(19)
(11)EP 2 706 064 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
09.11.2016 Bulletin 2016/45

(21)Application number: 13183277.6

(22)Date of filing:  06.09.2013
(51)International Patent Classification (IPC): 
C07F 15/00(2006.01)
H01L 51/00(2006.01)

(54)

Organometallic compound and organic light-emitting device including the same

Organometallische Verbindung und organische lichtemittierende Vorrichtung damit

Composé organométallique et dispositif électroluminescent organique l'incluant


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 07.09.2012 KR 20120099543

(43)Date of publication of application:
12.03.2014 Bulletin 2014/11

(73)Proprietor: Samsung Display Co., Ltd.
Gyeonggi-do (KR)

(72)Inventors:
  • Choi, Jong-Won
    Yongin-City, Gyeonggi-Do (KR)
  • Park, Bum-Woo
    Yongin-City, Gyeonggi-Do (KR)
  • Lee, Sun-Young
    Yongin-City, Gyeonggi-Do (KR)
  • Choi, Wha-Il
    Yongin-City, Gyeonggi-Do (KR)
  • Kim, So-Yeon
    Yongin-City, Gyeonggi-Do (KR)
  • Lee, Ji-Youn
    Yongin-City, Gyeonggi-Do (KR)
  • Kwak, Yoon-Hyun
    Yongin-City, Gyeonggi-Do (KR)

(74)Representative: Gulde & Partner 
Patent- und Rechtsanwaltskanzlei mbB Wallstraße 58/59
10179 Berlin
10179 Berlin (DE)


(56)References cited: : 
JP-A- 2011 119 576
US-B1- 7 002 013
  
  • DATABASE CA [Online] CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; LIU, YUQI ET AL: "Effects of N-Substitution on Phosphorescence Efficiency and Color Tuning of a Series of Ir(III) Complexes with a Phosphite Tripod Ligand: A DFT/TDDFT Study", XP002719088, retrieved from STN Database accession no. 2012:1762360 & Yuqi Liu ET AL: "Effects of N-Substitution on Phosphorescence Efficiency and Color Tuning of a Series of Ir(III) Complexes with a Phosphite Tripod Ligand: A DFT/TDDFT Study", Journal of Physical Chemistry C, vol. 116, no. 50, 20 December 2012 (2012-12-20), pages 26496-26506, XP055096990, ISSN: 1932-7447, DOI: 10.1021/jp3071019
  • 'Ethyl pyrimidine-4-carboxylate - Reaxys printout' 01 January 1978, XP055212394
  • "I03-0325 Ethyl 4-pyrimidinecarboxylate 62846-82-6", Productcatalog(Pyrimidines) ShanghaiI Chemical Technology LTD, 4 August 2011 (2011-08-04), XP055212395, Retrieved from the Internet: URL:http://www.ispharm.com/download/IS Pyrimidines.pdf [retrieved on 2015-09-10]
  • Sales@longochem.Com: "Ethyl-4-Pyrimidinecarboxylate", Heterocycles--Changzhou Longo Chemical Co., Ltd., 1 January 2011 (2011-01-01), XP055212396, Retrieved from the Internet: URL:http://www.longochem.com/template/prod uct1-5.htm [retrieved on 2015-09-10]
  • 'PYRIMIDINE COMPOUNDS using Ethyl Pyrimidine-4-carboxylate 62846-82-6 - Reaxys printout' 01 January 2011, XP055212399
  
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description


[0001] The present invention relates to a compound for organic light-emitting devices, and an organic light-emitting device including the compound.

DESCRIPTION OF RELATED ART



[0002] Organic light-emitting devices (OLEDs) are light emitting devices (e.g., self-emitting devices) and have advantages such as wide viewing angles, excellent contrast, quick response, high brightness, excellent driving voltage characteristics, and the ability to provide multicolored images.

[0003] US 7,002,013 B1 discloses the use of several Pt(II) complexes as phosphorescent emitters in the fabrication of organic light emitting diodes.

SUMMARY



[0004] The present invention is directed to an organometallic compound represented by Formula 1A or Formula 1C as defined in claim 1.

[0005] The present invention is also directed to an organic light-emitting device as defined in claim 14.

[0006] Further embodiments of the invention could be learned from the dependent claims and following description.

BRIEF DESCRIPTION OF THE DRAWING



[0007] Features will become apparent to those of ordinary skill in the art by describing in detail exemplary embodiments with reference to the attached drawing in which FIG. 1 schematically illustrates the structure of an organic light-emitting device according to an embodiment.

DETAILED DESCRIPTION



[0008] Example embodiments will now be described more fully hereinafter with reference to the accompanying drawing.

[0009] In the drawing figures, the dimensions of layers and regions may be exaggerated for clarity of illustration. It will also be understood that when a layer is referred to as being "between" two layers, it can be the only layer between the two layers, or one or more intervening layers may also be present. Like reference numerals refer to like elements throughout. As used herein, the term "and/or" includes any and all combinations of one or more of the associated listed items. Expressions such as "at least one of," and "selected from the group of," when preceding a list of elements, modify the entire list of elements and do not modify the individual elements of the list.

[0010] According to the invention, there is provided an organometallic compound represented by Formula 1A and Formula 1C:



[0011] In Formula 1A and 1C above, M is a transition metal.

[0012] For example, M may be a Group VI metal, a Group VII metal, a Group VIII metal, a Group IX metal, or a Group X metal, a Group XI metal, or the like. In an embodiment, M in Formula 1A or 1C may be ruthenium (Ru), rhodium (Rh), palladium (Pd), tungsten (W), rhenium (Re), osmium (Os), iridium (Ir), platinum (Pt), and the like.

[0013] In Formula 1A, X1 is N or C(R5).

[0014] In Formula 1A or 1C, R1, R4 and R5 each independently are a hydrogen atom, a deuterium atom, a halogen atom, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine, a hydrazone, a carboxyl group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a substituted or unsubstituted C1-C60 alkyl group, a substituted or unsubstituted C2-C60 alkenyl group, a substituted or unsubstituted C2-C60 alkynyl group, a substituted or unsubstituted C1-C60 alkoxy group, a substituted or unsubstituted C3-C10 cycloalkyl group, a substituted or unsubstituted C3-C10 cycloalkenyl group, a substituted or unsubstituted C3-C10 heterocycloalkyl group, a substituted or unsubstituted C3-C10 heterocycloalkenyl group, a substituted or unsubstituted C6-C60 aryl group, a substituted or unsubstituted C6-C60 aryloxy group, a substituted or unsubstituted C6-C60 arylthio group, a substituted or unsubstituted C2-C60 heteroaryl group, -N(Q1)(Q2),
-Si(Q3)(Q4)(Q5), -C(=O)(Q6) (where Q1 to Q6 each independently are a hydrogen atom, a substituted or unsubstituted C1-C60 alkyl group, a substituted or unsubstituted C6-C60 aryl group, or a substituted or unsubstituted C2-C60 heteroaryl group), or a binding site with an adjacent ligand via a single bond or a divalent linking group,
the A ring and the B ring are each independently selected from the group of a substituted or unsubstituted C4-C20 alicyclic ring, a substituted or unsubstituted C2-C20 heteroalicyclic ring, a substituted or unsubstituted C6-C20 aromatic ring, and a substituted or unsubstituted C2-C20 heteroaromatic ring;
n is an integer from 1 to 3; L is a monodentate, bidentate, tridentate, or tetradentate organic ligand; and
m is an integer from 0 to 4.

[0015] In Formula 1A or 1C, R1, R4 and R5 each independently may be one selected from the group of:

a hydrogen atom, a deuterium atom, a halogen atom, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine, a hydrazone, a carboxyl group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof;

a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, a C3-C10 cycloalkyl group, a C3-C10 cycloalkenyl group, a C3-C10 heterocycloalkyl group, a C3-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, and a C2-C60 heteroaryl group;

a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, a C3-C10 cycloalkyl group, a C3-C10 cycloalkenyl group, a C3-C10 heterocycloalkyl group, a C3-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, and a C2-C60 heteroaryl group that may be substituted with at least one of a deuterium atom, a halogen atom, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine, a hydrazone, a carboxyl group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C60 alkyl group, a C1-C60 alkyl group substituted with at least one halogen atom, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, a C3-C10 cycloalkyl group, a C3-C10 cycloalkenyl group, a C3-C10 heterocycloalkyl group, a C3-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C2-C60 heteroaryl group,

-N(Q11)(Q12), and -Si(Q13)(Q14)(Q15) (where Q11 to Q15 are each independently a hydrogen atom, a C1-C10 alkyl group, a C6-C20 aryl group, or a C2-C20 heteroaryl group);

-N(Q1)(Q2), -Si(Q3)(Q4)(Q5), and -C(=O)(Q6) (where Q1 to Q6 each independently may be a hydrogen atom, a C1-C60 alkyl group, a C6-C60 aryl group, or a C2-C60 heteroaryl group); and

a binding site with an adjacent ligand via a single bond or a divalent linking group.



[0016] In an embodiment, in Formula 1A or 1C, R1 and R4 may be, for example, one selected from the group of:

a hydrogen atom, a deuterium atom, a halogen atom, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine, a hydrazone, a carboxyl group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof;

a C1-C20 alkyl group, a C1-C20 alkoxy group, a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclopentenyl group, a cyclohexenyl group, a cyclopentadienyl group, a cyclohexadienyl group, a phenyl group, a naphthyl group, an anthryl group, a fluorenyl group, a chrysenyl group, a pyrenyl group, a phenanthrenyl group, a pyrrolyl group, a pyridinyl group, a pyrimidinyl group, a pyrazinyl group, a triazinyl group, a carbazolyl group, an indolyl group, a benzoimidazolyl group, a quinolinyl group, an isoquinolinyl group;

a C1-C20 alkyl group, a C1-C20 alkoxy group, a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclopentenyl group, a cyclohexenyl group, a cyclopentadienyl group, a cyclohexadienyl group, a phenyl group, a naphthyl group, an anthryl group, a fluorenyl group, a chrysenyl group, a pyrenyl group, a phenanthrenyl group, a pyrrolyl group, a pyridinyl group, a pyrimidinyl group, a pyrazinyl group, a triazinyl group, a carbazolyl group, an indolyl group, a benzoimidazolyl group, a quinolinyl group, and an isoquinolinyl group that may be substituted with at least one of a deuterium atom, a halogen atom, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine, a hydrazone, a carboxyl group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a naphthyl group, an anthryl group, a dimethyl-fluorenyl group, and a phenyl-carbazolyl group;

-N(Q1)(Q2), -Si(Q3)(Q4)(Q5), -C(=O)(Q6) (where Q1 to Q6 are each independently a hydrogen atom, a C1-C20 alkyl group, a phenyl group, a naphthyl group, or an anthryl group); and

a binding site with an adjacent ligand via a single bond or a divalent linking group.



[0017] In an embodiment, X1 in Formula 1A may be C(R5); and R1, R4 and R5 each independently may be one of, e.g., a hydrogen atom, a deuterium atom, a halogen atom, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine, a hydrazone, a carboxyl group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof; a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, an i-butyl group, a t-butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a methoxy group, an ethoxy group, a propoxy group, a butoxy group, and pentoxy group; and a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, an i-butyl group, a t-butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a methoxy group, an ethoxy group, a propoxy group, a butoxy group, and a pentoxy group that may be substituted with at least one of a deuterium atom, -F, a hydroxyl group, a cyano group, a nitro group, and an amino group.

[0018] In an embodiment, X1 in Formula 1A may be N; and R1 and R4 each independently may be one of a hydrogen atom, a deuterium atom, a halogen atom, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine, a hydrazone, a carboxyl group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof; a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, an i-butyl group, a t-butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a methoxy group, an ethoxy group, a propoxy group, a butoxy group, and pentoxy group; and a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, an i-butyl group, a t-butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a methoxy group, an ethoxy group, a propoxy group, a butoxy group, and a pentoxy group that may be substituted with at least one of a deuterium atom, -F, a hydroxyl group, a cyano group, a nitro group, and an amino group.

[0019] In an embodiment, in Formula 1A, X1 may be C(R5); and R1, R4 and R5 each independently may be a hydrogen atom, a methyl group, an ethyl group, an n-propyl group, a i-propyl group, an n-butyl group, an i-butyl group, a t-butyl group, a methoxy group, an ethoxy group, a propoxy group, a butoxy group, a pentoxyl group, or -CF3. In some other embodiments, in Formula 1, X1 may be N; and R1 to R4 each independently may be a hydrogen atom, a methyl group, an ethyl group, an n-propyl group, a i-propyl group, an n-butyl group, an i-butyl group, a t-butyl group, a methoxy group, an ethoxy group, a propoxy group, a butoxy group, a pentoxyl group, or -CF3.

[0020] For example, in Formulae 1A and 1C, the A ring may be at least one of benzene, pentalene, indene, naphthalene, azulene, heptalene, indacene, acenaphthylene, fluorene, spiro-fluorene, phenalene, phenanthrene, anthracene, fluoranthene, triphenylene, pyrene, and chrysene; and benzene, pentalene, indene, naphthalene, azulene, heptalene, indacene, acenaphthylene, fluorene, spiro-fluorene, phenalene, phenanthrene, anthracene, fluoranthene, triphenylene, pyrene, and chrysene that may be substituted with at least one of a deuterium atom, a halogen atom, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine, a hydrazone, a carboxyl group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C60 alkyl group, a C1-C60 alkyl group substituted with at least one halogen atom, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, a C3-C10 cycloalkyl group, a C3-C10 cycloalkenyl group, a C3-C10 heterocycloalkyl group, a C3-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C2-C60 heteroaryl group, -N(Q11)(Q12), and -Si(Q13)(Q14)(Q15) (where Q11 to Q15 are each independently a hydrogen atom, a C1-C10 alkyl group, a C6-C2O aryl group or a C2-C2O heteroaryl group).

[0021] For example, in Formula 1C, the B ring may be at least one of, e.g., cyclopropane, cyclobutane, cyclopentane, cyclohexane, cycloheptane, cyclooctane, cyclopentene, cyclopentadiene, cyclohexadiene, cycloheptadiene, bicyclo-heptane, bicyclo-octane, benzene, pentalene, indene, naphthalene, azulene, heptalene, indacene, acenaphthylene, fluorene, spiro-fluorene, phenalene, phenanthrene, anthracene, fluoranthene, triphenylene, pyrene, and chrysene; and cyclopropane, cyclobutane, cyclopentane, cyclohexane, cycloheptane, cyclooctane, cyclopentene, cyclopentadiene, cyclohexadiene, cycloheptadiene, bicyclo-heptane, bicyclo-octane, benzene, pentalene, indene, naphthalene, azulene, heptalene, indacene, acenaphthylene, fluorene, spiro-fluorene, phenalene, phenanthrene, anthracene, fluoranthene, triphenylene, pyrene, and chrysene that are substituted with at least one of a deuterium atom, a halogen atom, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine, a hydrazone, a carboxyl group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C60 alkyl group, a C1-C60 alkyl group substituted with at least one halogen atom, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, a C3-C10 cycloalkyl group, a C3-C10 cycloalkenyl group, a C3-C10 heterocycloalkyl group, a C3-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C2-C60 heteroaryl group, -N(Q11)(Q12), and - Si(Q13)(Q14)(Q15) (where Q11 to Q15 each independently may be a hydrogen atom, a C1-C10 alkyl group, a C6-C20 aryl group, or a C2-C20 heteroaryl group).

[0022] In an embodiment, the organometallic compound may be represented by Formula 1A-(1), 1C-(1), 1 C-(2), 1C-(3), or 1D-(1) below:

















[0023] In Formulae 1A-(1), 1C-(1), 1C-(2), 1C-(3), and 1D-(1), M, and R1, R4 and R5 may be the same as set forth above; n, L and m may be the same as set forth below; and R11 to R14, and R21 to R28 may be the same as R1, R4 and R5 set forth above.

[0024] For example, in Formulae 1A-(1), 1C-(1), 1C-(2), 1C-(3), and 1D-(1) above, M may be a transition metal (for example, osmium (Os), iridium (Ir), or platinum (Pt)); R1, R4 and R5, R11 to R14, and R21 to R28 each independently may be a hydrogen atom, a deuterium atom, a halogen atom, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine, a hydrazone, a carboxyl group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C20 alkyl group, and a C1-C20 alkoxy group; a C1-C20 alkyl group and a C1-C20 alkoxy group that are substituted with at least one of a deuterium atom, a halogen atom, a hydroxyl group, a cyano group, a nitro group, and an amino group; a phenyl group, a naphthyl group, an anthryl group, a fluorenyl group, a carbazolyl group, a pyridinyl group, a pyrimidinyl group, and a triazinyl group; and a phenyl group, a naphthyl group, an anthryl group, a fluorenyl group, a carbazolyl group, a pyridinyl group, a pyrimidinyl group, and a triazinyl group that are substituted with at least one of a deuterium atom, a halogen atom, a hydroxyl group, a cyano group, a nitro group, an amino group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a naphthyl group, an anthryl group, a fluorenyl group, a carbazolyl group, a pyridinyl group, a pyrimidinyl group, and a triazinyl group; n may be an integer from 1 to 3; L may be an organic ligand; and m may be an integer from 0 to 4.

[0025] In Formula 1A or Formula 1C above, n may be an integerfrom 1 to 3.

[0026] If n is 2 or greater, at least two ligands may be the same or different.

[0027] L may be an organic ligand, and m may indicate the number of L's, and may be an integer from 0 to 4. L may be a monodentate ligand, bidentate ligand, a tridentate ligand, or a tetradentate ligand. If m is 2 or greater, at least two L may be the same or different.

[0028] L may be a suitable organic ligand, e.g., a ligand that does not undesirably change chemical and physical characteristics of the organometallic compound.

[0029] For example, L may include at least one of the ligands represented by Formulae 2A to 2F below.





[0030] In Formula 2B, M1 may be P or As.

[0031] In Formulae 2A to 2F, X11a, X11b, X12, X13, X14, X15, X16a, X16b, X16c, X16d, X16e, X16f, X16g, X17a, X17b, X17c and X17d each independently may be C, N, O, N(R35), P(R36)(R37), or As(R38)(R39); R33" and R34' each independently may be a single bond, a double bond, a substituted or unsubstituted C1-C5 alkylene group (for example, methylene, ethylene, or the like), or a substituted or unsubstituted C2-C5 alkenylene group (for example, ethenylene or the like); R31, R32a, R32b, R32c, R33a, R33b, R34, R35, R36, R37, R38, and R39 each independently may be a hydrogen atom, a deuterium atom, a halogen atom, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine, a hydrazone, a carboxyl group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a substituted or unsubstituted C1-C60 alkyl group, a substituted or unsubstituted C2-C60 alkenyl group, a substituted or unsubstituted C2-C60 alkynyl group, a substituted or unsubstituted C1-C60 alkoxy group, a substituted or unsubstituted C3-C10 cycloalkyl group, a substituted or unsubstituted C3-C10 cycloalkenyl group, a substituted or unsubstituted C3-C10 heterocycloalkyl group, a substituted or unsubstituted C3-C10 heterocycloalkenyl group, a substituted or unsubstituted C6-C60 aryl group, or a substituted or unsubstituted C2-C60 heteroaryl group; the C ring, the D ring, the E ring, the F ring, the G ring, and the H ring each independently may be a 5-membered to 20-membered saturated ring, or a 5-membered or 20-membered unsaturated ring; and * may indicate a binding site with M.

[0032] In Formulae 2A to 2F, R31, R32a, R32b, R32c, R33a, R33b, R34, R35, R36, R37, R38, and R39 each independently may be one of a hydrogen atom, a deuterium atom, a halogen atom, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine, a hydrazone, a carboxyl group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C20 alkyl group, and a C1-C20 alkoxy group; a C1-C20 alkyl group and a C1-C20 alkoxy group that are substituted with at least one of a deuterium atom, a halogen atom, a hydroxyl group, a cyano group, a nitro group, and an amino group; a phenyl group, a naphthyl group, an anthryl group, a fluorenyl group, a carbazolyl group, a pyridinyl group, a pyrimidinyl group, and a triazinyl group; and a phenyl group, a naphthyl group, an anthryl group, a fluorenyl group, a carbazolyl group, a pyridinyl group, a pyrimidinyl group, and a triazinyl group that are substituted with at least one of a deuterium atom, a halogen atom, a hydroxyl group, a cyano group, a nitro group, an amino group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a naphthyl group, an anthryl group, a fluorenyl group, a carbazolyl group, a pyridinyl group, a pyrimidinyl group, and a triazinyl group.

[0033] For example, if m is 1 or greater, L may include a ligand represented by Formula 2C above, wherein X11a and X11b in Formula 2C each independently may be, e.g., O, P(R36)(R37), or As(R38)(R39).

[0034] In some other embodiments, if m is 1 or greater L may include at least one of the ligands represented by Formulae 2D, 2E, and 2F, wherein the C ring, the D ring, the E ring, the F ring, the G ring, and the H ring in Formulae 2D, 2E, and 2F each independently may be a substituted or unsubstituted benzene, a substituted or unsubstituted pentalene, a substituted or unsubstituted indene, a substituted or unsubstituted naphthalene, a substituted or unsubstituted azulene, a substituted or unsubstituted heptalene, a substituted or unsubstituted indacene, a substituted or unsubstituted acenaphthylene, a substituted or unsubstituted fluorene, a substituted or unsubstituted spiro-fluorene, a substituted or unsubstituted phenalene, a substituted or unsubstituted phenanthrene, a substituted or unsubstituted anthracene, a substituted or unsubstituted fluoranthene, a substituted or unsubstituted triphenylene, a substituted or unsubstituted pyrene, a substituted or unsubstituted chrysene, a substituted or unsubstituted pyrrole, a substituted or unsubstituted imidazole, a substituted or unsubstituted pyrazole, a substituted or unsubstituted isothiazole, a substituted or unsubstituted isoxazole, a substituted or unsubstituted pyridine, a substituted or unsubstituted pyrazine, a substituted or unsubstituted pyrimidine, a substituted or unsubstituted pyridazine, a substituted or unsubstituted isoindole, a substituted or unsubstituted indole, a substituted or unsubstituted indazole, a substituted or unsubstituted purine, a substituted or unsubstituted isoquinoline, a substituted or unsubstituted quinoline, a substituted or unsubstituted phthalazine, a substituted or unsubstituted quinoxaline, a substituted or unsubstituted quinazoline, or a substituted or unsubstituted cinnoline.

[0035] In this regard, i) when the C ring includes at least two substituents (i.e., is substituted with at least two substituents), adjacent two of the at least two substituents may be optionally linked together to form a substituted or unsubstituted C4-C20 alicyclic ring, a substituted or unsubstituted C2-C20 heteroalicyclic ring, a substituted or unsubstituted C6-C20 aromatic ring, or a substituted or unsubstituted C2-C20 heteroaromatic ring; ii) when the D ring includes at least two substituents (i.e., is substituted with at least two substituents), adjacent two of the at least two substituents may be optionally linked together to form a substituted or unsubstituted C4-C20 alicyclic ring, a substituted or unsubstituted C2-C20 heteroalicyclic ring, a substituted or unsubstituted C6-C20 aromatic ring, or a substituted or unsubstituted C2-C20 heteroaromatic ring; iii) when the E ring includes at least two substituents (i.e., is substituted with at least two substituents), adjacent two of the at least two substituents may be optionally linked together to form a substituted or unsubstituted C4-C20 alicyclic ring, a substituted or unsubstituted C2-C20 heteroalicyclic ring, a substituted or unsubstituted C6-C20 aromatic ring, or a substituted or unsubstituted C2-C20 heteroaromatic ring; iv) when the F ring includes at least two substituents (i.e., is substituted with at least two substituents), adjacent two of the at least two substituents may be optionally linked together to form a substituted or unsubstituted C4-C20 alicyclic ring, a substituted or unsubstituted C2-C20 heteroalicyclic ring, a substituted or unsubstituted C6-C20 aromatic ring, or a substituted or unsubstituted C2-C20 heteroaromatic ring; v) when the G ring includes at least two substituents (i.e., is substituted with at least two substituents), adjacent two of the at least two substituents may be optionally linked together to form a substituted or unsubstituted C4-C20 alicyclic ring, a substituted or unsubstituted C2-C20 heteroalicyclic ring, a substituted or unsubstituted C6-C20 aromatic ring, or a substituted or unsubstituted C2-C20 heteroaromatic ring; vi) when the H ring includes at least two substituents (i.e., is substituted with at least two substituents), adjacent two of the at least two substituents may be optionally linked together to form a substituted or unsubstituted C4-C20 alicyclic ring, a substituted or unsubstituted C2-C20 heteroalicyclic ring, a substituted or unsubstituted C6-C20 aromatic ring, or a substituted or unsubstituted C2-C20 heteroaromatic ring;

[0036] The above description of the B ring (in Formula 1C) may be used to describe "the substituted or unsubstituted C4-C20 alicyclic ring, the substituted or unsubstituted C2-C20 heteroalicyclic ring, the substituted or unsubstituted C6-C20 aromatic ring, or the substituted or unsubstituted C2-C20 heteroaromatic ring," set forth above.

[0037] In an embodiment, if m is 1 or greater L may include at least one of the ligands represented by, e.g., Formulae 2A(1), 2B(1), 2C(1), and 2C(2):



[0038] In Formulae 2A(1), 2B(1), 2C(1), and 2C(2), R32a, R32b, R32c, R33a, R33b, R36, and R37 each independently may be as set forth above.

[0039] In Formula 1A or Formula 1C, n may be 2. In an embodiment, the organometallic compound may be represented by Formula 3A-(2), 3A-(6), 3A-(7), or 3A-(8) below.











