est indicative d'un lavage d'agent de contraste, dans lequel la vitesse d'échantillonnage temporel varie pendant l'absorption d'agent de contraste,

    dans lequel la seconde vitesse d'échantillonnage temporel est égal à la vitesse d'échantillonnage inférieure et inférieure à la vitesse d'échantillonnage temporel supérieur, et

    dans lequel le procédé comprend en outre les étapes consistant à détecter un cycle de mouvement de la région d'intérêt ;

    identifier une sous-partie du cycle de mouvement ;

    balayer la région d'intérêt uniquement pendant la sous-partie du cycle de mouvement ;

    balayer en utilisant un échantillonnage spatial éparse ;

    reconstruire les données de trame temporelle en utilisant un algorithme de reconstruction éparse ; et

    utiliser un courant de tube inférieur pendant un balayage d'absorption d'agent avant contraste et un balayage de lavage d'agent de contraste et utiliser un courant de tube supérieur pendant un balayage d'absorption d'agent de contraste, dans lequel le courant de tube supérieur est supérieur au courant de tube inférieur.


     
    2. Procédé selon la revendication 1, comprenant en outre les étapes consistant à :

    déterminer une intensité de pixel moyenne de structure dans les données de trame temporelle ;

    comparer l'intensité de pixel moyenne avec une intensité de pixel moyenne de données de trame temporelle précédente ; et

    identifier le changement prédéterminé sur la base d'un résultat de la comparaison, comprenant de préférence en outre l'étape :
    identifier le changement prédéterminé de la quantité d'agent de contraste dans la région d'intérêt en réponse à l'intensité de pixel moyenne des données de trame temporelle précédente dépassant l'intensité de pixel moyenne des données de trame temporelle.


     
    3. Procédé selon la revendication 1, comprenant en outre les étapes consistant à :

    segmenter les données de trame temporelle en une sous-structure ;

    déterminer une intensité de pixel moyenne d'un sous-ensemble de la sous-structure ;

    comparer l'intensité de pixel moyenne à une intensité de pixel moyenne des données de trame temporelle précédente correspondantes ; et

    identifier le changement prédéterminé sur la base d'un résultat de la comparaison, comprenant de préférence en outre :

    identifier le changement prédéterminé de la quantité d'agent de contraste dans la région d'intérêt en réponse à l'intensité de pixel moyenne des données de trame temporelle précédente dépassant l'intensité de pixel moyenne des données de trame temporelle ; ou

    segmenter les données temporelles en une sous-structure ;

    segmenter au moins une sous-structure en sous-régions ;

    déterminer une intensité de pixel moyenne d'un sous-ensemble des sous-régions ;

    comparer l'intensité de pixel moyenne à une intensité de pixel moyenne des données de trame temporelle précédente correspondantes ; et

    identifier le changement prédéterminé sur la base d'un résultat de la comparaison, comprenant en outre de préférence les étapes consistant à :

    identifier le changement prédéterminé de la quantité d'agent de contraste dans la région d'intérêt en réponse à l'intensité de pixel moyenne des données de trame temporelle précédente dépassant l'intensité de pixel moyenne des données de trame temporelle ; ou

    segmenter les données temporelles en une sous-structure ;

    segmenter au moins une sous-structure en sous-régions ;

    déterminer une intensité de pixel moyenne d'au moins une des sous-régions ;

    déterminer une intensité de pixel moyenne d'au moins une autre des sous-régions ;

    comparer les intensités de pixel moyennes ; et

    identifier le changement prédéterminé sur la base d'un résultat de la comparaison.


     
    4. Procédé selon l'une quelconque des revendications 1 à 3, comprenant en outre l'étape consistant à :
    effectuer une acquisition de données à une distance temporelle fixe prédéterminée à partir du changement prédéterminé pour capturer l'amélioration d'agent de contraste tardive.
     
    5. Procédé selon l'une quelconque des revendications 1 à 4, dans lequel la sous-partie correspond à une phase de mouvement inférieure du cycle de mouvement.
     
    6. Procédé selon la revendication 5, comprenant en outre l'étape consistant à : balayer la région d'intérêt pendant au moins deux des sous-parties.
     




    Drawing


























    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description