[0040] In Formulae 3A-(2), 3A-(6), 3A-(7), and 3A-(8), M may be platinum (Pt); and R1a, R4a, R5a, R1b, R4b, R5b, R11a to R14a, R11b to R14b, R21a to R28a, and R21b to R28b each independently may be one of a hydrogen atom, a deuterium atom, a halogen atom, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine, a hydrazone, a carboxyl group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C20 alkyl group, and a C1-C20 alkoxy group; a C1-C20 alkyl group and a C1-C20 alkoxy group that are substituted with at least one of a deuterium atom, a halogen atom, a hydroxyl group, a cyano group, a nitro group, and an amino group; a phenyl group, a naphthyl group, an anthryl group, a fluorenyl group, a carbazolyl group, a pyridinyl group, a pyrimidinyl group, and a triazinyl group; and a phenyl group, a naphthyl group, an anthryl group, a fluorenyl group, a carbazolyl group, a pyridinyl group, a pyrimidinyl group, and a triazinyl group that are substituted with at least one of a deuterium atom, a halogen atom, a hydroxyl group, a cyano group, a nitro group, an amino group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a naphthyl group, an anthryl group, a fluorenyl group, a carbazolyl group, a pyridinyl group, a pyrimidinyl group, and a triazinyl group.

[0041] In an embodiment, in Formulae 3A-(2), 3A-(6), 3A-(7), and 3A-(8), R1a, R4a, R5a, R1b, R4b, R5b, R11a to R14a, R11b to R14b, R21a to R28a, and R21b to R28b each independently may be, e.g., a hydrogen atom, a deuterium atom, a halogen atom, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine, a hydrazone, a carboxyl group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C20 alkyl group (for example, a methyl group, an ethyl group, an n-propyl group, a i-propyl group, an n-butyl group, a i-butyl group, a t-butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, or the like), a C1-C20 alkyl group substituted with at least one fluorine atom (for example,-CF3), a C1-C20 alkoxy group, a phenyl group, a naphthyl group, or an anthryl group.

[0042] For example, the organometallic compound may be represented by Formula 3A-(2), 3A-(6), or 3A-(8), wherein R1a = R1b, R4a = R4b, R5a = R5b, R11a = R11b, R12a = P12b, R13a = R13b, R14a = R14b, R21a = R21b, R22a = R22b, R23a = R23b, R24a = R24b, R25a = R25b, R26a = R26b, R27a = R27b, and R28a = R28b.

[0043] In some other embodiments, the organometallic compound may be an organometallic compound represented by Formula 1A or Formula 1C with n=3 and m=0. In an embodiment, in the organometallic compound represented by Formula 1A or Formula 1C with n= 3 and m= 0, M may be Ir, and X1 and R1 may be as set forth above.

[0044] In some other embodiments, the organometallic compound may be an organometallic compound represented by Formula 1A or Formula 1C wherein n=1 and m is an integer from 1 to 4.

[0045] The organometallic compound may be, for example, one of Compounds 29 to 36 below:









[0046] In the organometallic compound of Formula 1A and Formula 1C, R1 is located between a first nitrogen and a second nitrogen of the pyrimidine ring, and thus the R1 may have acidic characteristics, which may allow for improved thermal stability.

[0047] The organometallic compound may have acidic characteristics, thereby allowing for the formation of an intermolecular hydrogen bond with a third nitrogen of an adjacent ligand.

[0048] Therefore, the organometallic compounds according to one or more of the above embodiments may have improved thermal stability. Accordingly, an organic light-emitting device including the organometallic compounds according to one or more of the above embodiments may have improved properties (e.g., a low driving voltage, a high luminance, a high efficiency, a long lifetime, and the like).

[0049] The organometallic compound of Formula 1A or Formula 1C is synthesized using an organic synthesis method. The synthesis method will be understood by those skilled in the art from the examples that will be described below.

[0050] The organometallic compound may be used between a pair of electrodes of an organic light-emitting device, for example, in an emission layer of the organic light-emitting device.

[0051] According to another aspect of the invention, there is provided an organic light-emitting device including a first electrode, a second electrode disposed opposite to the first electrode, and an organic layer disposed between the first electrode and the second electrode, wherein the organic layer includes at least one of the organometallic compounds described above.

[0052] As used herein, phrases like, for example, "the organic layer includes at least one organometallic compound" mean that "the organic layer includes one of the organometallic compounds of Formula 1A or Formula 1C above, or at least two different organometallic compounds of Formula 1A or Formula 1C above."

[0053] The organic layer may include at least one layer selected from among a hole injection layer, a hole transport layer, a functional layer having both hole injection and hole transport capabilities (hereinafter, "H-functional layer"), a buffer layer, an electron blocking layer, an emission layer, a hole blocking layer, an electron transport layer, an electron injection layer, and a functional layer having both electron injection and electron transport capabilities (hereinafter, "E-functional layer").

[0054] The term "organic layer" as used herein may refer to a single layer and/or a plurality of layers disposed between the first and second electrodes of the organic light-emitting device.

[0055] The organic layer may include an emission layer, and the emission layer may include the organometallic compound described above. The emission layer including the organometallic compound may emit light generated based on the mechanism of phosphorescence.

[0056] In an embodiment, the organometallic compound in the emission layer of the organic light-emitting device may serve as a dopant, and the emission layer may further include a carbazole-based compound as a host.

[0057] An example of the carbazole-based compound available as a host is a compound represented by Formula 10 below:



[0058] In Formula 10, Ar1 may be a substituted or unsubstituted C1-C60alkylene group, a substituted or unsubstituted C2-C60 alkenylene group, -C(=O)-, -N(R100)- (where R100 may be a substituted or unsubstituted C6-C60aryl group, or a substituted or unsubstituted C2-C60 heteroaryl group), a substituted or unsubstituted C6-C60 arylene group, or a substituted or unsubstituted C2-C60heteroarylene group; p may be an integer from 0 to 10; R91 to R96 each independently may be a hydrogen atom, a deuterium atom, a halogen atom, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine, a hydrazone, a carboxyl group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a substituted or unsubstituted C1-C60 alkyl group, a substituted or unsubstituted C2-C60 alkenyl group, a substituted or unsubstituted C2-C60 alkynyl group, a substituted or unsubstituted C1-C60 alkoxy group, a substituted or unsubstituted C3-C10 cycloalkyl group, a substituted or unsubstituted C3-C10 cycloalkenyl group, a substituted or unsubstituted C3-C10 heterocycloalkyl group, a substituted or unsubstituted C3-C10 heterocycloalkenyl group, a substituted or unsubstituted C6-C60 aryl group, a substituted or unsubstituted C6-C60 aryloxy group, a substituted or unsubstituted C6-C60 arylthio group, or a substituted or unsubstituted C2-C60 heteroaryl group, wherein adjacent two substituents of R91 to R96 are optionally linked together to form a substituted or unsubstituted C4-C20 alicyclic group, a substituted or unsubstituted C2-C20 heteroalicyclic group, a substituted or unsubstituted C6-C20 aromatic ring, or a substituted or unsubstituted C2-C20 heteroaromatic ring; and q, r, s, t, u, and v each independently may be an integer from 1 to 4.

In Formula 10, An may be a C1-C5 alkylene group, a C2-C5 alkenylene group,



[0059] -C(=O)-, or -N(R100)-, wherein R100 may be at least one of a phenyl group, a naphthyl group, an anthryl group, a fluorenyl group, a carbazolyl group, a pyridinyl group, a pyrimidinyl group, and a triazinyl group; and a phenyl group, a naphthyl group, an anthryl group, a fluorenyl group, a carbazolyl group, a pyridinyl group, a pyrimidinyl group, and a triazinyl group that are substituted with at least one of a deuterium atom, a halogen atom, a hydroxyl group, a cyano group, a nitro group, an amino group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a naphthyl group, an anthryl group, a fluorenyl group, a carbazolyl group, a pyridinyl group, a pyrimidinyl group, and a triazinyl group.

[0060] In Formula 10, R91 to R96 each independently may be one of a hydrogen atom, a deuterium atom, a halogen atom, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine, a hydrazone, a carboxyl group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C20 alkyl group, and a C1-C20 alkoxy group; and a C1-C20 alkyl group and a C1-C20 alkoxy group that are substituted with at least one of a deuterium atom, a halogen atom, a hydroxyl group, a cyano group, a nitro group, and an amino group.

[0061] The carbazole-based compound may be, e.g., one of the following compounds H1-H30:

























[0062] FIG. 1 illustrates a schematic sectional view of an organic light-emitting device 10 according to an embodiment. Hereinafter, a structure of an organic light-emitting device according to an embodiment and a method of manufacturing the same will be described with reference to FIG. 1.

[0063] The substrate 11 may be a suitable substrate for use in an organic light-emitting device. In an embodiment, the substrate 11 may be a glass substrate or a transparent plastic substrate with strong mechanical strength, thermal stability, transparency, surface smoothness, ease of handling, and water resistance.

[0064] A first electrode 13 may be formed by depositing or sputtering a first electrode-forming material on a surface of the substrate 11. When the first electrode 13 is an anode, a material having a high work function may be used as the first electrode-forming material to facilitate hole injection. The first electrode 13 may be a reflective electrode or a transmission electrode. Suitable first electrode-forming materials may be transparent and conductive materials such as ITO, IZO, SnO2, and ZnO. The first electrode 13 may be formed as a reflective electrode using magnesium (Mg), aluminum (Al), aluminum-lithium (Al-Li), calcium (Ca), magnesium-indium (Mg-In), magnesium-silver (Mg-Ag), or the like.

[0065] The first electrode 13 may have a single-layer structure or a multi-layer structure including at least two layers. For example, the first electrode 13 may have a three-layered structure of ITO/Ag/ITO.

[0066] The organic layer 15 may be disposed on the first electrode 13.

[0067] The organic layer 15 may include a hole injection layer (HIL), a hole transport layer (HTL), a buffer layer, an emission layer (EML), an electron transport layer (ETL), and an electron injection layer (EIL).

[0068] The HIL may be formed on the first electrode 13 by vacuum deposition, spin coating, casting, Langmuir-Blodgett (LB) deposition, or the like.

[0069] When the HIL is formed using vacuum deposition, vacuum deposition conditions may vary according to the compound that is used to form the HIL, and the desired structure and thermal properties of the HIL to be formed. For example, vacuum deposition may be performed at a temperature of about 100°C to about 500°C, a pressure of about 0.000000013 mbar (10-8 torr) to about 0,001333 mbar (10-3 torr), and a deposition rate of about 0.01 to about 100 A/sec.

[0070] When the HIL is formed using spin coating, the coating conditions may vary according to the compound that is used to form the HIL, and the desired structure and thermal properties of the HIL to be formed. For example, the coating rate may be in the range of about 2000 rpm to about 5000 rpm, and a temperature at which heat treatment may be performed to remove a solvent after coating may be in the range of about 80°C to about 200°C.

[0071] The HIL may be formed of a suitable material for a HIL. For example, the material that can be used to form the HIL are N,N'-diphenyl-N,N'-bis-[4-(phenyl-m-tolyl-amino)-phenyl]-biphenyl-4,4'-diamine, (DNTPD), a phthalocyanine compound such as copper phthalocyanine, 4,4',4"-tris (3-methylphenylphenylamino) triphenylamine (m-MTDATA), N,N'-di(1-naphthyl)-N,N'-diphenylbenzidine (NPB), TDATA, 2T-NATA, polyaniline/dodecylbenzenesulfonic acid (Pani/DBSA), poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) (PEDOT/PSS), polyaniline/camphor sulfonic acid (Pani/CSA), and polyaniline)/poly(4-styrenesulfonate (PANI/PSS).







[0072] The thickness of the HIL may be about 100 Å to about 10000A, and in an embodiment, may be from about 100 Å to about 1000 Å. When the thickness of the HIL is within these ranges, the HIL may have good hole injecting ability without a substantial increase in driving voltage.

[0073] Then, a HTL may be formed on the HIL by using vacuum deposition, spin coating, casting, Langmuir-Blodgett (LB) deposition, or the like. When the HTL is formed using vacuum deposition or spin coating, the conditions for deposition and coating may be similar to those for the formation of the HIL, though the conditions for the deposition and coating may vary according to the material that is used to form the HTL.

[0074] Examples of suitable HTL forming materials are carbazole derivatives, such as N-phenylcarbazole or polyvinylcarbazole, N,N'-bis(3-methylphenyl)-N,N'-diphenyl-[1,1-biphenyl]-4,4'-diamine (TPD), 4,4',4"-tris(N-carbazolyl)triphenylamine (TCTA), and N,N'-di(1-naphthyl)-N,N'-diphenylbenzidine) (NPB).





[0075] The thickness of the HTL may be about 50 Å to about 2000A, and for example, about 100 Å to about 1500 Å. When the thickness of the HTL is within these ranges, the HTL may have good hole transporting ability without a substantial increase in driving voltage.

[0076] The H-functional layer (having both hole injection and hole transport capabilities) may contain at least one material from each group of the hole injection layer materials and hole transport layer materials. The thickness of the H-functional layer may be from about 500 Å to about 10,000 Å, and in an embodiment, may be from about 100 Å to about 1,000 Å. When the thickness of the H-functional layer is within these ranges, the H-functional layer may have good hole injection and transport capabilities without a substantial increase in driving voltage.

[0077] In an embodiment, at least one of the HIL, HTL, and H-functional layer may include at least one of a compound of Formula 300 below and a compound of Formula 301 below:





[0078] In Formula 300, Ar101 and Ar102 each independently may be a substituted or unsubstituted C6-C60 arylene group. In an embodiment, Ar101 and Ar102 each independently may be one of a phenylene group, a pentalenylene group, an indenylene group, a naphthylene group, an azulenylene group, a heptalenylene group, an acenaphthylene group, a fluorenylene group, a phenalenylene group, a phenanthrenylene group, an anthracenylene group, a fluoranthenylene group, a triphenylenylene group, a pyrenylenylene group, a chrysenylene group, a naphthacenylene group, a picenylene group, a perylenylene group, and a pentacenylene group; and a phenylene group, a pentalenylene group, an indenylene group, a naphthylene group, an azulenylene group, a heptalenylene group, an acenaphthylene group, a fluorenylene group, a phenalenylene group, a phenanthrenylene group, an anthracenylene group, a fluoranthenylene group, a triphenylenylene group, a pyrenylenylene group, a chrysenylene group, a naphthacenylene group, a picenylene group, a perylenylene group, and a pentacenylene group that are substituted with at least one of a deuterium atom, a halogen atom, a hydroxyl group, a nitro group, a cyano group, an amino group, an amidino group, hydrazine, hydrazone, a carboxyl group or salt thereof, a sulfuric acid group or salt thereof, a phosphoric acid group or salt thereof, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, a C3-C10 cycloalkyl group, a C3-C10 cycloalkenyl group, a C3-C10 heterocycloalkyl group, a C3-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, and a C2-C60 heteroaryl group.

[0079] In Formula 300, Xa and Xb each independently may be an integer from 0 to 5, for example, may be 0, 1, or 2. For example, Xa may be 1, and Xb may be 0.

[0080] In Formulae 300 and 301, R101 to R108, R111 to R119, and R121 to R124 each independently may be a hydrogen atom, a deuterium atom, a halogen atom, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine, a hydrazone, a carboxyl group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a substituted or unsubstituted C1-C60 alkyl group, a substituted or unsubstituted C2-C60 alkenyl group, a substituted or unsubstituted C2-C60 alkynyl group, a substituted or unsubstituted C1-C60 alkoxy group, a substituted or unsubstituted C3-C60 cycloalkyl group, a substituted or unsubstituted C5-C60 aryl group, a substituted or unsubstituted C5-C60 aryloxy group, or a C5-C60 arylthio group.

[0081] In an embodiment, R101 to R108, R111 to R119, and R121 to R124 each independently may be one of a hydrogen atom; a deuterium atom; a halogen atom; a hydroxyl group; a cyano group; a nitro group; an amino group; an amidino group; a hydrazine; a hydrazone; a carboxyl group or a salt thereof; a sulfonic acid group or a salt thereof; a phosphoric acid group or a salt thereof; a C1-C10 alkyl group (for example, a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, or the like); a C1-C10 alkoxy group (for example, a methoxy group, an ethoxy group, a propoxy group, a butoxy group, a pentoxy group, or the like); a C1-C10 alkyl group and a C1-C10 alkoxy group that are substituted with at least one of a deuterium atom, a halogen atom, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine, a hydrazone, a carboxyl group or a salt thereof, a sulfonic acid group or a salt thereof, and a phosphoric acid group or a salt thereof; a phenyl group; a naphthyl group; an anthryl group; a fluorenyl group; a pyrenyl group; and a phenyl group, a naphthyl group, an anthryl group, a fluorenyl group, and a pyrenyl group that are substituted with at least one of a deuterium atom, a halogen atom, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine, a hydrazone, a carboxyl group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C10 alkyl group, and a C1-C10 alkoxy group.

[0082] In Formula 300, R109 may be one of a phenyl group, a naphthyl group, an anthryl group, a biphenyl group, and a pyridyl group; and a phenyl group, a naphthyl group, an anthryl group, a biphenyl group, and a pyridyl group that are substituted with at least one of a deuterium atom, a halogen atom, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine, a hydrazone, a carboxyl group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a substituted or unsubstituted C1-C20 alkyl group, and a substituted or unsubstituted C1-C20 alkoxy group.

[0083] In an embodiment, the compound of Formula 300 may be a compound represented by Formula 300A below:



[0084] In Formula 300A, R101, R110 R121, and R109 may be as set forth above.

[0085] In an embodiment, at least one of the HIL, HTL, and H-functional layer may include, e.g., at least one of compounds represented by Formulae 301 to 320 below:















[0086] At least one of the HIL, HTL, and H-functional layer may further include a charge-generating material for improved layer conductivity, in addition to a suitable hole injecting material, hole transport material, and/or material having both hole injection and hole transport capabilities as described above.

[0087] The charge-generating material may be, for example, a p-dopant. The p-dopant may be, for example, one of quinine derivatives, metal oxides, and compounds with a cyano group. Examples of the p-dopant are quinone derivatives such as tetracyanoquinonedimethane (TCNQ), 2,3,5,6-tetrafluoro-tetracyano-1,4-benzoquinonedimethane (F4-TCNQ), and the like; metal oxides such as tungsten oxide, molybdenum oxide, and the like; and cyano-containing compounds such as Compound 200 below.



[0088] When the hole injection layer, hole transport layer, or H-functional layer further includes a charge-generating material, the charge-generating material may be homogeneously dispersed or unhomogeneously distributed in the layer.

[0089] A buffer layer may be disposed between at least one of the HIL, HTL, and H-functional layer, and the EML. The buffer layer may compensate for an optical resonance distance of light according to a wavelength of the light emitted from the EML, and thus may increase efficiency. The buffer layer may include a suitable hole injecting material or hole transporting material. In some other embodiments, the buffer layer may include the same material as one of the materials included in the HIL, HTL, and H-functional layer that underlie the buffer layer.

[0090] Then, an EML may be formed on the HTL, H-functional layer, or buffer layer by vacuum deposition, spin coating, casting, Langmuir-Blodget (LB) deposition, or the like. When the EML is formed using vacuum deposition or spin coating, the deposition and coating conditions may be similar to those for the formation of the HIL, though the conditions for deposition and coating may vary according to the material that is used to form the EML.

[0091] The EML may include the organometallic compound (as a dopant) represented by Formula 1A or Formula 1C above, and a host.

[0092] An amount of the dopant (i.e., the organometallic compound of Formula 1A or Formula 1C) in the EML may be selected from a range of, e.g., about 0.01 to about 15 parts by weight based on 100 parts by weight of the host.

[0093] The thickness of the EML may be from about 100 Å to about 1000 Å, and in an embodiment, may be from about 200 Å to about 600 Å. When the thickness of the EML is within these ranges, the EML may have good light emitting ability without a substantial increase in driving voltage.

[0094] A hole blocking layer (HBL) may be formed on the EML to prevent diffusion of triplet excitons or holes into the ETL. When the HBL is formed using vacuum deposition or spin coating, the conditions for deposition and coating may be similar to those for the formation of the HIL, although the conditions for deposition and coating may vary according to the material that is used to form the HBL. A suitable hole-blocking material may be used. Examples of hole-blocking materials are oxadiazole derivatives, triazole derivatives, and phenanthroline derivatives. For example, bathocuproine (BCP) represented by the following formula may be used as a material for forming the HBL.



[0095] The thickness of the HBL may be from about 200 Å to about 1000 Å, and in an embodiment, may be from about 30 Å to about 300 Å. When the thickness of the HBL is within these ranges, the HBL may have improved hole blocking ability without a substantial increase in driving voltage.

[0096] Then, an ETL may be formed on the HBL by a suitable method, for example, vacuum deposition, spin coating, or casting. When the ETL is formed using vacuum deposition or spin coating, the deposition and coating conditions may be similar to those for the formation of the HIL, though the deposition and coating conditions may vary according to a compound that is used to form the ETL. A material for forming the ETL may be a suitable material that can stably transport electrons injected from an electron injecting electrode (cathode). Examples of materials for forming the ETL are a quinoline derivative, such as tris(8-quinolinorate)aluminum (Alq3), TAZ, BAlq, beryllium bis(benzoquinolin-10-olate) (Bebq2), 9,10-di(naphthalene-2-yl)anthracene (ADN), Compound 201, and Compound 202.









[0097] The thickness of the ETL may be from about 100 Å to about 1000 Å, and in an embodiment, may be from about 150 Å to about 500 Å. When the thickness of the ETL is within these ranges, the ETL may have satisfactory electron transporting ability without a substantial increase in driving voltage.

[0098] In an embodiment the ETL may further include a metal-containing material, in addition to a suitable electron-transporting organic compound.

[0099] The metal-containing material may include a lithium (Li) compound. Examples of the Li compound are lithium quinolate (LiQ) and Compound 203 below:



[0100] Then, an EIL, which may facilitate injection of electrons from the cathode, may be formed on the ETL. A suitable electron-injecting material may be used to form the EIL.

[0101] Examples of materials for forming the EIL are LiF, NaCl, CsF, Li2O, and BaO. The deposition and coating conditions for forming the EIL may be similar to those for the formation of the HIL, though the deposition and coating conditions may vary according to the material that is used to form the EIL.

[0102] The thickness of the EIL may be from about 1Å to about 100 Å, and in an embodiment, may be from about 3Å to about 90Å. When the thickness of the EIL is within these ranges, the EIL may have satisfactory electron injection ability without a substantial increase in driving voltage.

[0103] A second electrode 17 may be disposed on the organic layer 15. The second electrode 17 may be a cathode that is an electron injection electrode. A material for forming the second electrode 17 may be a metal, an alloy, an electro-conductive compound, which may have a low work function, or a mixture thereof. In an embodiment, the second electrode 17 may be a transmission (e.g., transparent) electrode and may be formed using a thin film of Li, Mg, Al, Al-Li, Ca, Mg-In, Mg-Ag, or the like. In an embodiment, to manufacture a top-emission light-emitting device, the transmission electrode may be formed of indium tin oxide (ITO) or indium zinc oxide (IZO).

[0104] The above description of the organic light-emitting device illustrated in FIG. 1 is given by way of example.

[0105] The following Examples and Comparative Examples are provided in order to highlight characteristics of one or more embodiments.

[0106] Examples of the unsubstituted C1-C60 alkyl group used herein are linear or branched C1-C60 alkyl groups, such as methyl group, ethyl group, propyl group, isobutyl group, sec-butyl group, pentyl group, iso-amyl group, hexyl group, or the like. In the substituted C1-C60 alkyl group, at least one hydrogen atom of the unsubstituted C1-C60 alkyl group described above may be substituted with a deuterium atom, a halogen atom, a hydroxyl group, a nitro group, a cyano group, an amino group, an amidino group, a hydrazine, a hydrazone, a carboxyl group or salts thereof, a sulfonic acid group or salts thereof, a phosphoric acid group or salts thereof, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C6-C60 aryl group, a C2-C60 heteroaryl group,
-N(Q11)(Q12), or -Si(Q13)(Q14)(Q15), wherein Q1 to Q15 each independently may be selected from the group of a hydrogen atom, a C1-C60 alkyl group, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C5-C60 aryl group, and a C2-C60 heteroaryl group. The unsubstituted C1-C60 alkoxy group may be a group represented by -OA, wherein A is an unsubstituted C1-C60 alkyl group described above.

[0107] Examples of the unsubstituted C1-C60 alkoxy group are a methoxy group, an ethoxy group, and an isopropyloxy group. At least one of the hydrogen atoms in the alkoxy group may be substituted with the substituents described above in conjunction with the substituted C1-C60 alkyl group.

[0108] As used herein, the unsubstituted C2-C60 alkenyl group may be a hydrocarbon chain having a carbon-carbon double bond in the center or at a terminal of the unsubstituted C2-C60 alkyl group. Examples of the unsubstituted C2-C60 alkenyl group are ethenyl group, propenyl group, and butenyl groups. At least one hydrogen atom in the unsubstituted C2-C60 alkenyl group may be substituted with the substituents described in conjunction with the substituted C1-C60 alkyl group.

[0109] The unsubstituted C2-C60 alkynyl group may be a hydrocarbon chain having at least one carbon-carbon triple bond in the center or at a terminal thereof. Examples of the unsubstituted C2-C60 alkynyl group are an ethenyl group, a propenyl group, a butenyl group, and the like. At least one hydrogen atom in the alkynyl group may be substituted with the substituents described above in conjunction with the C1-C60 alkyl group.

[0110] The unsubstituted C6-C60 aryl group may be a monovalent group having a carbocyclic aromatic system having 6 to 60 carbon atoms including at least one aromatic ring. The unsubstituted C6-C60 arylene group may be a bivalent group having a carbocyclic aromatic system having 6 to 60 carbon atoms including at least one aromatic ring. When the aryl group and the arylene group have at least two rings, they may be fused to each other via a single bond. At least one hydrogen atom in the aryl group and the arylene group may be substituted with the substituents described above in conjunction with the C1-C60 alkyl group.

[0111] Examples of the substituted or unsubstituted C6-C60 aryl group are a phenyl group, a C1-C10 alkylphenyl group (e.g., an ethylphenyl group), a C1-C10 alkylbiphenyl group (e.g., an ethylbiphenyl group), a halophenyl group (e.g., an O-, m-, or p-fluorophenyl group and a dichlorophenyl group), a dicyanophenyl group, a trifluoromethoxyphenyl group, an O-, m-, or p-tolyl group, an O-, m- or p-cumenyl group, a mesityl group, a phenoxyphenyl group, a (α,α-dimethylbenzene)phenyl group, a (N,N'-dimethyl)aminophenyl group, a (N,N'-diphenyl)aminophenyl group, a pentalenyl group, an indenyl group, a naphthyl group, a halonaphthyl group (e.g., a fluoronaphthyl group), a C1-C10 alkylnaphthyl group (e.g., a methylnaphthyl group), a C1-C10 alkoxynaphthyl group (e.g., a methoxynaphthyl group), an anthracenyl group, an azulenyl group, a heptalenyl group, an acenaphthylenyl group, a phenalenyl group, a fluorenyl group, an anthraquinolyl group, a methylanthryl group, a phenanthryl group, a triphenylenyl group, a pyrenyl group, a chrysenyl group, an ethyl-chrysenyl group, a picenyl group, a perylenyl group, a chloroperylenyl group, a pentaphenyl group, a pentacenyl group, a tetraphenylenyl group, a hexaphenyl group, hexacenyl group, a rubicenyl group, a coronenyl group, a trinaphthylenyl group, a heptaphenyl group, a heptacenyl group, a pyranthrenyl group, and an ovalenyl group. Examples of the substituted C5-C60 aryl group may be inferred based on those of the unsubstituted C5-C60 aryl group and the substituted C1-C60 alkyl group described above. Examples of the substituted or unsubstituted C5-C60 arylene group may be inferred based on those examples of the substituted or unsubstituted C5-C60 aryl group described above.

[0112] The unsubstituted C2-C60 heteroaryl group may be a monovalent group having at least one aromatic ring having at least one of the heteroatoms selected from the group of N, O, P, and S. The unsubstituted C2-C60 heteroarylene group may be a divalent group having at least one aromatic ring having at least one of the heteroatoms selected from the group of N, O, P, and S. In this regard, when the heteroaryl group and the heteroarylene group have at least two rings, they may be fused to each other via a single bond. At least one hydrogen atom in the heteroaryl group and the heteroarylene group may be substituted with those substituents described above in conjunction with the C1-C60 alkyl group.

[0113] Examples of the unsubstituted C2-C60 heteroaryl group are a pyrazolyl group, an imidazolyl group, an oxazolyl group, a thiazolyl group, a triazolyl group, a tetrazolyl group, an oxadiazolyl group, a pyridinyl group, a pyridazinyl group, a pyrimidinyl group, a triazinyl group, a carbazolyl group, an indolyl group, a quinolinyl group, an isoquinolinyl group, a benzoimidazolyl group, an imidazopyridinyl group and an imidazopyrimidinyl group. Examples of the substituted C2-C60 heteroarylene group may be inferred based on those examples of the substituted or unsubstituted C2-C60 arylene group described above.

[0114] The substituted or unsubstituted C6-C60 aryloxy group may be -OA2 (wherein A2 may be a substituted or unsubstituted C6-C60 aryl group described above). The substituted or unsubstituted C5-C60 arylthio group may be -SA3 (wherein A3 may be a substituted or unsubstituted C6-C60 aryl group described above).

[Synthesis Examples]


Ligand 1(L1) to ligand 43(L43)



[0115] 


















Ligand Synthesis 1: Synthesis of ligand 1 L1)



[0116] Ligand 1(L1) was synthesized according to Reaction Scheme 1 below:


Synthesis of Intermediate 1(3)



[0117] Following adding 1.9 g (80.8 mmol) of NaH to 80 ml of dichlormethane, 5.0g (73.5 mmol) of pyrazole was added thereto at 0°C and then stirred for about 30 minutes. Afterward, 11.5 ml (80.8 mmol) of benzyl chloroformate dissolved in 30 ml of dichloromethane was dropwise added thereto at 0°C, and stirred for about 1 hour, then further at room temperature for about 3 hours. After completion of the reaction, 100 ml of saturated sodium hydrocarbonate was added thereto, followed by extraction with 50 ml of methylene chloride three times to obtain an organic layer, which was then dried using magnesium sulfate, followed by distillation under reduced pressure. The resulting product was separated and purified using column chromatography to obtain 12.6g (62.4 mmol, Yield: 85%) of Intermediate 1(3). This compound was identified using liquid chromatography-mass spectroscopy (LC-MS).

LC-MS m/z = 203 (M+H)+


Synthesis of Intermediate 1(2)



[0118] After dissolving 10.0g (49.5 mmol) of Intermediate 1(3) in 80 ml of anhydrous tetrahydrofuran, 25ml (2.2M in THF, 54.5 mmol) of n-BuLi was slowly added thereto at 0°C, and stirred at room temperature for about 1 hour. After 1 hour, the temperature was lowered to about -78°C, 12.0ml (59.4 mmol) of isopropyl pinacol borate was slowly added to the reaction mixture, and stirred at -78°C for about 15 minutes. Afterward, the temperature was slowly increased to 0°C, and the reaction mixture was further stirred for about 1 hour. After completion of the reaction, 100 ml of a saturated chloroammonium solution as added thereto, and extracted with 100 ml of dichloromethane to obtain an organic layer, which was then washed with 100 mL of distilled water twice and dried using magnesium sulfate, followed by distillation under reduced pressure to obtain 9.7g (29.7 mmol, Yield: 60%) of Intermediate 1(2).

LC-MS m/z = 329(M+H)+


Synthesis of Intermediate 1(1)



[0119] After dissolving 1.9 g (12.2mmol) of 4-bromopyrimidine in 120 ml of a mixed solvent of dioxolane and water (5:1) in a seal-tube, 5.0g (36.6 mmol) of potassium carbonate, 1.4g (1.2 mmol) of tetrakistriphenylphosphine Pd(0), and 8.0 g (24.4 mmol) of Intermediate 1(2) were added thereto. The resulting reaction mixture was stirred at 90°C for a day. After completion of the reaction, 100 ml of distilled water was added to the reaction product, followed by extraction with 100 ml of dichloromethane to obtain an organic layer, which was then dried using magnesium sulfate, and distilled under reduced pressure to obtain 2.0 g (7.3 mmol, Yield: 60%) of Intermediate 1(1).

LC-MS m/z = 280(M+H)+


Synthesis of ligand 1 (L1)



[0120] After dissolving 2.0 g (7.3 mmol) of Intermediate 1(1) in 60 ml of methanol at room temperature, 0.2g of Pd/C (10% w/w) was added thereto and stirred at room temperature for about 12 hours with hydrogen purging After completion of the reaction, Pd/C was removed using CELITE to obtain an organic layer, which was then concentrated under reduced pressure. The resulting product was separated and purified using column chromatography to obtain 1.0g (6.9 mmol, Yield: 95%) of ligand 1 (L1). This compound was identified using LC-MS.

LC-MS m/z = 203(M+H)+


Ligand Synthesis 2: Synthesis of ligand 2 (L2)



[0121] Ligand 2 (L2) was synthesized according to Reaction Scheme 2 below:


Synthesis of ligand 2 (L2)



[0122] After dissolving 2.0g (12.6 mmol) of 4-bromopyrimidine in 80 ml of 1,2-dimethoxyethane at room temperature, 1.4g (1.2 mmol) of tetrakistriphenylphosphine Pd(0), and 4.6g (18.9 mmol) of 1H-indazol-3-ylboronic acid pinacol ester were added thereto. The resulting reaction mixture was heated at about 90°C for about 18 hours under reflux. After completion of the reaction, 100 ml of distilled water was added to the reaction product, followed by extraction with 100 ml of dichloromethane to obtain an organic layer, which was then dried using magnesium sulfate, distilled under reduced pressure, and then separated and purified using column chromatography to obtain 1.1g (5.7 mmol, Yield: 45%) of ligand 2 (L2).

LC-MS m/z = 197(M+H)+


Ligand Synthesis 3: Synthesis of ligand 3 (L3)



[0123] Ligand 3 (L3) was synthesized according to Reaction Scheme 3 below:



[0124] 0.8g (3.2 mmol, Yield: 25%) of ligand 3 (L3) was synthesized in the same manner as in the synthesis of ligand 2 (L2) (Ligand Synthesis 2), except that 4-bromoquinazoline, instead of 4-bromopyrimidine, was used in synthesizing Ligand (L3).

LC-MS m/z = 197(M+H)+


Ligand Synthesis 4: Synthesis of ligand 4 (L4)



[0125] Ligand 4 (L4) was synthesized according to Reaction Scheme 4 below:


Synthesis of Intermediate 4(1)



[0126] Following adding 1.0g (43.4 mmol) of NaH to 80 ml of anhydrous tetrahydrofuran, 2.6 ml (34.8 mmol) of acetone was slowly added thereto at 0°C. After 1 hour, 4.0g (29.0 mmol) of pyrimidine-4-carboxylic acid methyl ester was slowly added thereto and heated under reflux at about 80°C for about 16 hours. After completion of the reaction, 30 ml of distilled water was added thereto, 2.5 ml of acetic was then slowly added and stirred at room temperature for about 30 minutes. After 30 minutes, the resulting product was extracted with 100 ml of dichloromethane five times to obtain an organic layer, which was dried using magnesium sulfate and distilled under reduced pressure. The resulting product was separated and purified using column chromatography to obtain 1.8g (11.0 mmol, Yield 38%) of Intermediate 4(1).

LC-MS m/z = 165(M+H)+


Synthesis of ligand 4 (L4)



[0127] After dissolving 1.8g (11.0 mmol) of Intermediate 4(1) in 30 ml of ethanol at room temperature, 1.6 ml (55.0mmol) of hydrazine hydrate was added thereto and heated under reflux at about 80°C for about 18 hours. After completion of the reaction, the reaction product was concentrated under reduced pressure and extracted with 80 ml of distilled water and 100 ml of dichloromethane to obtain an organic layer, which was then dried using magnesium sulfate, distilled under reduced pressure, and then separated and purified using column chromatography to obtain 1.5g (9.3 mmol, Yield: 88%) of ligand 4 (L4).

LC-MS m/z = 161(M+H)+


Ligand Synthesis 5: Synthesis of ligand 5 (L5)



[0128] Ligand 5 (L5) was synthesized according to Reaction Scheme 5 below:



[0129] Ligand 5 (L5) was synthesized in the same manner (Yield: 25%) as in the synthesis of ligand 4 (L4) (Ligand Synthesis 4), except that 3,3-methylbutane-2-one, instead of acetone, was used in synthesizing Intermediate 4(1).

LC-MS m/z = 189(M+H)+


Ligand Synthesis 6: Synthesis of ligand 6 (L6)



[0130] Ligand 6 (L6) was synthesized according to Reaction Scheme 6 below:



[0131] Ligand 6 (L6) was synthesized in the same manner (Yield: 21%) as in the synthesis of ligand 4 (L4) (Ligand Synthesis 4), except that 3,3-dimethylbutane-2-one, instead of acetone, was used in synthesizing Intermediate 4(1).

LC-MS m/z = 203(M+H)+


Ligand Synthesis 7: Synthesis of ligand 7 (L7)



[0132] Ligand 7 (L7) was synthesized according to Reaction Scheme 7 below:



[0133] Ligand 7 (L7) was synthesized in the same manner (Yield: 63%) as in the synthesis of ligand 4 (L4) (Ligand Synthesis 4), except that 1,1,1-trifluoropropan-2-one, instead of acetone, was used in synthesizing Intermediate 4(1).

LC-MS m/z = 215(M+H)+


Ligand Synthesis 8: Synthesis of ligand 8 (L8)



[0134] Ligand 8 (L8) was synthesized according to Reaction Scheme 8 below:



[0135] Ligand 8 (L8) was synthesized in the same manner (Yield: 35%) as in the synthesis of ligand 4 (L4) (Ligand Synthesis 4), except that cyclohexanone, instead of acetone, was used in synthesizing Intermediate 4(1).

LC-MS m/z = 201(M+H)+


Ligand Synthesis 9: Synthesis of ligand 9 (L9)



[0136] Ligand 9 (L9) was synthesized according to Reaction Scheme 9 below:



[0137] Ligand 9 (L9) was synthesized in the same manner (Yield: 43%) as in the synthesis of ligand 4 (L4) (Ligand Synthesis 4), except that 2,2-dimethylcyclohexanone, instead of acetone, was used in synthesizing Intermediate 4(1).

LC-MS m/z = 229(M+H)+


Ligand Synthesis 10: Synthesis of ligand 10 (L10)



[0138] Ligand 10 (L10) was synthesized according to Reaction Scheme 10 below:



[0139] Ligand 10 (L10) was synthesized in the same manner (Yield: 65%) as in the synthesis of ligand 4 (L4) (Ligand Synthesis 4), except that camper, instead of acetone, was used in synthesizing Intermediate 4(1).

LC-MS m/z = 254(M+H)+


Ligand Synthesis 11: Synthesis of ligand 11 (L11)



[0140] Ligand 11 (L11) was synthesized according to Reaction Scheme 11 below:



[0141] Ligand 11 (L11) was synthesized in the same manner (Yield: 17%) as in the synthesis of ligand 4 (L4) (Ligand Synthesis 4), except that methyl 6-methylpyrimidine-4-caboxylate, instead of pyrimidine-4-carboxylic acid methyl ester, was used in synthesizing Intermediate 4(1).

LC-MS m/z = 175(M+H)+


Ligand Synthesis 12: Synthesis of ligand 12 (L12)



[0142] Ligand 12 (L12) was synthesized according to Reaction Scheme 12 below:



[0143] Ligand 12 (L12) was synthesized in the same manner (Yield: 12%) as in the synthesis of ligand 6 (L6) (Ligand Synthesis 6), except that methyl 6-methylpyrimidine-4-caboxylate, instead of pyrimidine-4-carboxylic acid methyl ester, was used in synthesizing Intermediate 6(1).

LC-MS m/z = 217(M+H)+


Ligand Synthesis 13: Synthesis of ligand 13 (L13)



[0144] Ligand 13 (L13) was synthesized according to Reaction Scheme 13 below:



[0145] Ligand 13 (L13) was synthesized in the same manner (Yield: 35%) as in the synthesis of ligand 7 (L7) (Ligand Synthesis 7), except that methyl 6-methylpyrimidine-4-caboxylate, instead of pyrimidine-4-carboxylic acid methyl ester, was used in synthesizing Intermediate 7(1).

LC-MS m/z = 229(M+H)+


Ligand Synthesis 14: Synthesis of ligand 14 (L14)



[0146] Ligand 14 (L14) was synthesized according to Reaction Scheme 14 below:



[0147] Ligand 14 (L14) was synthesized in the same manner (Yield: 26%) as in the synthesis of ligand 9 (L9) (Ligand Synthesis 9), except that methyl 6-methylpyrimidine-4-caboxylate, instead of pyrimidine-4-carboxylic acid methyl ester, was used in synthesizing Intermediate 9(1).

LC-MS m/z = 243(M+H)+


Ligand Synthesis 15: Synthesis of ligand 15 (L15)



[0148] Ligand 15 (L15) was synthesized according to Reaction Scheme 15 below:





[0149] Ligand 15 (L15) was synthesized in the same manner (Yield: 35%) as in the synthesis of ligand 10 (L10) (Ligand Synthesis 10), except that methyl 6-methylpyrimidine-4-caboxylate, instead of pyrimidine-4-carboxylic acid methyl ester, was used in synthesizing Intermediate 10(1).

LC-MS m/z = 269(M+H)+


Ligand Synthesis 16: Synthesis of ligand 16 (L16)



[0150] Ligand 16 (L16) was synthesized according to Reaction Scheme 16 below:



[0151] Ligand 16 (L16) was synthesized in the same manner (Yield: 14%) as in the synthesis of ligand 4 (L4) (Ligand Synthesis 4), except that methyl 6-methoxypyrimidine-4-carboxylate, instead of pyrimidine-4-carboxylic acid methyl ester, was used in synthesizing Intermediate 4(1).

LC-MS m/z = 191 (M+H)+


Ligand Synthesis 17: Synthesis of ligand 17 (L17)



[0152] Ligand 17 (L17) was synthesized according to Reaction Scheme 17 below:



[0153] Ligand 17 (L17) was synthesized in the same manner (Yield: 12%) as in the synthesis of ligand 6 (L6) (Ligand Synthesis 6), except that methyl 6-methoxypyrimidine-4-carboxylate, instead of pyrimidine-4-carboxylic acid methyl ester, was used in synthesizing Intermediate 6(1).

LC-MS m/z = 233(M+H)+


Ligand Synthesis 18: Synthesis of ligand 18 (L18)



[0154] Ligand 18 (L18) was synthesized according to Reaction Scheme 18 below:



[0155] Ligand 18 (L18) was synthesized in the same manner (Yield: 25%) as in the synthesis of ligand 7 (L7) (Ligand Synthesis 7), except that methyl 6-methoxypyrimidine-4-carboxylate, instead of pyrimidine-4-carboxylic acid methyl ester, was used in synthesizing Intermediate 7(1).

LC-MS m/z = 245(M+H)+


Ligand Synthesis 19: Synthesis of ligand 19 (L19)



[0156] Ligand 19 (L19) was synthesized according to Reaction Scheme 19 below:



[0157] Ligand 19 (L19) was synthesized in the same manner (Yield: 22%) as in the synthesis of ligand 9 (L9) (Ligand Synthesis 9), except that methyl 6-methoxypyrimidine-4-carboxylate, instead of pyrimidine-4-carboxylic acid methyl ester, was used in synthesizing Intermediate 9(1).

LC-MS m/z = 259(M+H)+


Ligand Synthesis 20: Synthesis of ligand 20 (L20)



[0158] Ligand 20 (L20) was synthesized according to Reaction Scheme 20 below:



[0159] Ligand 20 (L20) was synthesized in the same manner (Yield: 30%) as in the synthesis of ligand 10 (L10) (Ligand Synthesis 10), except that methyl 6-methoxypyrimidine-4-carboxylate, instead of pyrimidine-4-carboxylic acid methyl ester, was used in synthesizing Intermediate 10(1).

LC-MS m/z = 285(M+H)+


Ligand Synthesis 21: Synthesis of ligand 21 (L21)



[0160] Ligand 21 (L21) was synthesized according to Reaction Scheme 21 below:



[0161] Ligand 21 (L21) was synthesized in the same manner (Yield: 26%) as in the synthesis of ligand 4 (L4) (Ligand Synthesis 4), except that methyl 6-(trifluoromethyl)pyrimidine-4-carboxylate, instead of pyrimidine-4-carboxylic acid methyl ester, was used in synthesizing Intermediate 4(1).

LC-MS m/z = 229(M+H)+


Ligand Synthesis 22: Synthesis of ligand 22 (L22)



[0162] Ligand 22 (L22) was synthesized according to Reaction Scheme 22 below:



[0163] Ligand 22 (L22) was synthesized in the same manner (Yield: 24%) as in the synthesis of ligand 6 (L6) (Ligand Synthesis 6), except that methyl 6-(trifluoromethyl)pyrimidine-4-carboxylate, instead of pyrimidine-4-carboxylic acid methyl ester, was used in synthesizing Intermediate 6(1).

LC-MS m/z = 271 (M+H)+


Ligand Synthesis 23: Synthesis of ligand 23 (L23)



[0164] Ligand 23 (L23) was synthesized according to Reaction Scheme 23 below:



[0165] Ligand 23 (L23) was synthesized in the same manner (Yield: 37%) as in the synthesis of ligand 7 (L7) (Ligand Synthesis 7), except that methyl 6-(trifluoromethyl)pyrimidine-4-carboxylate, instead of pyrimidine-4-carboxylic acid methyl ester, was used in synthesizing Intermediate 7(1).

LC-MS m/z = 283(M+H)+


Ligand Synthesis 24: Synthesis of ligand 24 (L24)



[0166] Ligand 24 (L24) was synthesized according to Reaction Scheme 24 below:



[0167] Ligand 24 (L24) was synthesized in the same manner (Yield: 42%) as in the synthesis of ligand 10 (L10) (Ligand Synthesis 10), except that methyl 6-(trifluoromethyl)pyrimidine-4-carboxylate, instead of pyrimidine-4-carboxylic acid methyl ester, was used in synthesizing Intermediate 10(1).

LC-MS m/z = 323(M+H)+


Ligand Synthesis 25: Synthesis of ligand 25 (L25)



[0168] Ligand 25 (L25) was synthesized according to Reaction Scheme 25 below:



[0169] Ligand 25 (L25) was synthesized in the same manner (Yield: 17%) as in the synthesis of ligand 6 (L6) (Ligand Synthesis 6), except that methyl 2-methylpyrimidine-4-caboxylate, instead of pyrimidine-4-carboxylic acid methyl ester, was used in synthesizing Intermediate 6(1).

LC-MS m/z = 217(M+H)+


Ligand Synthesis 26: Synthesis of ligand 26 (L26)



[0170] Ligand 26 (L26) was synthesized according to Reaction Scheme 26 below:



[0171] Ligand 26 (L26) was synthesized in the same manner (Yield: 22%) as in the synthesis of ligand 7 (L7) (Ligand Synthesis 7), except that methyl 2-methylpyrimidine-4-caboxylate, instead of pyrimidine-4-carboxylic acid methyl ester, was used in synthesizing Intermediate 7(1).

LC-MS m/z = 229(M+H)+


Ligand Synthesis 27: Synthesis of ligand 27 (L27)



[0172] Ligand 27 (L27) was synthesized according to Reaction Scheme 27 below:


Synthesis of Intermediate 27(1)



[0173] Following adding 1.9g (19.3 mmol) of NatOBu (sodium t-butoxide) to 50 ml of anhydrous tetrahydrofuran, 2.2 g (17.5 mmol) of 2,2-dimethyl-3-pentanone was slowly added thereto at 0°C. After heating the mixture at about 60°C for about 2 hours, 2.2g (15.7 mmol) of pyrimidine-4-carboxylic acid methyl ester was slowly added thereto and heated under reflux at about 80°C for about 12 hours. After completion of the reaction, 50 ml of distilled water was added, and a 4N diluted hydrochloric acid was added for neutralization, followed by extraction with 100 ml of dichloromethane about three times to obtain an organic layer, which was then dried using magnesium sulfate, distilled under reduced pressure, and then separated and purified using column chromatography to obtain 0.6g (2.5 mmol, Yield: 16%) of Intermediate 27(1).

LC-MS m/z = 223(M+H)+


Synthesis of ligand 27 (L17)



[0174] After dissolving 0.5g (2.5 mmol) of Intermediate 27(1) in 10 ml of ethanol at room temperature, 0.7ml (55.0mmol) of hydrazine hydrate was added thereto and heated under reflux at about 80°C for about 18 hours. After completion of the reaction, the reaction product was concentrated under reduced pressure and extracted with 30 ml of distilled water and 50 ml of dichloromethane to obtain an organic layer, which was then dried using magnesium sulfate and distilled under reduced pressure. The resulting product was separated and purified using column chromatography to obtain 0.4g (2.1 mmol, Yield: 85%) of ligand 27 (L27).

LC-MS m/z = 217(M+H)+


Ligand Synthesis 28: Synthesis of ligand 28 (L28)



[0175] Ligand 28 (L28) was synthesized according to Reaction Scheme 28 below:



[0176] Ligand 28 (L28) was synthesized in the same manner (Yield: 12%) as in the synthesis of ligand 27 (L27) (Ligand Synthesis 27), except that 2,2,5,5-tetramethylhexan-3-one, instead of 2,2-dimethyl-3-pentanone, was used in synthesizing Intermediate 27(1).

LC-MS m/z = 259(M+H)+


Ligand Synthesis 29: Synthesis of ligand 29 (L29)



[0177] Ligand 29 (L29) was synthesized according to Reaction Scheme 29 below:



[0178] Ligand 29 (L29) was synthesized in the same manner (Yield: 9%) as in the synthesis of ligand 27 (L27) (Ligand Synthesis 27), except that 2,2-dimethyl-4-(trifluoromethyl)-butanone, instead of 2,2-dimethyl-3-pentanone, was used in synthesizing Intermediate 27(1).

LC-MS m/z = 271 (M+H)+


Ligand Synthesis 30: Synthesis of ligand 30 (L30)



[0179] Ligand 30 (L30) was synthesized according to Reaction Scheme 30 below:



[0180] Ligand 30 (L30) was synthesized in the same manner (Yield: 10%) as in the synthesis of ligand 27 (L27) (Ligand Synthesis 27), except that 1,4,-di(trifluoromethyl)-2-butanone, instead of 2,2,-dimethyl-3-pentanone, was used in synthesizing Intermediate 27(1).

LC-MS m/z = 283(M+H)+


Ligand Synthesis 31: Synthesis of ligand 31 (L31)



[0181] Ligand 31 (L31) was synthesized according to Reaction Scheme 31 below:


Synthesis of Intermediate 31(2)



[0182] Following dissolving 25.0g (143.6 mmol) of 4-quinazoline-carboxylic acid in 100 ml of methanol, 5 ml of sulfuric acid (conc.) was added thereto, and heated under reflux at about 80°C for about 18 hours. After completion of the reaction, the reaction mixture was concentrated under reduced pressure, and then dissolved in 100 ml of dichloromethane. A saturated sodium hydrocarbonate solution was slowly added thereto at 0°C for basification, followed by extraction to obtain an organic layer, which was then dried using magnesium sulfate, and distilled under reduced pressure to obtain 26.0g (137.8 mmol, Yield: 96%) of Intermediate 31(2).

LC-MS m/z = 189(M+H)+


Synthesis of Intermediate 31(1)



[0183] Following adding 1.0g (43.4 mmol) of NaH to 80 ml of anhydrous tetrahydrofuran, 2.6 ml (34.8 mmol) of acetone was slowly added thereto at 0°C. After 1 hour, 5.5g (29.0 mmol) of Intermediate 31(2) was slowly added thereto and heated under reflux at about 80°C for about 16 hours. After completion of the reaction, 30 ml of distilled water was added, and a 4N diluted hydrochloric acid solution was slowly added thereto for neutralization. The resulting neutralized reaction mixture was extracted with 100 ml of dichloromethane about five times to obtain an organic layer, which was dried using magnesium sulfate and distilled under reduced pressure. The resulting product was separated and purified using column chromatography to obtain 3.3g (15.1 mmol, Yield 52%) of Intermediate 31(1).

LC-MS m/z = 215(M+H)+


Synthesis of ligand 31 (L31)



[0184] After dissolving 3.0g (13.9 mmol) of Intermediate 31(1) in 50 ml of ethanol at room temperature, 4.0ml (140.0mmol) of hydrazine hydrate was added thereto and heated under reflux at about 80°C for about 18 hours. After completion of the reaction, the reaction product was concentrated under reduced pressure and extracted with 80 ml of distilled water and 100 ml of dichloromethane to obtain an organic layer, which was then dried using magnesium sulfate, distilled under reduced pressure, and then separated and purified using column chromatography to obtain 2.2g (10.4 mmol, Yield: 75%) of ligand 31 (L31).

LC-MS m/z = 211 (M+H)+


Ligand Synthesis 32: Synthesis of ligand 32 (L32)



[0185] Ligand 32 (L32) was synthesized according to Reaction Scheme 32 below:



[0186] Ligand 32 (L32) was synthesized in the same manner (Yield: 25%) as in the synthesis of ligand 31 (L31) (Ligand Synthesis 31), except that 3,3-dimethylbutane-2-one, instead of acetone, was used in synthesizing Intermediate 31(1).

LC-MS m/z = 253(M+H)+


Ligand Synthesis 33: Synthesis of ligand 33 (L33)



[0187] Ligand 33 (L33) was synthesized according to Reaction Scheme 33 below:



[0188] Ligand 33 (L33) was synthesized in the same manner (Yield: 22%) as in the synthesis of ligand 31 (L31) (Ligand Synthesis 31), except that 1,1,1-trifluoropropan-2-one, instead of acetone, was used in synthesizing Intermediate 31(1).

LC-MS m/z = 265(M+H)+


Ligand Synthesis 34: Synthesis of ligand 34 (L31)



[0189] Ligand 34 (L34) was synthesized according to Reaction Scheme 34 below:

<Reaction Scheme 34>



[0190] 



[0191] Ligand 34 (L34) was synthesized in the same manner (Yield: 20%) as in the synthesis of ligand 31 (L31) (Ligand Synthesis 31), except that cyclohexanone, instead of acetone, was used in synthesizing Intermediate 31(1).

LC-MS m/z = 251 (M+H)+


Ligand Synthesis 35: Synthesis of ligand 35 (L35)



[0192] Ligand 35 (L35) was synthesized according to Reaction Scheme 35 below:



[0193] Ligand 35 (L35) was synthesized in the same manner (Yield: 22%) as in the synthesis of ligand 31 (L31) (Ligand Synthesis 31), except that 2,2-dimethylbutane-2-one, instead of acetone, was used in synthesizing Intermediate 31(1).

LC-MS m/z = 279(M+H)+


Ligand Synthesis 36: Synthesis of ligand 36 (L36)



[0194] Ligand 36 (L36) was synthesized according to Reaction Scheme 36 below:



[0195] Ligand 36 (L36) was synthesized in the same manner (Yield: 22%) as in the synthesis of ligand 31 (L31) (Ligand Synthesis 31), except that camphor, instead of acetone, was used in synthesizing Intermediate 31(1).

LC-MS m/z = 305(M+H)+


Ligand Synthesis 37: Synthesis of ligand 37 (L37)



[0196] Ligand 37 (L37) was synthesized according to Reaction Scheme 37 below:



[0197] Ligand 37 (L37) was synthesized in the same manner (Yield: 18%) as in the synthesis of ligand 31 (L31) (Ligand Synthesis 31), except that 2,2-dimethylbutane-3-one, instead of acetone, was used in synthesizing Intermediate 31(1).

LC-MS m/z = 267(M+H)+


Ligand Synthesis 38: Synthesis of ligand 38 (L38)



[0198] Ligand 38 (L38) was synthesized according to Reaction Scheme 38 below:



[0199] Ligand 38 (L38) was synthesized in the same manner (Yield: 20%) as in the synthesis of ligand 31 (L31) (Ligand Synthesis 31), except that 2,2-dimethyl-4-(trifluoromethyl)butan-3-one, instead of acetone, was used in synthesizing Intermediate 31(1).

LC-MS m/z = 321(M+H)+


Ligand Synthesis 39: Synthesis of ligand 39 (L39)



[0200] Ligand 39 (L39) was synthesized according to Reaction Scheme 39 below:


Synthesis of Intermediate 39(4)



[0201] Following adding 2.1g (86.8 mmol) of NaH to 120 ml of anhydrous tetrahydrofuran, 8.7 ml (69.6 mmol) of 1,1,1-trifluoropropan-2-one was slowly added thereto at 0°C. After 1 hour, 12.6g (58.0 mmol) of methyl 2-bromopyrimidine-4-carboxylate was slowly added thereto and heated under reflux at about 80°C for about 16 hours. After completion of the reaction, 100 ml of distilled water was added, and a 1 N diluted hydrochloric acid solution was slowly added thereto and stirred at room temperature for about 30 minutes until the reaction mixture was neutralized. After 30 minutes, the resulting product was extracted with 100 ml of dichloromethane about five times to obtain an organic layer, which was then dried using magnesium sulfate and distilled under reduced pressure. The resulting product was separated and purified using column chromatography to obtain 5.3g (18.6 mmol, Yield 32%) of Intermediate 39(4).

LC-MS m/z = 297(M+H)+


Synthesis of Intermediate 39(3)



[0202] After dissolving 3.0g (10.4 mmol) of Intermediate 39(4) in 30 ml of ethanol at room temperature, 2.6ml (100.0mmol) of hydrazine hydrate was added thereto and heated under reflux at about 80°C for about 18 hours. After completion of the reaction, the reaction product was concentrated under reduced pressure, and then extracted with 80 ml of distilled water and 100 ml of dichloromethane to obtain an organic layer, which was then dried using magnesium sulfate and distilled under reduced pressure. The resulting product was separated and purified using column chromatography to obtain 2.1g (7.5 mmol, Yield 72%) of Intermediate 39(3).

LC-MS m/z = 293(M+H)+


Synthesis of Intermediate 39(2)



[0203] Following adding 0.2g (9.0 mmol) of NaH to 120 ml of anhydrous tetrahydrofuran, 2.1 g (7.5 mmol) of Intermediate 39(2) was slowly added thereto at 0°C. After 30 minutes, 1.5 ml (8.3 mmol) of 2-(trimethylsilyl)ethoxymethyl chloride was slowly added thereto and stirred at room temperature for about two days. After completion of the reaction, the reaction product was extracted with 100 ml of distilled water and 100 ml of dichloromethane to obtain an organic layer, which was then dried using magnesium sulfate and distilled under reduced pressure. The resulting product was separated and purified using column chromatography to obtain 2.7g (6.6 mmol, Yield 88%) of Intermediate 39(2).

LC-MS m/z = 423(M+H)+


Synthesis of Intermediate 39(1)



[0204] Following dissolving 2.7g (6.6 mmol) of Intermediate 39(2) in 60 ml of toluene, 0.05g (0.05 mmol) of tris(dibenzylideneacetone)dipalladium(0), 0.2 ml (2.6 mmol) of aniline, 0.06g (0.1 mmol) of 1,1'-bis(diphenylphospino)ferrocene, and 0.6g (6.6 mmol) of sodium t-butoxide were added thereto, and then heated under reflux at about 120°C for about 16 hours. After completion of the reaction, the reaction product was extracted with 100 ml of distilled water and 200 ml of ethyl acetate to obtain an organic layer, which was then dried using magnesium sulfate and distilled under reduced pressure. The resulting product was separated and purified using column chromatography to obtain 2.6g (3.4 mmol, Yield 52%) of Intermediate 39(1).

LC-MS m/z = 778(M+H)+


Synthesis of ligand 39 (L39)



[0205] After dissolving 2.0g (2.7 mmol) of Intermediate 39(1) in 30 ml of ethanol at room temperature, 50 ml of a 4N diluted hydrochloric acid solution was added thereto and heated under reflux at about 80°C for about 18 hours. After completion of the reaction, the reaction product was concentrated under reduced pressure, and then extracted with 200 ml of dichloromethane to obtain an organic layer, which was then dried using magnesium sulfate and distilled under reduced pressure. The resulting product was separated and purified using column chromatography to obtain 1.1g (2.4 mmol, Yield 90%) of ligand 39 (L39).

LC-MS m/z = 518(M+H)+


Ligand Synthesis 40: Synthesis of ligand 40 (L40)



[0206] Ligand 40 (L40) was synthesized according to Reaction Scheme 40 below:


Synthesis of Intermediate 40(2)



[0207] After dissolving 5.0g (47.6 mmol) of 2-cyanopyrimidine in 100 ml of ethanol at room temperature, 20ml (475.7 mmol) of hydrazine hydrate was added thereto and stirred at room temperature for about two days. After completion of the reaction, the reaction product was concentrated under reduced pressure, and then extracted with 100 ml of salt water and 200 ml of dichloromethane to obtain an organic layer, which was then dried using magnesium sulfate and distilled under reduced pressure. The resulting product was separated and purified using column chromatography to obtain 3.0g (21.9 mmol, Yield 46%) of Intermediate 40(2).

LC-MS m/z = 138(M+H)+


Synthesis of Intermediate 40(1)



[0208] Following dissolving 40(2) 2.9 g (21.6 mmol) of Intermediate 40(2) in 120 ml of anhydrous tetrahydrofuran and 40 ml of distilled water at room temperature, 2.7 g (32.1 mmol) of sodium hydrocarbonate was added to the reaction mixture at room temperature and stirred for about 30 minutes. After 30 minutes, 3.2 ml (25.9 mmol) of trimethyl ethylchloride was slowly added thereto at 0°C and stirred at room temperature for about 16 hours. After completion of the reaction, the reaction product was extracted with 100 ml of distilled water and 200 ml of dichloromethane to obtain an organic layer, which was then dried using magnesium sulfate and distilled under reduced pressure. The resulting product was separated and purified using column chromatography to obtain 1.2g (5.4 mmol, Yield 25%) of Intermediate 40(1).

LC-MS m/z = 222(M+H)+


Synthesis of ligand 40 (L40)



[0209] After dissolving 1.2g (5.4 mmol) of Intermediate 40(1) in 30 ml of ethylene glycol at room temperature, the resulting solution was heated under reflux at about 190°C for about 4 hours. The resulting product was dissolved in 30 ml of ethanol, and 50 ml of a 4N diluted hydrochloric acid solution was added thereto and heated under reflux at about 80°C for about 18 hours. After completion of the reaction, the reaction product was extracted with 100 ml of distilled water and 200 ml of dichloromethane to obtain an organic layer, which was then dried using magnesium sulfate and distilled under reduced pressure. The resulting product was separated and purified using column chromatography to obtain 0.7g (3.4 mmol, Yield 64%) of ligand 40 (L40).

LC-MS m/z = 204(M+H)+


Ligand Synthesis 41: Synthesis of ligand 41 (L41)



[0210] Ligand 41 (L41) was synthesized in the same manner (Yield: 19%) as in the synthesis of ligand 30 (L30) (Ligand Synthesis 30), except that methyl 6-methylpyrimidine-4-caboxylate, instead of methyl pyrimidine-4-carboxylate, was used in synthesizing Intermediate 30(1).

LC-MS m/z = 297(M+H)+


Ligand Synthesis 42: Synthesis of ligand 42 (L42)



[0211] Ligand 42 (L42) was synthesized in the same manner (Yield: 9%) as in the synthesis of ligand 39 (L39) (Ligand Synthesis 39), except that 3,3-dimethylbutan-2-one, instead of 1,1,1-trifluoropropan-2-one, was used in synthesizing Intermediate 39(4).

LC-MS m/z = 494(M+H)+


Ligand Synthesis 43: Synthesis of ligand 43 (L43)



[0212] Ligand 43 (L43) was synthesized in the same manner (Yield: 7%) as in the synthesis of ligand 39 (L39) (Ligand Synthesis 39), except that 3,3-dimethylbutan-2-one, instead of 1,1,1-trifluoropropan-2-one, was used in synthesizing Intermediate 39(4), and p-toluidine, instead of aniline, was used in synthesizing intermediate 39(1).

LC-MS m/z = 508(M+H)+


Synthesis Example 1: Synthesis of Compound 1



[0213] Compound 1 was synthesized according to Reaction Scheme 41 below:



[0214] After dissolving 1.0g (6.8 mmol) of ligand 1 (L1) in 50 ml of an aqueous ethanol solution at room temperature, 1.4 g (3.4 mmol) of K2PtCl4 was added thereto and heated under reflux at about 100°C for about 18 hours. After 18 hours, the reaction product was cooled to 0°C to obtain a solid product, which was then filtered. The filtrated solid was rinsed with 80 ml of hot water and then with 50 ml of hot ethanol. The resulting product was separated and purified using column chromatography, and further purified by sublimation to obtain 0.6g (1.2 mmol, Yield 19%) of Compound 1.

LC-MS m/z = 486(M+H)+



[0215] 1H NMR(300MHz, CDCl3) σ= 10.72(s, 1H), 8.84(d, 1H), 7.72 (d, 1H), 7.53(d, 2H), 6.36(d, 1 H)

Synthesis Example 2: Synthesis of Compound 2



[0216] Compound 2 (Yield 22%) was synthesized in the same manner as in Synthesis Example 1, except that ligand 4 (L4), instead of ligand 1 (L1), was used.

LC-MS m/z = 514(M+H)+



[0217] 1H NMR(300MHz, CDCl3) σ = 10.97(s, 1H), 8.68(d, 1H), 7.47(d, 1H), 6.58(s, 1H), 2.92(s, 3H)

Synthesis Example 3: Synthesis of Compound 3



[0218] Compound 3 (Yield 42%) was synthesized in the same manner as in Synthesis Example 1, except that ligand 5 (L5), instead of ligand 1 (L1), was used.

LC-MS m/z = 570(M+H)+



[0219] 1H NMR(300MHz, CDCl3) σ = 11.00(s, 1H), 8.71 (d, 1H), 7.32(d, 1H), 6.72(s, 1H), 3.72(m, 1 H), 1.28(d, 6H)

[0220] Synthesis Example 4: Synthesis of Compound 4

[0221] Compound 4 (Yield 35%) was synthesized in the same manner as in Synthesis Example 1, except that ligand 6 (L6), instead of ligand 1 (L1), was used.

LC-MS m/z = 598(M+H)+



[0222] 1H NMR(300MHz, CDCl3) σ= 11.10(s, 1H), 8.73(d, 1H), 7.56(d, 1H), 6.64(s, 1H), 1.43(s, 9H)

Synthesis Example 5: Synthesis of Compound 5



[0223] Compound 5 (Yield 32%) was synthesized in the same manner as in Synthesis Example 1, except that ligand 7 (L7), instead of ligand 1 (L1), was used.

LC-MS m/z = 622(M+H)+



[0224] 1H NMR(300MHz, CDCl3) = 11.07(s, 1 H), 8.81 (d, 1 H), 7.61(d, 1 H), 6.14(s, 1 H)

Synthesis Example 6: Synthesis of Compound 6



[0225] Compound 6 (Yield 29%) was synthesized in the same manner as in Synthesis Example 1, except that ligand 8 (L8), instead of ligand 1 (L1), was used.

LC-MS m/z = 594(M+H)+



[0226] 1H NMR(300MHz, CDCl3) σ= 10.96(s, 1H), 9.17(d, 1H), 8.17(d, 1H), 2.76(brs, 2H), 2.72(br s, 2H), 1.79-1.73(br s, 4H)

Synthesis Example 7: Synthesis of Compound 7



[0227] Compound 7 (Yield 28%) was synthesized in the same manner as in Synthesis Example 1, except that ligand 9 (L9), instead of ligand 1 (L1), was used.

LC-MS m/z = 650(M+H)+



[0228] 1H NMR(300MHz, CDCl3) σ = 11.01(s, 1H), 9.26(d, 1H), 8.32(d, 1H), 2.71 (br s, 2H), 1.82(br s, 2H), 1.54(br s, 2H), 1.38(s, 6H)

Synthesis Example 8: Synthesis of Compound 8



[0229] Compound 8 (Yield 17%) was synthesized in the same manner as in Synthesis Example 1, except that ligand 10 (L10), instead of ligand 1 (L1), was used.

LC-MS m/z = 702(M+H)+



[0230] 1H NMR(300MHz, CDCl3) σ = 11.03(s, 1H), 9.23(d, 1H), 8.37(d, 1H), 2.77(br s, 1H), 1.68∼1.62(m, 4H), 1.47(s, 3H), 1.01(s, 6H)

Synthesis Example 9: Synthesis of Compound 9



[0231] Compound 9 (Yield 36%) was synthesized in the same manner as in Synthesis Example 1, except that ligand 11 (L11), instead of ligand 1 (L1), was used.

LC-MS m/z = 542(M+H)+



[0232] 1H NMR(300MHz, CDCl3) σ = 10.36(s, 1H), 8.48(s, 1H), 6.21(s, 1H), 2.36(s, 3H), 2.33(s, 6H)

Synthesis Example 10: Synthesis of Compound 10



[0233] Compound 10 (Yield 48%) was synthesized in the same manner as in Synthesis Example 1, except that ligand 12 (L12), instead of ligand 1 (L1), was used.

LC-MS m/z = 626(M+H)+



[0234] 1H NMR(300MHz, CDCl3) σ = 10.34(s, 1H), 8.42(s, 1H), 6.01(s, 1H), 2.32(s, 3H), 1.36(s, 9H)

Synthesis Example 11: Synthesis of Compound 11



[0235] Compound 11 (Yield 42%) was synthesized in the same manner as in Synthesis Example 1, except that ligand 13 (L13), instead of ligand 1 (L1), was used.

LC-MS m/z = 650(M+H)+



[0236] 1H NMR(300MHz, CDCl3) σ = 10.41 (s, 1 H), 8.19(s, 1 H), 6.02(s, 1 H), 2.33(s, 3H)

Synthesis Example 12: Synthesis of Compound 12



[0237] Compound 12 (Yield 49%) was synthesized in the same manner as in Synthesis Example 1, except that ligand 14 (L14), instead of ligand 1 (L1), was used.

LC-MS m/z = 678(M+H)+



[0238] 1H NMR(300MHz, CDCl3) σ= 10.34(s, 1 H), 8.36(s, 1 H), 2.77(br s, 2H), 2.29(s, 3H), 1.82(br s, 2H), 1.55(br s, 2H), 1.36(s, 6H)

Synthesis Example 13: Synthesis of Compound 13



[0239] Compound 13 (Yield 36%) was synthesized in the same manner as in Synthesis Example 1, except that ligand 15 (L15), instead of ligand 1 (L1), was used.

LC-MS m/z = 730(M+H)+



[0240] 1H NMR(300MHz, CDCl3) σ = 10.31(s, 1H), 8.28(s, 1H), 2.82(br s, 1H), 2.31(s, 1H), 1.66∼1.62(m, 4H), 1.45(s, 3H), 0.99(s, 6H)

Synthesis Example 14: Synthesis of Compound 14



[0241] Compound 14 (Yield 28%) was synthesized in the same manner as in Synthesis Example 1, except that ligand 16 (L16), instead of ligand 1 (L1), was used.

LC-MS m/z = 574(M+H)+



[0242] 1H NMR(300MHz, CDCl3) σ = 10.06(s, 1H), 7.84(s, 1H), 6.36(s, 1H), 3.65(s, 3H), 2.21 (s, 3H)

Synthesis Example 15: Synthesis of Compound 15



[0243] Compound 15 (Yield 34%) was synthesized in the same manner as in Synthesis Example 1, except that ligand 17 (L17), instead of ligand 1 (L1), was used.

LC-MS m/z = 658(M+H)+



[0244] 1H NMR(300MHz, CDCl3) σ = 10.00(s, 1H), 7.69(s, 1H), 6.12(s, 1H), 3.67(s, 3H), 1.42(s, 9H)

Synthesis Example 16: Synthesis of Compound 16



[0245] Compound 16 (Yield 27%) was synthesized in the same manner as in Synthesis Example 1, except that ligand 18 (L18), instead of ligand 1 (L1), was used.

LC-MS m/z = 682(M+H)+



[0246] 1H NMR(300MHz, CDCl3) σ = 10.13(s, 1H), 7.42(s, 1H), 6.02(s, 1H), 3.80(s, 3H)

Synthesis Example 17: Synthesis of Compound 17



[0247] Compound 17 (Yield 22%) was synthesized in the same manner as in Synthesis Example 1, except that ligand 19 (L19), instead of ligand 1 (L1), was used.

LC-MS m/z = 694(M+H)+



[0248] 1H NMR(300MHz, CDCl3) σ = 10.03(s, 1 H), 7.76(s, 1 H), 3.83(s, 3H), 2.76(s, 2H), 1.76(br s, 2H), 1.54(br s, 2H), 1.36(s, 6H)

Synthesis Example 18: Synthesis of Compound 18



[0249] Compound 18 (Yield 19%) was synthesized in the same manner as in Synthesis Example 1, except that ligand 20 (L20), instead of ligand 1 (L1), was used.

LC-MS m/z = 762(M+H)+



[0250] 1H NMR(300MHz, CDCl3) σ = 10.10(s, 1H), 7.81(s, 1H), 3.81(s, 3H), 2.72(br s, 1H), 1.69∼1.65(m, 4H), 1.43(s, 3H), 0.99(s, 6H)

Synthesis Example 19: Synthesis of Compound 19



[0251] Compound 19 (Yield 21%) was synthesized in the same manner as in Synthesis Example 1, except that ligand 21 (L21), instead of ligand 1 (L1), was used.

LC-MS m/z = 650(M+H)+



[0252] 1H NMR(300MHz, CDCl3) σ = 11.07(s, 1 H), 8.51 (s, 1 H), 6.41 (s, 1 H), 2.21 (s, 3H)

Synthesis Example 20: Synthesis of Compound 20



[0253] Compound 20 (Yield 38%) was synthesized in the same manner as in Synthesis Example 1, except that ligand 22 (L22), instead of ligand 1 (L1), was used.

LC-MS m/z = 734(M+H)+



[0254] 1H NMR(300MHz, CDCl3) σ = 11.00(s, 1H),8.38(s, 1H),6.28(s, 1 H), 1.58(s, 9H)

Synthesis Example 21: Synthesis of Compound 21



[0255] Compound 21 (Yield 42%) was synthesized in the same manner as in Synthesis Example 1, except that ligand 23 (L23), instead of ligand 1 (L1), was used.

LC-MS m/z = 758(M+H)+



[0256] 1H NMR(300MHz, CDCl3) σ = 11.02(s, 1H), 8.13(s, 1H), 6.53(s, 1 H)

Synthesis Example 22: Synthesis of Compound 22



[0257] Compound 22 (Yield 37%) was synthesized in the same manner as in Synthesis Example 1, except that ligand 24 (L24), instead of ligand 1 (L1), was used.

LC-MS m/z = 838(M+H)+



[0258] 1H NMR(300MHz, CDCl3) σ = 11.12(s, 1H), 8.31 (s, 1H), 2.96-2.94(m, 1H), 1.93-1.89(m, 2H), 1.69∼1.65(m, 2H), 1.42(s, 3H), 0.99(s, 6H)

Synthesis Example 23: Synthesis of Compound 23



[0259] Compound 23 (Yield 35%) was synthesized in the same manner as in Synthesis Example 1, except that ligand 25 (L25), instead of ligand 1 (L1), was used.

LC-MS m/z = 626(M+H)+



[0260] 1H NMR(300MHz, CDCl3) σ = 8.87(d, 1H), 7.68(d, 1H), 6.32(s, 1H), 2.63(s, 3H), 1.33(s, 9H)

Synthesis Example 24: Synthesis of Compound 24



[0261] Compound 24 (Yield 21%) was synthesized in the same manner as in Synthesis Example 1, except that ligand 26 (L26), instead of ligand 1 (L1), was used.

LC-MS m/z = 650(M+H)+



[0262] 1H NMR(300MHz, CDCl3) σ = 8.76(d, 1 H), 7.53(d, 1 H), 6.48(s, 1 H), 2.44(s, 3H)

Synthesis Example 25: Synthesis of Compound 25



[0263] Compound 27 (Yield 36%) was synthesized in the same manner as in Synthesis Example 1, except that ligand 27 (L27), instead of ligand 1 (L1), was used.

LC-MS m/z = 626(M+H)+



[0264] 1H NMR(300MHz, CDCl3) σ = 11.32(s, 1H), 9.21(d, 1H), 8.17(d, 1H), 2.04(s, 3H), 1.36(s, 9H)

Synthesis Example 26: Synthesis of Compound 26



[0265] Compound 26 (Yield 34%) was synthesized in the same manner as in Synthesis Example 1, except that ligand 28 (L28), instead of ligand 1 (L1), was used.

LC-MS m/z = 710(M+H)+



[0266] 1H NMR(300MHz, CDCl3) σ = 11.23(s, 1 H), 8.78(d, 1 H), 8.05(d, 1 H), 1.41 (s, 9H), 1.33(s, 9H)

Synthesis Example 27: Synthesis of Compound 27



[0267] Compound 27 (Yield 21%) was synthesized in the same manner as in Synthesis Example 1, except that ligand 29 (L29), instead of ligand 1 (L1), was used.

LC-MS m/z = 734(M+H)+



[0268] 1H NMR(300MHz, CDCl3) σ = 11.18(s, 1H), 9.13(d, 1H), 8.15(d, 1H), 1.38(s, 9H)

Synthesis Example 28: Synthesis of Compound 28



[0269] Compound 28 (Yield 35%) was synthesized in the same manner as in Synthesis Example 1, except that ligand 30 (L30), instead of ligand 1 (L1), was used.

LC-MS m/z = 758(M+H)+



[0270] 1H NMR(300MHz, CDCl3) σ = 11.13(s, 1 H), 8.86(d, 1 H), 7.64(d, 1 H)

Synthesis Example 29: Synthesis of Compound 68



[0271] Compound 68 (Yield 27%) was synthesized in the same manner as in Synthesis Example 1, except that ligand 40 (L40), instead of ligand 1 (L1), was used.

LC-MS m/z = 600(M+H)+



[0272] 1H NMR(300MHz, CDCl) σ = 10.86(s, 1H), 8.92(d, 1H), 7.73(d, 1H), 1.35(2, 9H)

Synthesis Example 30: Synthesis of Compound 37



[0273] Compound 37 (Yield 22%) was synthesized in the same manner as in Synthesis Example 1, except that ligand 2 (L2), instead of ligand 1 (L1), was used.

LC-MS m/z = 586(M+H)+



[0274] 1H NMR(300MHz, CDCl3) σ = 10.47(s, 1H), 9.20(d, 1H), 8.32(d, 1h), 8.17(d, 1H), 7.92(d, 1 H), 7.62(m, 1 H), 7.48(m, 1 H)

Synthesis Example 31: Synthesis of Compound 38



[0275] Compound 38 (Yield 26%) was synthesized in the same manner as in Synthesis Example 1, except that ligand 3 (L3), instead of ligand 1 (L1), was used.

LC-MS m/z = 686(M+H)+



[0276] 1H NMR(300MHz, CDCl3) σ = 10.54(s, 1 H), 8.46(m, 1 H), 7.84(m, 1 H), 7.58(m, 1 H), 7.34(d, 1H), 6.31(d, 1H)

Synthesis Example 32: Synthesis of Compound 29



[0277] Compound 29 was synthesized according to Reaction Scheme 42 below:



[0278] Following dissolving 0.1g (4.9 mmol) of NaH in 50 ml of anhydrous tetrahydrofuran at 0°C, 1.0g (4.8 mmol) of ligand 31 (L31) was slowly added thereto. After 30 minutes, 1.1g (2.4 mmol) of PtCl(SEt2)2 was added to the mixture, stirred at room temperature for about 1 hour, and then heated under reflux at about 80°C for about 18 hours. After 18 hours the reaction product was extracted with 80 ml of distilled water and 100 ml of dichloromethane to obtain an organic layer, which was then dried using magnesium sulfate and concentrated under reduced pressure. The resulting product was separated and purified using column chromatography, followed by further purification by sublimation to obtain 0.4g (0.6 mmol, Yield 28%) of Compound 29.

LC-MS m/z = 614(M+H)+



[0279] 1H NMR(300MHz, CDCl3) σ = 10.32(s, 1H), 8.36(d, 1H), 7.83-7.81(m, 2H), 7.58(brs, 1H), 7.43(s, 1H), 2.04(s, 3H)

Synthesis Example 33: Synthesis of Compound 30



[0280] Compound 30 (Yield 22%) was synthesized in the same manner as in Synthesis Example 32, except that ligand 32 (L32), instead of ligand 31 (L31), was used.

[0281] 1H NMR(300MHz, CDCl3) σ = 10.29(s, 1 H), 8.16(d, 1 H), 7.84-7.83(m, 2H), 7.55(br s, 1 H), 6.38(s, 1 H), 1.39(s, 9H)

Synthesis Example 34: Synthesis of Compound 31



[0282] Compound 31 (Yield 18%) was synthesized in the same manner as in Synthesis Example 32, except that ligand 33 (L33), instead of ligand 31 (L31), was used.

[0283] 1H NMR(300MHz, CDCl3) σ = 10.41(s, 1H), 8.31(d, 1H), 7.85-7.81(m, 2H), 7.49(brs, 1H), 6.02(s, 1 H)

Synthesis Example 35: Synthesis of Compound 32



[0284] Compound 32 (Yield 31%) was synthesized in the same manner as in Synthesis Example 32, except that ligand 34 (L34), instead of ligand 31 (L31), was used.

[0285] 1H NMR(300MHz, CDCl3) σ = 10.29(s, 1H), 8.16(d, 1H), 7.83-7.81(m, 2H), 7.52(brs, 1H), 2.76-2.72(m, 4H), 1.83-1.76(m, 4H)

Synthesis Example 36: Synthesis of Compound 33



[0286] Compound 33 (Yield 27%) was synthesized in the same manner as in Synthesis Example 32, except that ligand 35 (L35), instead of ligand 31 (L31), was used.

[0287] 1H NMR(300MHz, CDCl3) σ = 10.36(s, 1H), 8.21(d, 1H), 7.86-7.84(m, 2H), 7.56(brs, 1H), 2.74-2.72(m, 2H), 1.82-1.79(m, 2H), 1.58-1.54(m, 2H), 1.42(s, 6H)

Synthesis Example 37: Synthesis of Compound 34



[0288] Compound 34 (Yield 25%) was synthesized in the same manner as in Synthesis Example 32, except that ligand 36 (L36), instead of ligand 31 (L31), was used.

[0289] 1H NMR(300MHz, CDCl3) σ = 10.28(s, 1 H), 8.18(d, 1 H), 7.84-7.83(m, 2H), 7.58(br s, 1 H), 2.77-2.75(m, 2H), 1.93-1.90(m, 2H), 1.87-1.85(m, 2H), 1.47(s, 3H), 1.02(s, 6H)

Synthesis Example 38: Synthesis of Compound 35



[0290] Compound 35 (Yield 22%) was synthesized in the same manner as in Synthesis Example 32, except that ligand 37 (L37), instead of ligand 31 (L31), was used.

[0291] 1H NMR(300MHz, CDCl3) σ = 10.29(s, 1H), 8.16(d, 1H), 7.86-7.84(m, 2H), 7.61(brs, 1H), 2.12(s, 3H), 1.37(s, 9H)

Synthesis Example 39: Synthesis of Compound 36



[0292] Compound 36 (Yield 21%) was synthesized in the same manner as in Synthesis Example 32, except that ligand 38 (L38), instead of ligand 31 (L31), was used.

[0293] 1H NMR(300MHz, CDCl3) σ = 10.16(s, 1H), 8.35(d, 1H), 7.73-7.71(m, 2H), 7.55(brs, 1H), 1.35(s, 9H)

Synthesis Example 40: Synthesis of Compound 39



[0294] Compound 39 was synthesized according to Reaction Scheme 43 below:


Synthesis of Compound 39(1)



[0295] Following dissolving 1.0 g (4.7 mmol) of ligand 7 (L7) and 1.9 g (4.7 mmol) of K2PtCl4 in 100 ml of distilled water at room temperature, 3 ml of a 4N diluted hydrochloric acid was added thereto and heated under reflux at about 80°C for about 6 hours. After 6 hours the reaction product was cooled to room temperature and filtered to obtain a solid compound, which was then rinsed with 50 ml of distilled water and dried to obtain 2.0 g (2.4 mmol, Yield: 50%) of Compound 39(1).

Synthesis of Compound 39



[0296] Following dissolving 0.1g (4.9 mmol) of NaH in 50 ml of anhydrous tetrahydrofuran at 0°C 0.4g (2.4 mmol) of ligand 4 (L4) was slowly added thereto. After about 30 minutes, 2.0g (2.4 mmol) of Compound 39(1) was added thereto and heated under reflux at about 80°C for about 18 hours. After 18 hours, the reaction product was extracted with 80 ml of distilled water and 100 ml of dichloromethane to obtain an organic layer, which was then dried using magnesium sulfate and concentrated under reduced pressure. The resulting product was separated and purified using column chromatography, followed by further purification by sublimation to obtain 0.6g (1.2 mmol, Yield 48%) of Compound 39.

LC-MS m/z = 568(M+H)+



[0297] 1H NMR(300MHz, CDCl3) σ = 11.32(s, 1 H), 11.26(s, 1 H), 8.92(d, 1 H), 8.76(d, 1 H), 6.75(s, 1H), 6.64(s, 1H), 2.32(s, 3H)

Synthesis Example 41: Synthesis of Compound 40



[0298] Compound 40 (Yield 9%) was synthesized in the same manner as in Synthesis Example 40, except that ligand 6 (L6) was used, instead of ligand 4 (L4) used in synthesizing

Compound 39.



[0299] 1H NMR(300MHz, CDCl3) σ = 11.29(s, 1H), 11.19(s, 1H), 8.96(d, 1H), 8.65(d, 1H), 6.81(s, 1H), 6.68(s, 1 H), 1.35(s, 9H)

Synthesis Example 42: Synthesis of Compound 41



[0300] Compound 41 (Yield 12%) was synthesized in the same manner as in Synthesis Example 40, except that ligand 27 (L27) was used, instead of ligand 4 (L4) used in synthesizing Compound 39.

[0301] 1H NMR(300MHz, CDCl3) σ = 11.30(s, 1H), 11.24(s, 1H), 8.90(d, 1H), 8.71(d, 1H), 6.72(s, 1H), 2.04(s, 3H), 1.33(s, 9H)

Synthesis Example 43: Synthesis of Compound 42



[0302] Compound 42 (Yield 10%) was synthesized in the same manner as in Synthesis Example 40, except that ligand 29 (L29) was used, instead of ligand 4 (L4) used in synthesizing Compound 39.

[0303] 1H NMR(300MHz, CDCl3) σ = 11.29(s, 1H), 11.21(s, 1H), 8.91 (d, 1H), 8.56(d, 1H), 6.70(s, 1 H), 1.38(s, 9H)

Synthesis Example 44: Synthesis of Compound 43



[0304] Compound 43 (Yield 11%) was synthesized in the same manner as in Synthesis Example 40, except that ligand 30 (L30) was used, instead of ligand 4 (L4) used in synthesizing Compound 39.

[0305] 1H NMR(300MHz, CDCl3) σ = 11.32(s, 1H), 11.15(s, 1H), 8.92(d, 1H), 8.72(d, 1H), 6.72(s, 1 H)

Synthesis Example 45: Synthesis of Compound 44



[0306] Compound 44 (Yield 12%) was synthesized in the same manner as in Synthesis Example 40, except that ligand 13 (L13), instead of ligand 7 (L7) used in synthesizing Compound 39(1), and ligand 30 (L30), instead of ligand 4 (L4) used in synthesizing Compound 39, were used.

[0307] 1H NMR(300MHz, CDCl3) σ = 11.16(s, 1H), 11.26(s, 1H), 9.21(d, 1H), 8.64(d, 1H), 6.68(s, 1H), 2.36(s, 3H)

Synthesis Example 46: Synthesis of Compound 45



[0308] Compound 45 (Yield 11%) was synthesized in the same manner as in Synthesis Example 40, except that ligand 13 (L13), instead of ligand 7 (L7) used in synthesizing Compound 39(1), and ligand 41 (L41), instead of ligand 4 (L4) used in synthesizing Compound 39, were used.

[0309] 1H NMR(300MHz, CDCl3) σ = 11.13(s, 1H), 11.10(s, 1H), 8.07(d, 1H), 8.02(d, 1H), 6.35(s, 1 H)

Synthesis Example 47: Synthesis of Compound 46



[0310] Compound 46 (Yield 7%) was synthesized in the same manner as in Synthesis Example 40, except that ligand 31 (L31) was used, instead of ligand 4 (L4) used in synthesizing Compound 39.

[0311] 1H NMR(300MHz, CDCl3) σ = 11.33(s, 1H), 11.26(s, 1H), 10.85(d, 1H), 8.63(d, 1H), 8.54(br s, 1 H), 7.85-7.83(m, 2H), 7.58(br s, 1 H), 6.85(s, 1 H), 6.33(s, 1 H), 2.33(s, 3H)

Synthesis Example 48: Synthesis of Compound 47



[0312] Compound 47 (Yield 10%) was synthesized in the same manner as in Synthesis Example 40, except that ligand 7 (L7) was used, instead of ligand 4 (L4) used in synthesizing Compound 39.

[0313] 1H NMR(300MHz, CDCl3) σ = 11.32(s, 1 H), 9.20(d, 1 H), 8.85(d, 1 H), 8.57(d, 1 H), 8.05-8.03(m, 1 H), 7.87-7.85(m, 1 H), 6.39(s, 1 H), 6.32(s, 1 H)

Synthesis Example 49: Synthesis of Compound 48



[0314] Compound 48 (Yield 12%) was synthesized in the same manner as in Synthesis Example 40, except that ligand 6 (L6) was used, instead of ligand 4 (L4) used in synthesizing Compound 39.

[0315] 1H NMR(300MHz, CDCl3) σ = 11.23(s, 1H), 9.52(d, 1H), 8.55(d, 1H), 8.31 (d, 1H), 8.16-8.14(m, 1 H), 7.92-7.90(m, 1 H), 6.35(s, 1 H), 6.33(s, 1 H), 1.37(s, 9H)

Synthesis Example 50: Synthesis of Compound 49



[0316] Compound 49 (Yield 11%) was synthesized in the same manner as in Synthesis Example 40, except that ligand 6 (L6), instead of ligand 7 (L7) used in synthesizing Compound 39(1), and ligand 43 (L43), instead of ligand 4 (L4) used in synthesizing Compound 39, were used.

[0317] 1H NMR(300MHz, CDCl3) σ = 11.13(s, 1H), 9.86(d, 1H), 8.71(d, 1H), 8.46(d, 1H), 8.09-8.07(m, 1 H), 7.88-7.87(m, 1 H), 6.39(s, 1 H), 6.30(s, 1 H), 1.37(s, 9H), 1.35(s, 9H)

Synthesis Example 51: Synthesis of Compound 50



[0318] Compound 50 (Yield 16%) was synthesized in the same manner as in Synthesis Example 40, except that 2-phenylpyridine was used, instead of ligand 4 (L4) used in synthesizing Compound 39.

[0319] 1H NMR(300MHz, CDCl3) σ = 11.21(s, 1H), 9.20(d, 1H), 8.56(d, 1H), 8.30(d, 1H), 8.17(d, 1H), 7.97(d, 1H), 7.51-7.47(m, 3H), 7.41(br s, 1H), 7.02-7.00(m, 1H), 6.32(s, 1H)

Synthesis Example 52: Synthesis of Compound 51



[0320] Compound 51 (Yield 14%) was synthesized in the same manner as in Synthesis Example 40, except that ligand 6 (L6), instead of ligand 7 (L7) used in synthesizing Compound 39(1), and 2-phenylpyridine, instead of ligand 4 (L4) used in synthesizing Compound 39, were used.

[0321] 1H NMR(300MHz, CDCl3) σ = 11.18(s, 1H), 9.17(d, 1H), 8.48(d, 1H), 8.36(d, 1H), 8.21(d, 1 H), 7.88(d, 1 H), 7.55-7.51 (m, 3H), 7.36(br s, 1 H), 7.02-7.00(m, 1 H), 6.33(s, 1 H), 1.38(s, 9H)

Synthesis Example 53: Synthesis of Compound 52



[0322] Compound 52 (Yield 16%) was synthesized in the same manner as in Synthesis Example 40, except that ligand 9 (L9), instead of ligand 7 (L7) used in synthesizing Compound 39(1), and 2-phenylpyridine, instead of ligand 4 (L4) used in synthesizing Compound 39, were used.

[0323] 1H NMR(300MHz, CDCl3) σ = 11.22(s, 1H), 9.20(d, 1H), 8.53(d, 1H), 8.31(d, 1H), 8.15(d, 1 H), 8.02(d, 1 H), 7.50-7.46(m, 3H), 7.43(br s, 1 H), 7.05-7.03(m, 1 H), 2.76-2.74(m, 2H), 1.79-1.77(m, 2H), 1.54-1.52(m, 2H), 1.38(s, 6H)

Synthesis Example 54: Synthesis of Compound 53



[0324] Compound 53 (Yield 26%) was synthesized in the same manner as in Synthesis Example 40, except that ligand 6 (L6), instead of ligand 7 (L7) used in synthesizing Compound 39(1), and sodium acetylacetate (Na(acac)), instead of ligand 4 (L4) used in synthesizing Compound 39, were used.

[0325] 1H NMR(300MHz, CDCl3) σ = 10.89(s, 1H), 9.20(d, 1H), 8.17(d, 1H), 6.21(s, 1H), 5.31 (br s, 1 H), 3.52-3.50(m, 1 H), 1.38(s, 9H), 1.18(s, 6H)

Synthesis Example 55: Synthesis of Compound 54



[0326] Compound 54 (Yield 22%) was synthesized in the same manner as in Synthesis Example 40, except that sodium acetylacetate (Na(acac)) was used, instead of ligand 4 (L4) used in synthesizing Compound 39.

[0327] 1H NMR(300MHz, CDCl3) σ = 10.74(s, 1H), 9.26(d, 1H), 8.13(d, 1H), 6.36(s, 1H), 5.33 (br s, 1 H), 3.53-3.51 (m, 1 H), 1.18(s, 6H)

Synthesis Example 56: Synthesis of Compound 55



[0328] Compound 55 (Yield 26%) was synthesized in the same manner as in Synthesis Example 40, except that ligand 9 (L9), instead of ligand 7 (L7) used in synthesizing Compound 39(1), and sodium acetylacetate (Na(acac)), instead of ligand 4 (L4) used in synthesizing Compound 39, were used.

[0329] 1H NMR(300MHz, CDCl3) σ = 11.02(s, 1 H), 8.72(d, 1 h), 8.58(d, 1 H), 5.31 (br s, 1 H), 3.52-3.50(m, 1 H), 2.75-2.73(m, 2H), 1.79-1.76(m, 2H), 1.54-1.52(m, 2H), 1.40(s, 6H), 1.20(s, 6H)

Synthesis Example 57: Synthesis of Compound 56



[0330] Compound 56 (Yield 21%) was synthesized in the same manner as in Synthesis Example 40, except that ligand 27 (L27), instead of ligand 7 (L7) used in synthesizing Compound 39(1), and sodium acetylacetate (Na(acac)), instead of ligand 4 (L4) used in synthesizing Compound 39, were used.

[0331] 1H NMR(300MHz, CDCl3) σ = 10.91 (s, 1 H), 8.25(d, 1 h), 7.85(d, 1 H), 5.31 (br s, 1 H), 3.52-3.50(m, 1 H), 2.75-2.73(m, 2H), 2.10(s, 3H), 1.35(s, 9H), 1.18(s, 6H)

Synthesis Example 58: Synthesis of Compound 57



[0332] Compound 57 was synthesized according to Reaction Scheme 44 below:



[0333] Following dissolving 2.0 mmol of ligand 39 (L39) in 30 ml of benzonitrile, 0.7g (2.0 mmol) of PtCl4 was added thereto and stirred at about 240°C for about 36 hours. After 36 hours, the reaction product was cooled to room temperature and filtered to obtain a solid product, which was rinsed with 50 ml of ether and dried to obtain Compound 37 (Yield: less than 3%).

LC-MS m/z = 711 (M+H)+


Synthesis Example 59: Synthesis of Compound 58



[0334] Compound 58 (Yield 3%) was synthesized in the same manner as in Synthesis Example 58, except that ligand 42 (L42), instead of ligand 39 (L39), was used.

LC-MS m/z = 701(M+H)+


Synthesis Example 60: Synthesis of Compound 59



[0335] Compound 59 (Yield 7%) was synthesized in the same manner as in Synthesis Example 58, except that ligand 43 (L43), instead of ligand 39 (L39), was used.

LC-MS m/z = 701(M+H)+



[0336] 1H NMR(300MHz, CDCl3) σ = 7.48-7.45(m, 2H), 7.25-7.23(m, 2H), 6.99-6.97(m, 2H), 6.66-6.63(m, 2H), 6.51-6.49(m, 2H), 6.32(s, 2H), 2.31 (s, 3H), 1.35(s, 18H)

Synthesis Example 61: Synthesis of Compound 60



[0337] Compound 60 was synthesized according to Reaction Scheme 45 below:



[0338] Following dissolving 6.0 mmol of ligand 7 (L7) in 40 ml of diethylene glycol monoethyl ether, 0.9g (1.0 mmol) of Os3(CO)12 was added thereto and stirred at about 180°C for about 24 hours. After the temperature was cooled to about 140°C, 0.4g (5.0 mmol) of trimethylamine N-oxide was added thereto and stirred at about 180°C for about 5 minutes. After 5 minutes, 5.0 mmol of dimethyl(phenyl)phosphine (PPhMe2) was added thereto and stirred for about 24 hours. After completion of the reaction, the reaction product was extracted with 80 ml of distilled water and 200 ml of dichloromethane to obtain an organic layer, which was then dried using magnesium sulfate and distilled under reduced pressure. The resulting product was separated and purified using column chromatography, followed by further purification by sublimation to obtain Compound 60 (Yield 65%).

[0339] 1H NMR(300MHz, CDCl3) σ = 11.19(s, 2H), 7.62(d, 2H), 7.05(d, 2H), 6.92-6.87(m, 8H), 6.41-6.38(m, 4H), 0.81 (m, 6H), 0.60(m, 6H)

Synthesis Example 62: Synthesis of Compound 61



[0340] Compound 61 (Yield 62%) was synthesized in the same manner as in Synthesis Example 61, except that ligand 6 (L6), instead of ligand 7 (L7) was used, and diphenyl(methyl)phosphine (PPh2Me), instead of PPhMe2, was used.

[0341] 1H NMR(300MHz, CDCl3) σ = 11.20(s, 2H), 7.73(d, 2H), 7.12(d, 2H), 6.96-6.93(m, 8H), 6.46-6.43(m, 4H), 1.37(m, 18H), 0.81 (m, 6H), 0.60(m, 6H)

Synthesis Example 63: Synthesis of Compound 62



[0342] Compound 62 (Yield 62%) was synthesized in the same manner as in Synthesis Example 61, except that ligand 6 (L6), instead of ligand 7 (L7), was used.

[0343] 1H NMR(300MHz, CDCl3) σ = 11.17(s, 2H), 7.55(d, 2H), 7.32(d, 2H), 7.23-7.11(m, 4H), 7.00-6.97(m, 4H), 6395-6.92(m, 4H), 6.89-6.85(m, 4H), 6.69-6.64(m, 4H), 1.26(t, 6H)

Synthesis Example 64: Synthesis of Compound 63



[0344] Compound 63 (Yield 22%) was synthesized in the same manner as in Synthesis Example 61, except that 1,2-bis(diphenylphospino)ethanol, instead of dimethyl(phenyl)phosphine (PPhMe2), was used.

[0345] 1H NMR(300MHz, CDCl3) σ = 9.06-9.03(m, 2H), 7.90-7.87(m, 4H), 7.78-7.75(m, 2H), 7.43-7.41(m, 2H), 7.35-7.31(m, 4H), 7.30-7.27(m, 2H), 7.17-7.15(m, 2H), 7.09-7.08(m, 2H), 6.80-6.77(m, 4H), 6.62-6.60(m, 4H), 6.41-6.38(m, 2H)

Synthesis Example 65: Synthesis of Compound 64



[0346] Compound 64 (Yield 21%) was synthesized in the same manner as in Synthesis Example 61, except that ligand 6 (L6), instead of ligand 7 (L7), and 1,2-bis(diphenylphospino)ethanol, instead of diphenyl(methyl)phosphine (PPh2Me), were used.

[0347] 1H NMR(300MHz, CDCl3) σ = 9.03-9.01 (m, 2H), 7.84-7.2(m, 4H), 7.75-7.73(m, 2H), 7.46-7.44(m, 2H), 7.43-7.40(m, 4H), 7.35-7.32(m, 2H), 7.21-7.19(m, 2H), 7.12-7.10(m, 2H), 6.76-6.73(m, 4H), 6.63-6.60(m, 4H), 6.53-6.51(m, 2H), 1.37-1.34(m, 18H)

Synthesis Example 66: Synthesis of Compound 65



[0348] Compound 65 was synthesized according to Reaction Scheme 46 below:



[0349] Following dissolving 2.0 mmol of ligand 4 (L4) in 30 ml of ethyleneglycol, 0.4g (0.3 mmol) of IrCl3•3H2O was added thereto and stirred at about 220°C for about 24 hours. After completion of the reaction, the reaction product was extracted with 50 ml of distilled water and 100 ml of methylenechloride to obtain an organic layer, which was then dried using magnesium sulfate and distilled under reduced pressure. The resulting product was separated and purified using column chromatography to obtain Compound 65 (Yield 26%).

LC-MS m/z = 671 (M+H)+


Synthesis Example 67: Synthesis of Compound 66



[0350] Compound 66 (Yield 22%) was synthesized in the same manner as in Synthesis Example 66, except that ligand 7 (L7), instead of ligand 4 (L4), was used.

LC-MS m/z = 833(M+H)+


Synthesis Example 68: Synthesis of Compound 67



[0351] Compound 67 was synthesized according to Reaction Scheme 47 below:



[0352] 1.5 g (7.1 mmol) of 2,6-dipyrazole-1-yl pyridine as a start material and 2.6g (2.0 mmol) of IrCl3•3H2O were dissolved in 60 ml of methanol and heated under reflux for about 15 hours. Afterward, the reaction product was cooled and filtered to obtain a solid product, which was then dried and dissolved in 120 ml of glycerol. 4.5 g (21.3 mmol) of ligand 7 (L7) was added to the reaction mixture and subjected to microwave radiation (300W) for about 3 hours for reaction. After completion of the reaction, 200 ml of a saturated salt solution was added to the reaction product and filtered to obtain a solid product, which was then dried and recrystallized using a mixed solvent of dichloromethane and hexane. The resulting solid compound was dissolved in 80 ml of glycerol, and subjected to microwave radiation (300W) for about 6 hours with an addition of potassium hydroxide. After completion of the reaction, the reaction product was extracted with 100 ml of a saturated salt solution and 300 ml of methylenechloride at room temperature to obtain an organic layer, which was then dried using magnesium sulfate and distilled under reduced pressure. The resulting product was separated and purified using column chromatography to obtain Compound 67 (Yield 2%).

LC-MS m/z = 719(M+H)+


Example 1



[0353] A glass substrate with an anode (ITO/Ag/ITO deposited to a thickness of 70Å/1000Å/70Å, respectively) was cut to a size of 50 mm x 50 mm x 0.5 mm and then sonicated in isopropyl alcohol and pure water each for five minutes, and then cleaned by irradiation of ultraviolet rays for 30 minutes and exposure to ozone. The resulting glass substrate was loaded into a vacuum deposition device.

[0354] 2-TNATA was deposited on a surface of the anode to form an HIL having a thickness of 600Å, and then 4.4'-bis[N-(1-naphthyl)-N-phenylamino]biphenyl (NPB) was deposited on the HIL to form a HTL having a thickness of 1000Å.

[0355] CBP (host) and Compound 2 (dopant) were co-deposited in a weight ratio of 95:5 on a surface of the HTL to form an EML having a thickness of about 400Å, followed by deposition of BCP on the EML to form a HBL having a thickness of about 50Å. Then, Alq3 was deposited on the HBL to form an ETL having a thickness of about 350Å, and then LiF was deposited on the ETL to form an EIL having a thickness of about 10Å. Then, Mg and Ag were deposited in a weight ratio of 90:10 on the EIL to form a cathode having a thickness of about 120 Å, thereby completing the manufacture of an organic light-emitting device.

Example 2



[0356] An organic light-emitting device was manufactured in the same manner as in Example 1, except that Compound 3, instead of Compound 2, was used to form the EML.

Example 3



[0357] An organic light-emitting device was manufactured in the same manner as in Example 1, except that Compound 4, instead of Compound 2, was used to form the EML.

Example 4



[0358] An organic light-emitting device was manufactured in the same manner as in Example 1, except that Compound 6, instead of Compound 2, was used to form the EML.

Example 5



[0359] An organic light-emitting device was manufactured in the same manner as in Example 1, except that Compound 7, instead of Compound 2, was used to form the EML.

Example 6



[0360] An organic light-emitting device was manufactured in the same manner as in Example 1, except that Compound 68, instead of Compound 2, was used to form the EML.

Example 7



[0361] An organic light-emitting device was manufactured in the same manner as in Example 1, except that the thickness of the HTL was changed to about 1350Å, and CBP (host) and Compound 30 (dopant) were co-deposited in a weight ratio of 94:6 to form an EML having a thickness of about 400Å.

Example 8



[0362] An organic light-emitting device was manufactured in the same manner as in Example 7, except that Compound 33, instead of Compound 30, was used to form the EML.

Example 9



[0363] An organic light-emitting device was manufactured in the same manner as in Example 7, except that Compound 34, instead of Compound 30, was used to form the EML.

Example 10



[0364] An organic light-emitting device was manufactured in the same manner as in Example 7, except that Compound 60, instead of Compound 30, was used to form the EML.

Example 11



[0365] An organic light-emitting device was manufactured in the same manner as in Example 7, except that Compound 63, instead of Compound 30, was used to form the EML.

Comparative Example 1



[0366] An organic light-emitting device was manufactured in the same manner as in Example 1, except that Ir(ppy)3, instead of Compound 2, was used to form the EML.

Comparative Example 2



[0367] An organic light-emitting device was manufactured in the same manner as in Example 7, except that PtOEP, instead of Compound 30, was used to form the EML.

Comparative Example 3



[0368] An organic light-emitting device was manufactured in the same manner as in Example 1, except that Compound A below, instead of Compound 2, was used to form the EML.

Comparative Example 4



[0369] An organic light-emitting device was manufactured in the same manner as in Example 1, except that Compound B below, instead of Compound 2, was used to form the EML.




Evaluation Example 1



[0370] Driving voltages, current densities, luminescences, efficiencies, and color purities of the organic light-emitting devices of Examples 1 to 11 and Comparative Examples 1 to 4 were measured using a PR650 (Spectroscan) Source Measurement Unit. (available from Photo Research, Inc.). LT97 is lifetime data as the time it takes for an initial luminescence (assumed as 100% at a current density of about 10 mA/cm2 is reduced to 97%. The results are shown in Table 1 below, in which Vdr is driving voltage, Cmp is compound, L is luminance, Eff is efficiency, Clr is emission color, and Clrcoor is color coordinate.
[Table 1]
 HostDopantVdr (V)Current density (mA/cm2)L (cd/m2)Eff (cd/A)ClrClrcoorLT97 (HR)
Example 1 CBP Cmp 2 5.5 10 6,330 63.3 green 0.29, 0.70 97
Example 2 CBP Cmp 3 5.6 10 6,521 65.2 green 0.26, 0.72 94
Example 3 CBP Cmp 4 5.5 10 6,870 68.7 green 0.27, 0.72 98
Example 4 CBP Cmp 6 5.6 10 6,625 66.2 green 0.25, 0.71 92
Example 5 CBP Cmp 7 5.7 10 6,590 65.9 green 0.26, 0.71 93
Example 6 CBP Cmp 68 5.6 10 6,228 62.2 green 0.28, 0.70 90
Example 7 CBP Cmp 30 5.9 10 3,042 30.4 red 0.65, 0.34 121
Example 8 CBP Cmp 33 5.3 10 3,283 32.8 red 0.66, 0.37 116
Example 9 CBP Cmp 34 5.3 10 3,330 33.3 red 0.66, 0.35 110
Example 10 CBP Cmp 60 5.5 10 3,570 35.7 red 0.64, 0.33 92
Example 11 CBP Cmp 63 5.6 10 3,487 34.8 red 0.63, 0.34 105
Comp. Example 1 CBP Ir(ppy)3 6.8 10 4,766 47.7 green 0.25, 0.70 61
Comp. Example 2 CBP PtOEP 7.3 10 2,212 22.1 red 0.67, 0.32 89
Comp. Example 3 CBP Cmp A 5.9 10 4,856 48.5 green 0.25, 0.68 76
Comp. Example 4 CBP Cmp B 6.3 10 5,510 55.1 green 0.27, 0.70 55


[0371] Referring to Table 1 above, the organic light-emitting device of Examples 1 to 6 are found to be improved in terms of driving voltage, luminance, efficiency, and lifetime characteristics, relative to the organic light-emitting devices of Comparative Examples 1, 3, and 4. The organic light-emitting device of Examples 7 to 11 are found have improved driving voltages, luminances, efficiencies, and lifetime characteristics, as compared with the organic light-emitting device of Comparative Example 2.

[0372] By way of summary and review, an OLED may have a structure including a substrate, and an anode, a hole transport layer (HTL), an emission layer (EML), an electron transport layer (ETL), and a cathode which are sequentially stacked on the substrate. In this regard, the HTL, the EML, and the ETL may be organic thin films formed of organic compounds. An operating principle of an OLED having the above-described structure may be as follows. When a voltage is applied between the anode and the cathode, holes injected from the anode move to the EML via the HTL, and electrons injected from the cathode move to the EML via the ETL. The holes and electrons recombine in the EML to generate excitons. When the excitons drop from an excited state to a ground state, light is emitted.

[0373] As described above, an organic light-emitting device including the organometallic compounds according to one or more of the above embodiments may provide an OLED with a low driving voltage, a high efficiency, and a long lifetime.


Claims

1. An organometallic compound represented by Formula 1A or Formula 1C:

wherein, in Formula 1A or 1C:

M is a transition metal;

X1 is N or C(R5);

R1, R4 and R5 are each independently selected from the group of a hydrogen atom, a deuterium atom, a halogen atom, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine, a hydrazone, a carboxyl group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a substituted or unsubstituted C1-C60 alkyl group, a substituted or unsubstituted C2-C60 alkenyl group, a substituted or unsubstituted C2-C60 alkynyl group, a substituted or unsubstituted C1-C60 alkoxy group, a substituted or unsubstituted C3-C10 cycloalkyl group, a substituted or unsubstituted C3-C10 cycloalkenyl group, a substituted or unsubstituted C3-C10 heterocycloalkyl group, a substituted or unsubstituted C3-C10 heterocycloalkenyl group, a substituted or unsubstituted C6-C60 aryl group, a substituted or unsubstituted C6-C60 aryloxy group, a substituted or unsubstituted C6-C60 arylthio group, a substituted or unsubstituted C2-C60 heteroaryl group, -N(Q1)(Q2), -Si(Q3)(Q4)(Q5), -C(=O)(Q6), and a binding site with an adjacent ligand via a single bond or a divalent linking group;

the A ring and the B ring are each independently selected from the group of a substituted or unsubstituted C4-C20 alicyclic ring, a substituted or unsubstituted C2-C20 heteroalicyclic ring, a substituted or unsubstituted C6-C20 aromatic ring, and a substituted or unsubstituted C2-C20 heteroaromatic ring;

Q1 to Q6 are each independently selected from the group of a hydrogen atom, a substituted or unsubstituted C1-C60 alkyl group, a substituted or unsubstituted C6-C60 aryl group, and a substituted or unsubstituted C2-C60 heteroaryl group;

n is an integer from 1 to 3;

L is a monodentate, bidentate, tridentate, or tetradentate organic ligand; and

m is an integer from 0 to 4.


 
2. The organometallic compound as claimed in claim 1, wherein M is selected from the group of ruthenium (Ru), rhodium (Rh), palladium (Pd), tungsten (W), rhenium (Re), osmium (Os), iridium (Ir), and platinum (Pt).
 
3. The organometallic compound as claimed in claim 1, wherein X1 is C(R5).
 
4. The organometallic compound as claimed in claim 1, wherein X1 is N.
 
5. The organometallic compound as claimed in claim 1, wherein:

X1 is C(R5);

R1, R4 and R5 are each independently one selected from the group of a hydrogen atom, a deuterium atom, a halogen atom, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine, a hydrazone, a carboxyl group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, an i-butyl group, a t-butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a methoxy group, an ethoxy group, a propoxy group, a butoxy group, a pentoxy group, and a substituted group that is substituted with at least one selected from the group of a deuterium atom, a fluorine atom, a hydroxyl group, a cyano group, a nitro group, and an amino group; and

the substituted group is selected from the group of a substituted methyl group, a substituted ethyl group, a substituted n-propyl group, a substituted i-propyl group, a substituted n-butyl group, a substituted i-butyl group, a substituted t-butyl group, a substituted pentyl group, a substituted hexyl group, a substituted heptyl group, a substituted octyl group, a substituted nonyl group, a substituted decyl group, a substituted methoxy group, a substituted ethoxy group, a substituted propoxy group, a substituted butoxy group, and a substituted pentoxy group.


 
6. The organometallic compound as claimed in claim 1, wherein:

X1 is N;

R1 and R4 are each independently one selected from the group of a hydrogen atom, a deuterium atom, a halogen atom, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine, a hydrazone, a carboxyl group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, an i-butyl group, a t-butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a methoxy group, an ethoxy group, a propoxy group, a butoxy group, and pentoxy group, and a substituted group that is substituted with at least one selected from the group of a deuterium atom, a fluorine atom, a hydroxyl group, a cyano group, a nitro group, and an amino group; and

the substituted group is selected from the group of a substituted methyl group, a substituted ethyl group, a substituted n-propyl group, a substituted i-propyl group, a substituted n-butyl group, a substituted i-butyl group, a substituted t-butyl group, a substituted pentyl group, a substituted hexyl group, a substituted heptyl group, a substituted octyl group, a substituted nonyl group, a substituted decyl group, a substituted methoxy group, a substituted ethoxy group, a substituted propoxy group, a substituted butoxy group, and a substituted pentoxy group.


 
7. The organometallic compound as claimed in claim 1, wherein:

the A ring is at least one selected from the group of benzene, pentalene, indene, naphthalene, azulene, heptalene, indacene, acenaphthylene, fluorene, spiro-fluorene, phenalene, phenanthrene, anthracene, fluoranthene, triphenylene, pyrene, chrysene, and a substituted group that is substituted with at least one selected from the group of:

a deuterium atom, a halogen atom, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine, a hydrazone, a carboxyl group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C60 alkyl group, a C1-C60 alkyl group substituted with at least one halogen atom, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, a C3-C10 cycloalkyl group, a C3-C10 cycloalkenyl group, a C3-C10 heterocycloalkyl group, a C3-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C2-C60 heteroaryl group, -N(Q11)(Q12), and -Si(Q13)(Q14)(Q15);

Q11 to Q15 are each independently selected from the group of a hydrogen atom, a C1-C10 alkyl group, a C6-C20 aryl group, and a C2-C20 heteroaryl group; and

the substituted group is selected from the group of a substituted benzene, a substituted pentalene, a substituted indene, a substituted naphthalene, a substituted azulene, a substituted heptalene, a substituted indacene, a substituted acenaphthylene, a substituted fluorene, a substituted spiro-fluorene, a substituted phenalene, a substituted phenanthrene, a substituted anthracene, a substituted fluoranthene, a substituted triphenylene, a substituted pyrene, and a substituted chrysene.


 
8. The organometallic compound as claimed in claim 1, wherein:

the B ring is at least one selected from the group of cyclopropane, cyclobutane, cyclopentane, cyclohexane, cycloheptane, cyclooctane, cyclopentene, cyclopentadiene, cyclohexadiene, cycloheptadiene, bicyclo-heptane, bicyclo-octane, benzene, pentalene, indene, naphthalene, azulene, heptalene, indacene, acenaphthylene, fluorene, spirofluorene, phenalene, phenanthrene, anthracene, fluoranthene, triphenylene, pyrene, chrysene, and a substituted group that is substituted with at least one selected from the group of:

a deuterium atom, a halogen atom, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine, a hydrazone, a carboxyl group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C60 alkyl group, a C1-C60 alkyl group substituted with at least one halogen atom, a C2-C60 alkenyl group, a C2-C60 alkynyl group, a C1-C60 alkoxy group, a C3-C10 cycloalkyl group, a C3-C10 cycloalkenyl group, a C3-C10 heterocycloalkyl group, a C3-C10 heterocycloalkenyl group, a C6-C60 aryl group, a C6-C60 aryloxy group, a C6-C60 arylthio group, a C2-C60 heteroaryl group, -N(Q11)(Q12), and -Si(Q13)(Q14)(Q15);

Q11 to Q15 are each independently selected from the group of a hydrogen atom, a C1-C10 alkyl group, a C6-C20 aryl group, and a C2-C20 heteroaryl group;

the substituted group is selected from the group of a substituted cyclopropane, a substituted cyclobutane, a substituted cyclopentane, a substituted cyclohexane, a substituted cycloheptane, a substituted cyclooctane, a substituted cyclopentene, a substituted cyclopentadiene, a substituted cyclohexadiene, a substituted cycloheptadiene, a substituted bicyclo-heptane, a substituted bicyclo-octane, a substituted benzene, a substituted pentalene, a substituted indene, a substituted naphthalene, a substituted azulene, a substituted heptalene, a substituted indacene, a substituted acenaphthylene, a substituted fluorene, a substituted spiro-fluorene, a substituted phenalene, a substituted phenanthrene, a substituted anthracene, a substituted fluoranthene, a substituted triphenylene, a substituted pyrene, and a substituted chrysene.


 
9. The organometallic compound as claimed in claim 1, wherein:

the organometallic compound is represented by one selected from the group of Formulae 1A-(1), 1C-(1), 1C-(2), 1C-(3), and 1D-(1):





wherein, in Formulae 1A-(1), 1C-(1), 1C-(2), 1C-(3), and 1D-(1):

R1, R4 and R5, R11 to R14, and R21 to R28 are each independently selected from the group of a hydrogen atom, a deuterium atom, a halogen atom, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine, a hydrazone, a carboxyl group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C20 alkyl group, a C1-C20 alkoxy group, a substituted C1-C20 alkyl group, a substituted C1-C20 alkoxy group, a phenyl group, a naphthyl group, an anthryl group, a fluorenyl group, a carbazolyl group, a pyridinyl group, a pyrimidinyl group, a triazinyl group, and a substituted cyclic group that is substituted with at least one selected from the group of:

a deuterium atom, a halogen atom, a hydroxyl group, a cyano group, a nitro group, an amino group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a naphthyl group, an anthryl group, a fluorenyl group, a carbazolyl group, a pyridinyl group, a pyrimidinyl group, and a triazinyl group;

the substituted C1-C20 alkyl group and the substituted C1-C20 alkoxy group are each substituted with at least one selected from the group of a deuterium atom, a halogen atom, a hydroxyl group, a cyano group, a nitro group, and an amino group;

the substituted cyclic group is selected from the group of a substituted phenyl group, a substituted naphthyl group, a substituted anthryl group, a substituted fluorenyl group, a substituted carbazolyl group, a substituted pyridinyl group, a substituted pyrimidinyl group, and a substituted triazinyl group;

n is an integer from 1 to 3;

L is an organic ligand; and

m is an integer from 0 to 4.


 
10. The organometallic compound as claimed in claim 1, wherein:

m is 1, 2, 3, or 4;

at least one of Lm is represented by one selected from the group of Formulae 2A to 2F:



wherein, in Formulae 2A to 2F:

M1 is P or As;

X11a, X11b, X12, X13, X14, X15, X16a, X16b, X16c, X16d, X16e, X16f, X16g, X17a, X17b, X17c, and X17d are each independently selected from the group of C(R40)x, N, O, N(R35), P(R36)(R37), and As(R38)(R39);

R33" and R34" are each independently selected from the group of a single bond, a double bond, a substituted or unsubstituted C1-C5 alkylene group, and a substituted or unsubstituted C2-C5 alkenylene group;

R31, R32a, R32b, R32c, R33a, R33b, R34, R35, R36, R37, R38, R39, and R40 are each independently selected from the group of a hydrogen atom, a deuterium atom, a halogen atom, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine, a hydrazone, a carboxyl group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a substituted or unsubstituted C1-C60 alkyl group, a substituted or unsubstituted C2-C60 alkenyl group, a substituted or unsubstituted C2-C60 alkynyl group, a substituted or unsubstituted C1-C60 alkoxy group, a substituted or unsubstituted C3-C10 cycloalkyl group, a substituted or unsubstituted C3-C10 cycloalkenyl group, a substituted or unsubstituted C3-C10 heterocycloalkyl group, a substituted or unsubstituted C3-C10 heterocycloalkenyl group, a substituted or unsubstituted C6-C60 aryl group, and a substituted or unsubstituted C2-C60 heteroaryl group;

the C ring, the D ring, the E ring, the F ring, the G ring, and the H ring are each independently selected from the group of a 5-membered to 20-membered saturated ring, and a 5-membered to 20-membered unsaturated ring;

x is an integer from 0 to 2; and

* is a binding site with M in Formula 1.


 
11. The organometallic compound as claimed in claim 10, wherein:

R31, R32a, R32b, R32c, R33a, R33b, R34, R35, R36, R37, R38, and R39 are each independently selected from the group of a hydrogen atom, a deuterium atom, a halogen atom, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine, a hydrazone, a carboxyl group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C20 alkyl group, a C1-C20 alkoxy group, a substituted C1-C20 alkyl group, a substituted C1-C20 alkoxy group, a phenyl group, a naphthyl group, an anthryl group, a fluorenyl group, a carbazolyl group, a pyridinyl group, a pyrimidinyl group, and a triazinyl group, and a substituted cyclic group that is substituted with at least one selected from the group of:

a deuterium atom, a halogen atom, a hydroxyl group, a cyano group, a nitro group, an amino group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a naphthyl group, an anthryl group, a fluorenyl group, a carbazolyl group, a pyridinyl group, a pyrimidinyl group, and a triazinyl group;

the substituted C1-C20 alkyl group and the substituted C1-C20 alkoxy group are each substituted with at least one selected from the group of a deuterium atom, a halogen atom, a hydroxyl group, a cyano group, a nitro group, and an amino group; and

the substituted cyclic group is selected from the group of a substituted phenyl group, a substituted naphthyl group, a substituted anthryl group, a substituted fluorenyl group, a substituted carbazolyl group, a substituted pyridinyl group, a substituted pyrimidinyl group, and a substituted triazinyl.


 
12. The organometallic compound as claimed in claim 10, wherein:

the at least one of Lm is represented by Formula 2C; and

X11a and X11b in Formula 2C are each independently selected from the group of O, P(R36)(R37), and As(R38)(R39).


 
13. The organometallic compound as claimed in claim 10, wherein:

the at least one of Lm is represented by one selected from the group of Formulae 2D, 2E, and 2F;

the C ring, the D ring, the E ring, the F ring, the G ring, and the H ring in Formulae 2D, 2E, and 2F are each independently a substituted or unsubstituted benzene, a substituted or unsubstituted pentalene, a substituted or unsubstituted indene, a substituted or unsubstituted naphthalene, a substituted or unsubstituted azulene, a substituted or unsubstituted heptalene, a substituted or unsubstituted indacene, a substituted or unsubstituted acenaphthylene, a substituted or unsubstituted fluorene, a substituted or unsubstituted spiro-fluorene, a substituted or unsubstituted phenalene, a substituted or unsubstituted phenanthrene, a substituted or unsubstituted anthracene, a substituted or unsubstituted fluoranthene, a substituted or unsubstituted triphenylene, a substituted or unsubstituted pyrene, a substituted or unsubstituted chrysene, a substituted or unsubstituted pyrrole, a substituted or unsubstituted imidazole, a substituted or unsubstituted pyrazole, a substituted or unsubstituted isothiazole, a substituted or unsubstituted isoxazole, a substituted or unsubstituted pyridine, a substituted or unsubstituted pyrazine, a substituted or unsubstituted pyrimidine, a substituted or unsubstituted pyridazine, a substituted or unsubstituted isoindole, a substituted or unsubstituted indole, a substituted or unsubstituted indazole, a substituted or unsubstituted purine, a substituted or unsubstituted isoquinoline, a substituted or unsubstituted quinoline, a substituted or unsubstituted phthalazine, a substituted or unsubstituted quinoxaline, a substituted or unsubstituted quinazoline, or a substituted or unsubstituted cinnoline;

when the C ring is substituted with at least two substituents, adjacent two of the at least two substituents are optionally linked together to form one selected from the group of a substituted or unsubstituted C4-C20 alicyclic ring, a substituted or unsubstituted C2-C20 heteroalicyclic ring, a substituted or unsubstituted C6-C20 aromatic ring, and a substituted or unsubstituted C2-C20 heteroaromatic ring;

when the D ring is substituted with at least two substituents, adjacent two of the at least two substituents are optionally linked together to form one selected from the group of a substituted or unsubstituted C4-C20 alicyclic ring, a substituted or unsubstituted C2-C20 heteroalicyclic ring, a substituted or unsubstituted C6-C20 aromatic ring, and a substituted or unsubstituted C2-C20 heteroaromatic ring;

when the E ring is substituted with at least two substituents, adjacent two of the at least two substituents are optionally linked together to form one selected from the group of a substituted or unsubstituted C4-C20 alicyclic ring, a substituted or unsubstituted C2-C20 heteroalicyclic ring, a substituted or unsubstituted C6-C20 aromatic ring, and a substituted or unsubstituted C2-C20 heteroaromatic ring;

when the F ring is substituted with at least two substituents, adjacent two of the at least two substituents are optionally linked together to form one selected from the group of a substituted or unsubstituted C4-C20 alicyclic ring, a substituted or unsubstituted C2-C20 heteroalicyclic ring, a substituted or unsubstituted C6-C20 aromatic ring, and a substituted or unsubstituted C2-C20 heteroaromatic ring;

when the G ring is substituted with at least two substituents, adjacent two of the at least two substituents are optionally linked together to form one selected from the group of a substituted or unsubstituted C4-C20 alicyclic ring, a substituted or unsubstituted C2-C20 heteroalicyclic ring, a substituted or unsubstituted C6-C20 aromatic ring, and a substituted or unsubstituted C2-C20 heteroaromatic ring; and

when the H ring is substituted with at least two substituents, adjacent two of the at least two substituents are optionally linked together to form one selected from the group of a substituted or unsubstituted C4-C20 alicyclic ring, a substituted or unsubstituted C2-C20 heteroalicyclic ring, a substituted or unsubstituted C6-C20 aromatic ring, and a substituted or unsubstituted C2-C20 heteroaromatic ring.


 
14. The organometallic compound as claimed in claim 1, wherein
the organometallic compound is represented by one selected from the group of Formulae 3A-(2), 3A-(6), 3A-(7), and 3A-(8).





wherein, in Formulae 3A-(2), 3A-(6), 3A-(7), and 3A-(8):

M is platinum (Pt); and

R1a, R4a, R5a, R1b, R4b, R5b, R11a to R14a, R11b to R14b, R21a to R28a, and R21b to R28b are each independently selected from the group of a hydrogen atom, a deuterium atom, a halogen atom, a hydroxyl group, a cyano group, a nitro group, an amino group, an amidino group, a hydrazine, a hydrazone, a carboxyl group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphoric acid group or a salt thereof, a C1-C20 alkyl group, and a C1-C20 alkoxy group, a substituted C1-C20 alkyl group, a substituted C1-C20 alkoxy group, a phenyl group, a naphthyl group, an anthryl group, a fluorenyl group, a carbazolyl group, a pyridinyl group, a pyrimidinyl group, a triazinyl group, and a substituted cyclic group that is substituted with at least one selected from the group of:

a deuterium atom, a halogen atom, a hydroxyl group, a cyano group, a nitro group, an amino group, a C1-C20 alkyl group, a C1-C20 alkoxy group, a phenyl group, a naphthyl group, an anthryl group, a fluorenyl group, a carbazolyl group, a pyridinyl group, a pyrimidinyl group, and a triazinyl group;

the substituted C1-C20 alkyl group and the substituted C1-C20 alkoxy group are each substituted with at least one selected from the group of a deuterium atom, a halogen atom, a hydroxyl group, a cyano group, a nitro group, and an amino group;

the substituted cyclic group is selected from the group of a substituted phenyl group, a substituted naphthyl group, a substituted anthryl group, a substituted fluorenyl group, a substituted carbazolyl group, a substituted pyridinyl group, a substituted pyrimidinyl group, and a substituted triazinyl group.


 
15. The organometallic compound of claim 14, wherein:

the organometallic compound is represented by one selected from the group of Formulae 3A-(2), 3A-(6), and 3A-(8); and

R1a = R1b, R4a = R4b, R5a = R5b, R11a = R11b, R12a = R12b, R13a = R13b, R14a = R14b, R21a = R21b, R22a = R22b, R23a = R23b, R24a = R24b, R25a = R25b, R26a = R26b, R27a = R27b, and R28a = R28b.


 
16. The organometallic compound as claimed in claim 1, wherein n is 3, and m is 0.
 
17. The organometallic compound as claimed in claim 1, wherein n is 1, and m is an integer from 1 to 4.
 
18. The organometallic compound as claimed in claim 1, wherein the organometallic compound is one selected from the group of compounds 29 to 36:








 
19. An organic light-emitting device, comprising:

a substrate;

a first electrode;

a second electrode opposite the first electrode; and

an organic layer between the first electrode and the second electrode, the organic layer including an organometallic compound of one of the preceding claims.


 


Ansprüche

1. Organometallische Verbindung, dargestellt durch Formel 1A oder Formel 1C:

wobei in Formel 1A oder 1C:

M ein Übergangsmetall ist;

X1 N oder C(R5) ist;

R1, R4 und R5 jeweils unabhängig voneinander aus der Gruppe aus einem Wasserstoffatom, einem Deuteriumatom, einem Halogenatom, einer Hydroxylgruppe, einer Cyanogruppe, einer Nitrogruppe, einer Aminogruppe, einer Amidinogruppe, einem Hydrazin, einem Hydrazon, einer Carboxylgruppe oder einem Salz derselben, einer Sulfonsäuregruppe oder einem Salz derselben, einer Phosphorsäuregruppe oder einem Salz derselben, einer substituierten oder unsubstituierten C1-C60-Alkylgruppe, einer substituierten oder unsubstituierten C2-C60-Alkenylgruppe, einer substituierten oder unsubstituierten C2-C60-Alkynylgruppe, einer substituierten oder unsubstituierten C1-C60-Alkoxygruppe, einer substituierten oder unsubstituierten C3-C10-Cycloalkylgruppe, einer substituierten oder unsubstituierten C3-C10-Cycloalkenylgruppe, einer substituierten oder unsubstituierten C3-C10-Heterocycloalkylgruppe, einer substituierten oder unsubstituierten C3-C10-Heterocycloalkenylgruppe, einer substituierten oder unsubstituierten C6-C60-Arylgruppe, einer substituierten oder unsubstituierten C6-C60-Aryloxygruppe, einer substituierten oder unsubstituierten C6-C60-Arylthiogruppe, einer substituierten oder unsubstituierten C2-C60-Heteroarylgruppe, -N(Q1)(Q2), -Si(Q3)(Q4)(Q5), -C(=O)(Q6) und einer Bindungsstelle mit einem benachbarten Ligand über eine Einfachbindung oder eine zweiwertige Verbindungsgruppe ausgewählt sind;

der A-Ring und der B-Ring jeweils unabhängig voneinander aus der Gruppe aus einem substituierten oder unsubstituierten alicyclischen C4-C20-Ring, einem substituierten oder unsubstituierten heteroalicyclischen C2-C20-Ring, einem substituierten oder unsubstituierten aromatischen C6-C20-Ring und einem substituierten oder unsubstituierten heteroaromatischen C2-C20-Ring ausgewählt sind,

Q1 bis Q6 jeweils unabhängig voneinander aus der Gruppe aus einem Wasserstoffatom, einer substituierten oder unsubstituierten C1-C60-Alkylgruppe, einer substituierten oder unsubstituierten C6-C60-Arylgruppe und einer substituierten oder unsubstituierten C2-C60-Heteroarylgruppe ausgewählt sind;

n eine Ganzzahl von 1 bis 3 ist;

L ein einzähniger, zweizähniger, dreizähniger oder vierzähniger organischer Ligand ist; und

m eine Ganzzahl von 0 bis 4 ist.


 
2. Organometallische Verbindung nach Anspruch 1, wobei M aus der Gruppe aus Ruthenium (Ru), Rhodium (Rh), Palladium (Pd), Wolfram (W), Rhenium (Re), Osmium (Os), Iridium (Ir) und Platin (Pt) ausgewählt ist.
 
3. Organometallische Verbindung nach Anspruch 1, wobei X1 C(R5) ist.
 
4. Organometallische Verbindung nach Anspruch 1, wobei X1 N ist.
 
5. Organometallische Verbindung nach Anspruch 1, wobei:

X1 C(R5) ist;

R1, R4 und R5 jeweils unabhängig voneinander aus der Gruppe aus einem Wasserstoffatom, einem Deuteriumatom, einem Halogenatom, einer Hydroxylgruppe, einer Cyanogruppe, einer Nitrogruppe, einer Aminogruppe, einer Amidinogruppe, einem Hydrazin, einem Hydrazon, einer Carboxylgruppe oder einem Salz derselben, einer Sulfonsäuregruppe oder einem Salz derselben, einer Phosphorsäuregruppe oder einem Salz derselben, einer Methylgruppe, einer Ethylgruppe, einer n-Propylgruppe, einer i-Propylgruppe, einer n-Butylgruppe, einer i-Butylgruppe, einer t-Butylgruppe, einer Pentylgruppe, einer Hexylgruppe, einer Heptylgruppe, einer Octylgruppe, einer Nonylgruppe, einer Decylgruppe, einer Methoxygruppe, einer Ethoxygruppe, einer Propoxygruppe, einer Butoxygruppe, einer Pentoxygruppe und einer substituierten Gruppe, die mit zumindest einem ausgewählt aus der Gruppe aus einem Deuteriumatom, einem Fluoratom, einer Hydroxylgruppe, einer Cyanogruppe, einer Nitrogruppe und einer Aminogruppe substituiert ist, ausgewählt sind; und

die substituierte Gruppe aus der Gruppe aus einer substituierten Methylgruppe, einer substituierten Ethylgruppe, einer substituierten n-Propylgruppe, einer substituierten i-Propylgruppe, einer substituierten n-Butylgruppe, einer substituierten i-Butylgruppe, einer substituierten t-Butylgruppe, einer substituierten Pentylgruppe, einer substituierten Hexylgruppe, einer substituierten Heptylgruppe, einer substituierten Octylgruppe, einer substituierten Nonylgruppe, einer substituierten Decylgruppe, einer substituierten Methoxygruppe, einer substituierten Ethoxygruppe, einer substituierten Propoxygruppe, einer substituierten Butoxygruppe und einer substituierten Pentoxygruppe ausgewählt ist.


 
6. Organometallische Verbindung nach Anspruch 1, wobei:

X1 N ist,

R1 und R4 jeweils unabhängig voneinander aus der Gruppe aus einem Wasserstoffatom, einem Deuteriumatom, einem Halogenatom, einer Hydroxylgruppe, einer Cyanogruppe, einer Nitrogruppe, einer Aminogruppe, einer Amidinogruppe, einem Hydrazin, einem Hydrazon, einer Carboxylgruppe oder einem Salz derselben, einer Sulfonsäuregruppe oder einem Salz derselben, einer Phosphorsäuregruppe oder einem Salz derselben, einer Methylgruppe, einer Ethylgruppe, einer n-Propylgruppe, einer i-Propylgruppe, einer n-Butylgruppe, einer i-Butylgruppe, einer t-Butylgruppe, einer Pentylgruppe, einer Hexylgruppe, einer Heptylgruppe, einer Octylgruppe, einer Nonylgruppe, einer Decylgruppe, einer Methoxygruppe, einer Ethoxygruppe, einer Propoxygruppe, einer Butoxygruppe, einer Pentoxygruppe und einer substituierten Gruppe, die mit zumindest einem ausgewählt aus der Gruppe aus einem Deuteriumatom, einem Fluoratom, einer Hydroxylgruppe, einer Cyanogruppe, einer Nitrogruppe und einer Aminogruppe substituiert ist, ausgewählt sind; und

die substituierte Gruppe aus der Gruppe aus einer substituierten Methylgruppe, einer substituierten Ethylgruppe, einer substituierten n-Propylgruppe, einer substituierten i-Propylgruppe, einer substituierten n-Butylgruppe, einer substituierten i-Butylgruppe, einer substituierten t-Butylgruppe, einer substituierten Pentylgruppe, einer substituierten Hexylgruppe, einer substituierten Heptylgruppe, einer substituierten Octylgruppe, einer substituierten Nonylgruppe, einer substituierten Decylgruppe, einer substituierten Methoxygruppe, einer substituierten Ethoxygruppe, einer substituierten Propoxygruppe, einer substituierten Butoxygruppe und einer substituierten Pentoxygruppe ausgewählt ist.


 
7. Organometallische Verbindung nach Anspruch 1, wobei:

der A-Ring zumindest eines ist ausgewählt aus der Gruppe aus Benzol, Pentalen, Inden, Naphthalin, Azulen, Heptalen, Indacen, Acenaphthylen, Fluoren, Spirofluoren, Phenalen, Phenanthren, Anthrazen, Fluoranthen, Triphenylen, Pyren, Chrysen und einer substituierten Gruppe, die mit zumindest einem ausgewählt aus der Gruppe aus Folgendem substituiert ist:

einem Deuteriumatom, einem Halogenatom, einer Hydroxylgruppe, einer Cyanogruppe, einer Nitrogruppe, einer Aminogruppe, einer Amidinogruppe, einem Hydrazin, einem Hydrazon, einer Carboxylgruppe oder einem Salz derselben, einer Sulfonsäuregruppe oder einem Salz derselben, einer Phosphorsäuregruppe oder einem Salz derselben, einer C1-C60-Alkylgruppe, einer C1-C60-Alkylgruppe, die mit zumindest einem Halogenatom substituiert ist, einer C2-C60-Alkenylgruppe, einer C2-C60-Alkynylgruppe, einer C1-C60-Alkoxygruppe, einer C3-C10-Cycloalkylgruppe, einer C3-C10-Cycloalkenylgruppe, einer C3-C10-Heterocycloalkylgruppe, einer C3-C10-Heterocycloalkenylgruppe, einer C6-C60-Arylgruppe, einer C6-C60-Aryloxygruppe, einer C6-C60-Arylthiogruppe, einer C2-C60-Heteroarylgruppe, -N(Q11)(Q12) und -Si(Q13)(Q14)Q15),

Q11 bis Q15 jeweils unabhängig voneinander aus der Gruppe aus einem Wasserstoffatom, einer C1-C10-Alkylgruppe, einer C6-C20-Arylgruppe und einer C2-C20-Heteroarylgruppe ausgewählt sind; und

die substituierte Gruppe aus der Gruppe aus einem substituierten Benzol, einem substituierten Pentalen, einem substituierten Inden, einem substituierten Naphthalin, einem substituierten Azulen, einem substituierten Heptalen, einem substituieren Indacen, einem substituierten Acenaphthylen, einem substituierten Fluoren, einem substituierten Spirofluoren, einem substituierten Phenalen, einem substituierten Phenanthren, einem substituierten Anthracen, einem substituierten Fluoranthen, einem substituierten Triphenylen, einem substituierten Pyren und einem substituierten Chrysen ausgewählt ist.


 
8. Organometallische Verbindung nach Anspruch 1, wobei:

der B-Ring zumindest eines ist ausgewählt aus der Gruppe von Cyclopropan, Cyclobutan, Cyclopentan, Cyclohexan, Cycloheptan, Cyclooctan, Cyclopenten, Cyclopentadien, Cyclohexadien, Cycloheptadien, Bicyclo-Heptan, Bicyclo-Octan, Benzol, Pentalen, Inden, Naphthalin, Azulen, Heptalen, Indacen, Acenaphthylen, Fluoren, Spirofluoren, Phenalen, Phenanthren, Anthracen, Fluoranthen, Triphenylen, Pyren, Chrysen und einer substituierten Gruppe, die mit zumindest einem ausgewählt aus der Gruppe aus Folgendem substituiert ist:

einem Deuteriumatom, einem Halogenatom, einer Hydroxylgruppe, einer Cyanogruppe, einer Nitrogruppe, einer Aminogruppe, einer Amidinogruppe, einem Hydrazin, einem Hydrazon, einer Carboxylgruppe oder einem Salz derselben, einer Sulfonsäuregruppe oder einem Salz derselben, einer Phosphorsäuregruppe oder einem Salz derselben, einer C1-C60-Alkylgruppe, einer C1-C60-Alkylgruppe, die mit zumindest einem Halogenatom substituiert ist, einer C2-C60-Alkenylgruppe, einer C2-C60-Alkynylgruppe, einer C1-C60-Alkoxygruppe, einer C3-C10-Cycloalkylgruppe, einer C3-C10-Cycloalkenylgruppe, einer C3-C10-Heterocycloalkylgruppe, einer C3-C10-Heterocycloalkenylgruppe, einer C6-C60-Arylgruppe, einer C6-C60-Aryloxygruppe, einer C6-C60-Arylthiogruppe, einer C2-C60-Heteroarylgruppe, -N(Q11)(Q12) und -Si(Q13)(Q14)Q15);

Q11 bis Q15 jeweils unabhängig voneinander aus der Gruppe aus einem Wasserstoffatom, einer C1-C10-Alkylgruppe, einer C6-C20-Arylgruppe und einer C2-C20-Heteroarylgruppe ausgewählt sind; und

die substituierte Gruppe aus der Gruppe aus einem substituierten Cyclopropan, einem substituierten Cyclobutan, einem substituierten Cyclopentan, einem substituierten Cyclohexan, einem substituierten Cycloheptan, einem substituierten Cyclooctan, einem substituierten Cyclopenten, einem substituierten Cyclopentadien, einem substituierten Cyclohexadien, einem substituierten Cycloheptadien, einem substituierten Bicyclo-Heptan, einem substituierten Bicyclo-Octan, einem substituierten Benzol, einem substituierten Pentalen, einem substituierten Inden, einem substituierten Naphthalin, einem substituierten Azulen, einem substituierten Heptalen, einem substituierten Indacen, einem substituierten Acenaphthylen, einem substituierten Fluoren, einem substituierten Spirofluoren, einem substituierten Phenalen, einem substituierten Phenanthren, einem substituierten Anthracen, einem substituierten Fluoranthen, einem substituierten Triphenylen, einem substituierten Pyren und einem substituierten Chrysen ausgewählt ist.


 
9. Organometallische Verbindung nach Anspruch 1, wobei:

die organometallische Verbindung durch eines ausgewählt aus der Gruppe der Formeln 1A-(1), 1C-(1), 1C-(2), 1C-(3) und 1D-(1) dargestellt ist:



wobei in den Formeln 1A-(1), 1C-(1), 1C-(2), 1C-(3) und 1D-(1):

R1, R4 und R5, R11 bis R14 und R21 bis R28 jeweils unabhängig voneinander ausgewählt sind aus der Gruppe aus einem Wasserstoffatom, einem Deuteriumatom, einem Halogenatom, einer Hydroxylgruppe, einer Cyanogruppe, einer Nitrogruppe, einer Aminogruppe, einer Amidinogruppe, einem Hydrazin, einem Hydrazon, einer Carboxylgruppe oder einem Salz derselben, einer Sulfonsäuregruppe oder einem Salz derselben, einer Phosphorsäuregruppe oder einem Salz derselben, einer C1-C20-Alkylgruppe, einer C1-C20-Alkoxygruppe, einer substituierten C1-C20-Alkylgruppe, einer substituierten C1-C20-Alkoxygruppe, einer Phenylgruppe, einer Naphthylgruppe, einer Anthrylgruppe, einer Fluorenylgruppe, einer Carbazolylgruppe, einer Pyridinylgruppe, einer Pyrimidinylgruppe, einer Triazinylgruppe und einer substituierten cyclischen Gruppe, die mit zumindest einem ausgewählt aus der Gruppe aus Folgendem substituiert ist:

einem Deuteriumatom, einem Halogenatom, einer Hydroxylgruppe, einer Cyanogruppe, einer Nitrogruppe, einer Aminogruppe, einer C1-C20-Alkylgruppe, einer C1-C20-Alkoxygruppe, einer Phenylgruppe, einer Naphthylgruppe, einer Anthrylgruppe, einer Fluorenylgruppe, einer Carbazolylgruppe, einer Pyridinylgruppe, einer Pyrimidinylgruppe und einer Triazinylgruppe;

die substituierte C1-C20-Alkylgruppe und die substituierte C1-C20-Alkoxygruppe jeweils mit zumindest einem ausgewählt aus der Gruppe aus einem Deuteriumatom, einem Halogenatom, einer Hydroxylgruppe, einer Cyanogruppe, einer Nitrogruppe und einer Aminogruppe substituiert sind;

die substituierte cyclische Gruppe aus der Gruppe aus einer substituierten Phenylgruppe, einer substituierten Naphthylgruppe, einer substituierten Anthrylgruppe, einer substituierten Fluorenylgruppe, einer substituierten Carbazolylgruppe, einer substituierten Pyridinylgruppe, einer substituierten Pyrimidinylgruppe und einer substituierten Triazinylgruppe ausgewählt ist;

n eine Ganzzahl von 1 bis 3 ist;

L ein organischer Ligand ist; und

m eine Ganzzahl von 0 bis 4 ist.


 
10. Organometallische Verbindung nach Anspruch 1, wobei:

m 1, 2, 3 oder 4 ist;

zumindest eines von Lm durch eines ausgewählt aus der Gruppe der Formel 2a bis 2F dargestellt ist:



wobei in den Formeln 2A bis 2F:

M1 P oder As ist;

X11a, X11b, X12, X13, X14, X15, X16a, X16b, X16c, X16d, X16e, X16f, X16g, X17a, X17b, X17c und X17d jeweils unabhängig voneinander aus der Gruppe aus C(R40)x, N, O, N(R35), P(R36),(R37), und As(R38)(R39) ausgewählt sind;

R33" und R34" jeweils unabhängig voneinander aus der Gruppe aus einer Einfachbindung, einer Doppelbindung, einer substituierten oder unsubstituierten C1-C5-Alkylengruppe und einer substituierten oder unsubstituierten C2-C5-Alkenylengruppe ausgewählt sind;

R31, R32a, R32b, R32c, R33a, R33b, R34, R35, R36, R37, R38, R39 und R40 jeweils unabhängig voneinander aus der Gruppe aus einem Wasserstoffatom, einem Deuteriumatom, einem Halogenatom, einer Hydroxylgruppe, einer Cyanogruppe, einer Nitrogruppe, einer Aminogruppe, einer Amidinogruppe, einem Hydrazin, einem Hydrazon, einer Carboxylgruppe oder einem Salz derselben, einer Sulfonsäuregruppe oder einem Salz derselben, einer Phosphorsäuregruppe oder einem Salz derselben, einer substituierten oder unsubstituierten C1-C60-Alkylgruppe, einer substituierten oder unsubstituierten C2-C60-Alkenylgruppe, einer substituierten oder unsubstituierten C2-C60-Alkynylgruppe, einer substituierten oder unsubstituierten C1-C60-Alkoxygruppe, einer substituierten oder unsubstituierten C3-C10-Cycloalkylgruppe, einer substituierten oder unsubstituierten C3-C10-Cycloalkenylgruppe, einer substituierten oder unsubstituierten C3-C10-Heterocycloalkylgruppe, einer substituierten oder unsubstituierten C3-C10-Heterocycloalkenylgruppe, einer substituierten oder unsubstituierten C6-C60-Arylgruppe und einer substituierten oder unsubstituierten C2-C60-Heteroarylgruppe ausgewählt sind;

der C-Ring, der D-Ring, der E-Ring, der F-Ring, der G-Ring und der H-Ring jeweils unabhängig voneinander aus der Gruppe aus einem 5-gliedrigen bis 20-gliedrigen gesättigten Ring und einem 5-gliedrigen bis 20-gliedrigen ungesättigten Ring ausgewählt sind;

x eine Ganzzahl von 0 bis 2 ist; und

* eine Bindungsstelle mit M in Formel 1 ist.


 
11. Organometallische Verbindung nach Anspruch 10, wobei:

R31, R32a, R32b, R32c, R33a, R33b, R34, R35, R36, R37, R38 und R39 jeweils unabhängig voneinander ausgewählt sind aus der Gruppe aus einem Wasserstoffatom, einem Deuteriumatom, einem Halogenatom, einer Hydroxylgruppe, einer Cyanogruppe, einer Nitrogruppe, einer Aminogruppe, einer Amidinogruppe, einem Hydrazin, einem Hydrazon, einer Carboxylgruppe oder einem Salz derselben, einer Sulfonsäuregruppe oder einem Salz derselben, einer Phosphorsäuregruppe oder einem Salz derselben, einer C1-C20-Alkylgruppe, einer C1-C20-Alkoxygruppe, einer substituierten C1-C20-Alkylgruppe, einer substituierten C1-C20-Alkoxygruppe, einer Phenylgruppe, einer Napthylgruppe, einer Anthrylgruppe, einer Fluorenylgruppe, einer Carbazolylgruppe, einer Pyridinylgruppe, einer Pyrimidinylgruppe und einer Triazinylgruppe und einer substituierten cyclischen Gruppe, die mit zumindest einem ausgewählt aus der Gruppe aus Folgendem substituiert ist:

einem Deuteriumatom, einem Halogenatom, einer Hydroxylgruppe, einer Cyanogruppe, einer Nitrogruppe, einer Aminogruppe, einer C1-C20-Alkylgruppe, einer C1-C20-Alkoxygruppe, einer Phenylgruppe, einer Naphthylgruppe, einer Anthrylgruppe, einer Fluorenylgruppe, einer Carbazolylgruppe, einer Pyridinylgruppe, einer Pyrimidinylgruppe und einer Triazinylgruppe;

die substituierte C1-C20-Alkylgruppe und die substituierte C1-C20-Alkoxygruppe jeweils mit zumindest einem ausgewählt aus der Gruppe aus einem Deuteriumatom, einem Halogenatom, einer Hydroxylgruppe, einer Cyanogruppe, einer Nitrogruppe und einer Aminogruppe substituiert sind; und

die substituierte cyclische Gruppe aus der Gruppe aus einer substituierten Phenylgruppe, einer substituierten Naphthylgruppe, einer substituierten Anthrylgruppe, einer substituierten Fluorenylgruppe, einer substituierten Carbazolylgruppe, einer substituierten Pyridinylgruppe, einer substituierten Pyrimidinylgruppe und einem substituierten Triazinyl ausgewählt ist.


 
12. Organometallische Verbindung nach Anspruch 10, wobei:

das zumindest eine von Lm durch die Formel 2C dargestellt ist; und

X11a und X11b in Formel 2C jeweils unabhängig voneinander aus der Gruppe aus O, P(R36)(R37) und As (R38)(R39) ausgewählt sind.


 
13. Organometallische Verbindung nach Anspruch 10, wobei:

das zumindest eine von Lm durch eines ausgewählt aus der Gruppe der Formeln 2D, 2E und 2F dargestellt ist;

der C-Ring, der D-Ring, der E-Ring, der F-Ring, der G-Ring und der H-Ring in den Formeln 2D, 2E und 2F jeweils unabhängig voneinander ein substituiertes oder unsubstituiertes Benzol, ein substituiertes oder unsubstituiertes Pentalen, ein substituiertes oder unsubstituiertes Inden, ein substituiertes oder unsubstituiertes Naphthalin, ein substituiertes oder unsubstituiertes Azulen, ein subsituiertes oder unsubstituiertes Heptalen, ein substituiertes oder unsubstituiertes Indacen, ein substituiertes oder unsubstituiertes Acenaphthylen, ein substituiertes oder unsubstituiertes Fluoren, ein substituiertes oder unsubstituiertes Spirofluoren, ein substituiertes oder unsubstituiertes Phenalen, ein substituiertes oder unsubstituiertes Phenanthren, ein substituiertes oder unsubstituiertes Anthracen, ein substituiertes oder unsubstituiertes Fluoranthen, ein substituiertes oder unsubstituiertes Triphenylen, ein substituiertes oder unsubstituiertes Pyren, ein substituiertes oder unsubstituiertes Chrysen, ein substituiertes oder unsubstituiertes Pyrrol, ein substituiertes oder unsubstituiertes Imidazol, ein substituiertes oder unsubstituiertes Pyrazol, ein substituiertes oder unsubstituiertes Isothiazol, ein substituiertes oder unsubstituiertes Isoxazol, ein substituiertes oder unsubstituiertes Pyridin, ein substituiertes oder unsubstituiertes Pyrazin, ein substituiertes oder unsubstituiertes Pyrimidin, ein substituiertes oder unsubstituiertes Pyridazin, ein substituiertes oder unsubstituiertes Isoindol, ein substituiertes oder unsubstituiertes Indol, ein substituiertes oder unsubstituiertes Indazol, ein substituiertes oder unsubstituiertes Purin, ein substituiertes oder unsubstituiertes Isochinolin, ein substituiertes oder unsubstituiertes Chinolin, ein substituiertes oder unsubstituiertes Phthalazin, ein substituiertes oder unsubstituiertes Chinoxalin, ein substituiertes oder unsubstituiertes Chinazolin oder ein substituiertes oder unsubstituiertes Cinnolin sind;

wenn der C-Ring mit zumindest zwei Substituenten substituiert wird, benachbarte zwei der zumindest zwei Substituenten optional miteinander verknüpft werden, um eines ausgewählt aus der Gruppe aus einem substituierten oder unsubstituierten alicyclischen C4-C20-Ring, einem substituierten oder unsubstituierten heteroalicyclischen C2-C20-Ring, einem substituierten oder unsubstituierten aromatischen C6-C20-Ring und einem substituierten oder unsubstituierten heteroaromatischen C2-C20-Ring zu bilden;

wenn der D-Ring mit zumindest zwei Substituenten substituiert wird, benachbarte zwei der zumindest zwei Substituenten optional miteinander verknüpft werden, um eines ausgewählt aus der Gruppe aus einem substituierten oder unsubstituierten alicyclischen C4-C20-Ring, einem substituierten oder unsubstituierten heteroalicyclischen C2-C20-Ring, einem substituierten oder unsubstituierten aromatischen C6-C20-Ring und einem substituierten oder unsubstituierten heteroaromatischen C2-C20-Ring zu bilden;

wenn der E-Ring mit zumindest zwei Substituenten substituiert wird, benachbarte zwei der zumindest zwei Substituenten optional miteinander verknüpft werden, um eines ausgewählt aus der Gruppe aus einem substituierten oder unsubstituierten alicyclischen C4-C20-Ring, einem substituierten oder unsubstituierten heteroalicyclischen C2-C20-Ring, einem substituierten oder unsubstituierten aromatischen C6-C20-Ring und einem substituierten oder unsubstituierten heteroaromatischen C2-C20-Ring auszubilden,

wenn der F-Ring mit zumindest zwei Substituenten substituiert wird, benachbarte zwei der zumindest zwei Substituenten optional miteinander verknüpft werden, um eines ausgewählt aus der Gruppe aus einem substituierten oder unsubstituierten alicyclischen C4-C20-Ring, einem substituierten oder unsubstituierten heteroalicyclischen C2-C20-Ring, einem substituierten oder unsubstituierten aromatischen C6-C20-Ring und einem substituierten oder unsubstituierten heteroaromatischen C2-C20-Ring zu bilden;

wenn der G-Ring mit zumindest zwei Substituenten substituiert wird, benachbarte zwei der zumindest zwei Substituenten optional miteinander verknüpft werden, um eines ausgewählt aus der Gruppe aus einem substituierten oder unsubstituierten alicyclischen C4-C20-Ring, einem substituierten oder unsubstituierten heteroalicyclischen C2-C20-Ring, einem substituierten oder unsubstituierten aromatischen C6-C20-Ring und einem substituierten oder unsubstituierten heteroaromatischen C2-C20-Ring zu bilden; und

wenn der H-Ring mit zumindest zwei Substituenten substituiert wird, benachbarte zwei der zumindest zwei Substituenten optional miteinander verknüpft werden, um eines ausgewählt aus der Gruppe aus einem substituierten oder unsubstituierten alicyclischen C4-C20-Ring, einem substituierten oder unsubstituierten heteroalicyclischen C2-C20-Ring, einem substituierten oder unsubstituierten aromatischen C6-C20-Ring und einem substituierten oder unsubstituierten heteroaromatischen C2-C20-Ring zu bilden.


 
14. Organometallische Verbindung nach Anspruch 1, wobei
die organometallische Verbindung durch eines ausgewählt aus der Gruppe der Formeln 3A-(2), 3A-(6), 3A-(7) und 3A-(8) dargestellt ist:







wobei in den Formeln 3A-(2), 3A-(6), 3A-(7) und 3A-(8):

M Platin (Pt) ist; und

R1a, R4a, R5a, R1b, R4b, R5b, R11a bis R14a, R11b bis R14b, R21a bis R28a und R21b bis R28b jeweils unabhängig voneinander ausgewählt sind aus der Gruppe aus einem Wasserstoffatom, einem Deuteriumatom, einem Halogenatom, einer Hydroxylgruppe, einer Cyanogruppe, einer Nitrogruppe, einer Aminogruppe, einer Amidinogruppe, einem Hydrazin, einem Hydrazon, einer Carboxylgruppe oder einem Salz derselben, einer Sulfonsäuregruppe oder einem Salz derselben, einer Phosphorsäuregruppe oder einem Salz derselben, einer C1-C20-Alkylgruppe und einer C1-C20-Alkoxygruppe, einer substituierten C1-C20-Alkylgruppe, einer substituierten C1-C20-Alkoxygruppe, einer Phenylgruppe, einer Naphthylgruppe, einer Anthrylgruppe, einer Fluorenylgruppe, einer Carbazolylgruppe, einer Pyridinylgruppe, einer Pyrimidinylgruppe, einer Triazinylgruppe und einer substituierten cyclischen Gruppe, die mit zumindest einem aus der Gruppe aus Folgendem substituiert ist:

einem Deuteriumatom, einem Halogenatom, einer Hydroxylgruppe, einer Cyanogruppe, einer Nitrogruppe, einer Aminogruppe, einer C1-C20-Alkylgruppe, einer C1-C20-Alkoxygruppe, einer Phenylgruppe, einer Napthtylgruppe, einer Anthrylgruppe, einer Fluorenylgruppe, einer Carbazolylgruppe, einer Pyridinylgruppe, einer Pyrimidinylgruppe und einer Triazinylgruppe;

die substituierte C1-C20-Alkylgruppe und die substituierte C1-C20-Alkoxygruppe jeweils mit zumindest einem ausgewählt aus der Gruppe aus einem Deuteriumatom, einem Halogenatom, einer Hdroxylgruppe, einer Cyanogruppe, einer Nitrogruppe und einer Aminogruppe substituiert sind;

die substituierte cyclische Gruppe aus der Gruppe aus einer substituierten Phenylgruppe, einer substituierten Naphthylgruppe, einer substituierten Anthrylgruppe, einer substituierten Fluorenylgruppe, einer substituierten Carbazolylgruppe, einer substituierten Pyridinylgruppe, einer substituierten Pyrimidinylgruppe und einer substituierten Triazinylgruppe ausgewählt ist.


 
15. Organometallische Verbindung nach Anspruch 14, wobei:

die organometallische Verbindung durch eines ausgewählt aus der Gruppe der Formeln 3A-(2), 3A-(6) und 3A-(8) dargestellt ist; und

R1a = R1b, R4a = R4b, R5a = R5b, R11a = R11b, R12a = R12b, R13a = R13b, R14a = R14b, R21a = R21b, R22a = R22b, R23a = R23b, R24a = R24b, R25a = R25b, R26a = R26b, R27a = R27b und R28a = R28b.


 
16. Organometallische Verbindung nach Anspruch 1, wobei n 3 ist und m 0 ist.
 
17. Organometallische Verbindung nach Anspruch 1, wobei n1 ist und m eine Ganzzahl von 1 bis 4 ist.
 
18. Organometallische Verbindung nach Anspruch 1, wobei die organometallische Verbindung eine ausgewählt aus der Gruppe der Verbindungen 29 bis 36 ist:








 
19. Organische lichtemittierende Vorrichtung, aufweisend:

ein Substrat;

eine erste Elektrode;

eine zweite Elektrode gegenüber der ersten Elektrode; und

eine organische Schicht zwischen der ersten Elektrode und der zweiten Elektrode, wobei die organische Schicht eine organometallische Verbindung nach einem der vorhergehenden Ansprüche aufweist.


 


Revendications

1. Composé organométallique représenté par la formule 1A ou la formule 1C

où, dans la formule 1A ou AC :

M est un métal de transition

X1 est N ou C(R5) ;

R1, R4 et R5 sont chacun indépendamment choisis dans le groupe constitué par un atome d'hydrogène, un atome de deutérium, un atome d'halogène, un groupe hydroxyle, un groupe cyano, un groupe nitro, un groupe amino, un groupe amidino, une hydrazine, une hydrazone, un groupe carboxyle ou un de ses sels, un groupe acide sulfonique ou un de ses sels, un groupe acide phosphorique ou un de ses sels, un groupe alkyle en C1 à C60 substitué ou non substitué, un groupe alcényle en C2 à C60 substitué ou non substitué, un groupe alcynyle en C2 à C60 substitué ou non substitué, un groupe alkoxy en C1 à C60 substitué ou non substitué, un groupe cycloalkyle en C3 à C10 substitué ou non substitué, un groupe cycloalcényle en C3 à C10 substitué ou non substitué, un groupe hétérocycloalkyle en C3 à C10 substitué ou non substitué, un groupe hétérocycloalcényle en C3 à C10 substitué ou non substitué, un groupe aryle en C6 à C60 substitué ou non substitué, un groupe aryloxy en C6 à C60 substitué ou non substitué, un groupe arylthio en C6 à C60 substitué ou non substitué, un groupe hétéroaryle en C2 à C60 substitué ou non substitué, -N(Q1)(Q2), -Si(Q3)(Q4)(Q5), -C(=O)(Q6) et un site de liaison avec un ligand adjacent via une liaison simple ou un groupe de liaison divalent ;

le noyau A et le noyau B sont chacun indépendamment choisis dans le groupe constitué par un noyau alicyclique en C4 à C20 substitué ou non substitué, un noyau hétéroalicyclique en C2 à C20 substitué ou non substitué, un noyau aromatique en C6 à C20 substitué ou non substitué et un noyau hétéroaromatique en C2 à C20 substitué ou non substitué ;

Q1 à Q6 sont choisis chacun indépendamment dans le groupe constitué par un atome d'hydrogène, un groupe alkyle en C1 à C60 substitué ou non substitué, un groupe aryle en C1 à C60 substitué ou non substitué et un groupe hétéroaryle en C2 à C60 substitué ou non substitué ;

n est un nombre entier de 1 à 3 ;

L est un ligand organique monodentate, bidentate, tridentate ou tétradentate ; et

m est un nombre entier de 0 à 4.


 
2. Composé organométallique selon la revendication 1, dans lequel M est choisi dans le groupe constitué par le ruthénium (Ru), le rhodium (Rh), le palladium (Pd), le tungstène (W), le rhénium (Re), l'osmium (Os), l'iridium (Ir) et le platine (Pt).
 
3. Composé organométallique selon la revendication 1, dans lequel X1 est C(R5).
 
4. Composé organométallique selon la revendication 1, dans lequel X1 est N.
 
5. Composé organométallique selon la revendication 1, dans lequel :

X1 est C(R5) ;

R1, R4 et R5 sont chacun indépendamment choisis dans le groupe constitué par un atome d'hydrogène, un atome de deutérium, un atome d'halogène, un groupe hydroxyle, un groupe cyano, un groupe nitro, un groupe amino, un groupe amidino, une hydrazine, une hydrazone, un groupe carboxyle ou un de ses sels, un groupe acide sulfonique ou un de ses sels, un groupe acide phosphorique ou un de ses sels, un groupe méthyle, un groupe éthyle, un groupe n-propyle, un groupe isopropyle, un groupe n-butyle, un groupe isobutyle, un groupe tertiobutyle, un groupe pentyle, un groupe hexyle, un groupe heptyle, un groupe octyle, un groupe nonyle, un groupe décyle, un groupe méthoxy, un groupe éthoxy, un groupe propoxy, un groupe butoxy, un groupe pentoxy, et un groupe substitué qui est substitué avec au moins un substituant choisi dans le groupe constitué par un atome de deutérium, un atome de fluor, un groupe hydroxyle, un groupe cyano, un groupe nitro et un groupe amino ; et

le groupe substitué est choisi dans le groupe constitué par un groupe méthyle substitué, un groupe éthyle substitué, un groupe n-propyle substitué, un groupe isopropyle substitué, un groupe n-butyle substitué, un groupe isobutyle substitué, un groupe tertiobutyle substitué, un groupe pentyle substitué, un groupe hexyle substitué, un groupe heptyle substitué, un groupe octyle substitué, un groupe nonyle substitué, un groupe décyle substitué, un groupe méthoxy substitué, un groupe éthoxy substitué, un groupe propoxy substitué, un groupe butoxy substitué et un groupe pentoxy substitué.


 
6. Composé organométallique selon la revendication 1, dans lequel :

X1 est N ;

R1 et R4 sont chacun indépendamment choisis dans le groupe constitué par un atome d'hydrogène, un atome de deutérium, un atome d'halogène, un groupe hydroxyle, un groupe cyano, un groupe nitro, un groupe amino, un groupe amidino, une hydrazine, une hydrazone, un groupe carboxyle ou un de ses sels, un groupe acide sulfonique ou un de ses sels, un groupe acide phosphorique ou un de ses sels, un groupe méthyle, un groupe éthyle, un groupe n-propyle, un groupe isopropyle, un groupe n-butyle, un groupe isobutyle, un groupe tertiobutyle, un groupe pentyle, un groupe hexyle, un groupe heptyle, un groupe octyle, un groupe nonyle, un groupe décyle, un groupe méthoxy, un groupe éthoxy, un groupe propoxy, un groupe butoxy et un groupe pentoxy, et un groupe substitué qui est substitué avec au moins un substituant choisi dans le groupe constitué par un atome de deutérium, un atome de fluor, un groupe hydroxyle, un groupe cyano, un groupe nitro et un groupe amino ; et

le groupe substitué est choisi dans le groupe constitué par un groupe méthyle substitué, un groupe éthyle substitué, un groupe n-propyle substitué, un groupe isopropyle substitué, un groupe n-butyle substitué, un groupe isobutyle substitué, un groupe tertiobutyle substitué, un groupe pentyle substitué, un groupe hexyle substitué, un groupe heptyle substitué, un groupe octyle substitué, un groupe nonyle substitué, un groupe décyle substitué, un groupe méthoxy substitué, un groupe éthoxy substitué, un groupe propoxy substitué, un groupe butoxy substitué et un groupe pentoxy substitué.


 
7. Composé organométallique selon la revendication 1, dans lequel :

le noyau A est au moins un noyau choisi dans le groupe constitué par le benzène, le pentalène, l'indène, le naphtalène, l'azulène, l'heptalène, l'indacène, l'acénaphtylène, le fluorène, le spiro-fluorène, le phénalène, le phénanthrène, l'anthracène, le fluoranthène, le triphénylène, le pyrène, le chrysène, et un groupe substitué qui est substitué avec au moins un substituant choisi dans le groupe constitué par :

un atome de deutérium, un atome d'halogène, un groupe hydroxyle, un groupe cyano, un groupe nitro, un groupe amino, un groupe amidino, une hydrazine, une hydrazone, un groupe carboxyle ou un de ses sels, un groupe acide sulfonique ou un de ses sels, un groupe acide phosphorique ou un de ses sels, un groupe alkyle en C1 à C60, un groupe alkyle en C1 à C60 substitué avec au moins un atome d'halogène, un groupe alcényle en C2 à C60, un groupe alcynyle en C2 à C60, un groupe alkoxy en C1 à C60, un groupe cycloalkyle en C3 à C10, un groupe cycloalcényle en C3 à C10, un groupe hétérocycloalkyle en C3 à C10, un groupe hétérocycloalcényle en C3 à C10, un groupe aryle en C6 à C60, un groupe aryloxy en C6 à C60, un groupe arylthio en C6 à C60, un groupe hétéroaryle en C2 à C60, -N(Q11)(Q12) et -Si(Q13)(Q14)(Q15) ;

Q11 à Q15 sont chacun indépendamment choisis dans le groupe constitué par un atome d'hydrogène, un groupe alkyle en C1 à C10, un groupe aryle en C6 à C20 et un groupe hétéroaryle en C2 à C20 ; et

le groupe substitué est choisi dans le groupe constitué par un benzène substitué, un pentalène substitué, un indène substitué, un naphtalène substitué, un azulène substitué, un heptalène substitué, un indacène substitué, un acénaphtylène substitué, un fluorène substitué, un spiro-fluorène substitué, un phénalène substitué, un phénanthrène substitué, un anthracène substitué, un fluoranthène substitué, un triphénylène substitué, un pyrène substitué et un chrysène substitué.


 
8. Composé organométallique selon la revendication 1, dans lequel :

le noyau B est au moins un noyau choisi dans le groupe consistant en cyclopropane, cyclobutane, cyclopentane, un cyclohexane, cycloheptane, un cyclooctane, cyclopentène, cyclopentadiène, cyclohexadiène, cycloheptadiène, bicycloheptane, bicyclo-octane, benzène, pentalène, indène, naphtalène, azulène, heptalène, indacène, acénaphtylène, fluorène, spiro-fluorène, phénalène, phénanthrène, anthracène, fluoranthène, un triphénylène, pyrène, chrysène, et un groupe substitué qui est substitué avec au moins un substituant choisi dans le groupe constitué par :

un atome de deutérium, un atome d'halogène, un groupe hydroxyle, un groupe cyano, un groupe nitro, un groupe amino, un groupe amidino, une hydrazine, une hydrazone, un groupe carboxyle ou un de ses sels, un groupe acide sulfonique ou un de ses sels, un groupe acide phosphorique ou un de ses sels, un groupe alkyle en C1 à C60, un groupe alkyle en C1 à C60 substitué avec au moins un atome d'halogène, un groupe alcényle en C2 à C60, un groupe alcynyle en C2 à C60, un groupe alkoxy en C1 à C60, un groupe cycloalkyle en C3 à C10, un groupe cycloalcényle en C3 à C10, un groupe hétérocycloalkyle en C3 à C10, un groupe hétérocycloalcényle en C3 à C10, un groupe aryle en C6 à C60, un groupe aryloxy en C6 à C60, un groupe arylthio en C6 à C60, un groupe hétéroaryle en C2 à C60, -N(Q11)(Q12) et -Si(Q13)(Q14)(Q15).

Q11 à Q15 sont chacun indépendamment choisis dans le groupe constitué par un atome d'hydrogène, un groupe alkyle en C1 à C10, un groupe aryle en C6 à C20 et un groupe hétéroaryle en C2 à C20 ;

le groupe substitué est choisi dans le groupe constitué par un cyclopropane substitué, un cyclobutane substitué, un cyclopentane substitué, un cyclohexane substitué, un cycloheptane substitué, un cyclooctane substitué, un cyclopentène substitué, un cyclopentadiène substitué, un cyclohexadiène substitué, un cycloheptadiène substitué, un bicyclo-heptane substitué, un bicyclo-octane substitué, un benzène substitué, un pentalène substitué, un indène substitué, un naphtalène substitué, un azulène substitué, un heptalène substitué, un indacène substitué, un acénaphtylène substitué, un fluorène substitué, un spiro-fluorène substitué, un phénalène substitué, un phénanthrène substitué, un anthracène substitué, un fluoranthène substitué, un triphénylène substitué, un pyrène substitué et un chrysène substitué.


 
9. Composé organométallique selon la revendication 1 :

le composé organométallique étant représenté par un composé choisi dans le groupe constitué par les formules 1A-(1), 1C-(1), 1C-(2), 1C-(3) et 1D-(1) :





où, dans les formules 1A-(1), 1C-(1), 1C-(2), 1C-(3) et 1D-(1) :

R1, R4 et R5, R11 à R14 et R21 à R28 sont chacun indépendamment choisis dans le groupe constitué par un atome d'hydrogène, un atome de deutérium, un atome d'halogène, un groupe hydroxyle, un groupe cyano, un groupe nitro, un groupe amino, un groupe amidino, une hydrazine, une hydrazone, un groupe carboxyle ou un de ses sels, un groupe acide sulfonique ou un de ses sels, un groupe acide phosphorique ou un de ses sels, un groupe alkyle en C1 à C20, un groupe alkoxy en C1 à C20, un groupe alkyle en C1 à C20 substitué, un groupe alkoxy en C1 à C20 substitué, un groupe phényle, un groupe naphtyle, un groupe anthryle, un groupe fluorényle, un groupe carbazolyle, un groupe pyridinyle, un groupe pyrimidinyle, un groupe triazinyle, et un groupe cyclique substitué qui est substitué avec au moins un substituant choisi dans le groupe constitué par :

un atome de deutérium, un atome d'halogène, un groupe hydroxyle, un groupe cyano, un groupe nitro, un groupe amino, un groupe alkyle en C1 à C20, un groupe alkoxy en C1 à C20, un groupe phényle, un groupe naphtyle, un groupe anthryle, un groupe fluorényle, un groupe carbazolyle, un groupe pyridinyle, un groupe pyrimidinyle et un groupe triazinyle ;

le groupe alkyle en C1 à C20 substitué et le groupe alkoxy en C1 à C20 substitué sont chacun substitué avec au moins un substituant choisi dans le groupe constitué par un atome de deutérium, un atome d'halogène, un groupe hydroxyle, un groupe cyano, un groupe nitro et un groupe amino ;

le groupe cyclique substitué est choisi dans le groupe constitué par un groupe phényle substitué, un groupe naphtyle substitué, un groupe anthryle substitué, un groupe fluorényle substitué, un groupe carbazolyle substitué, un groupe pyridinyle substitué, un groupe pyrimidinyle substitué et un groupe triazinyle substitué ;

n est un nombre entier de 1 à 3 ;

L est un ligand organique ; et

m est un nombre entier de 0 à 4.


 
10. Composé organométallique selon la revendication 1, dans lequel :

m est 1, 2, 3 ou 4 ;

au moins un parmi Lm est représenté par un ligand choisi dans le groupe constitué par les formules 2A à 2F :



où, dans les formules 2A à 2F :

M1 est P ou As ;

X11a, X11b, X12, X13, X14, X15, X16a, X16b, X16c, X16d, X16e, X16f, X16g, X17a, X17b, X17c et X17d sont chacun indépendamment choisi dans le groupe constitué par C(R40)x, N, O, N(R35), P(R36)(R37) et As(R38)(R39) ;

R33" et R34" sont chacun indépendamment choisis dans le groupe constitué par une liaison simple, une double liaison, un groupe alkylène en C1 à C5 substitué ou non substitué et un groupe alcénylène en C2 à C5 substitué ou non substitué ;

R31, R32a, R32b, R32c, R33a, R33b, R34, R35, R36, R37, R38, R39 et R40 sont chacun indépendamment choisis dans le groupe constitué par un atome d'hydrogène, un atome de deutérium, un atome d'halogène, un groupe hydroxyle, un groupe cyano, un groupe nitro, un groupe amino, un groupe amidino, une hydrazine, une hydrazone, un groupe carboxyle ou un de ses sels, un groupe acide sulfonique ou un de ses sels, un groupe acide phosphorique ou un de ses sels, un groupe alkyle en C1 à C60 substitué ou non substitué, un groupe alcényle en C2 à C60 substitué ou non substitué, un groupe alcynyle en C2 à C60 substitué ou non substitué, un groupe alkoxy en C1 à C60 substitué ou non substitué, un groupe cycloalkyle en C3 à C10 substitué ou non substitué, un groupe cycloalcényle en C3 à C10 substitué ou non substitué, un groupe hétérocycloalkyle en C3 à C10 substitué ou non substitué, un groupe hétérocycloalcényle en C3 à C10 substitué ou non substitué, un groupe aryle en C6 à C60 substitué ou non substitué et un groupe hétéroaryle en C2 à C60 substitué ou non substitué ;

le noyau C, le noyau D, le noyau E, le noyau F, le noyau G et le noyau H sont chacun indépendamment choisis dans le groupe constitué par un noyau saturé penta- à icosagonal et un noyau insaturé penta- à icosagonal ;

x est un nombre entier de 0 à 2 ; et

* est un site de liaison avec M dans la formule 1.


 
11. Composé organométallique selon la revendication 10, dans lequel :

R31, R32a, R32b, R32c, R33a, R33b, R34, R35, R36, R37, R38 et R39 sont chacun indépendamment choisis dans le groupe constitué par un atome d'hydrogène, un atome de deutérium, un atome d'halogène, un groupe hydroxyle, un groupe cyano, un groupe nitro, un groupe amino, un groupe amidino, une hydrazine, une hydrazone, un groupe carboxyle ou un de ses sels, un groupe acide sulfonique ou un de ses sels, un groupe acide phosphorique ou un de ses sels, un groupe alkyle en C1 à C20, un groupe alkoxy en C1 à C20, un groupe alkyle en C1 à C20 substitué, un groupe alkoxy en C1 à C20 substitué, un groupe phényle, un groupe naphtyle, un groupe anthryle, un groupe fluorényle, un groupe carbazolyle, un groupe pyridinyle, un groupe pyrimidinyle, un groupe triazinyle, et un groupe cyclique substitué qui est substitué avec au moins un substituant choisi dans le groupe constitué par :

un atome de deutérium, un atome d'halogène, un groupe hydroxyle, un groupe cyano, un groupe nitro, un groupe amino, un groupe alkyle en C1 à C20, un groupe alkoxy en C1 à C20, un groupe phényle, un groupe naphtyle, un groupe anthryle, un groupe fluorényle, un groupe carbazolyle, un groupe pyridinyle, un groupe pyrimidinyle et un groupe triazinyle ;

le groupe alkyle en C1 à C20 substitué et le groupe alkoxy en C1 à C20 substitué sont chacun substitués avec un substituant choisi dans le groupe constitué par un atome de deutérium, un atome d'halogène, un groupe hydroxyle, un groupe cyano, un groupe nitro et un groupe amino ; et

le groupe cyclique substitué est choisi dans le groupe constitué par un groupe phényle substitué, un groupe naphtyle substitué, un groupe anthryle substitué, un groupe fluorényle substitué, un groupe carbazolyle substitué, un groupe pyridinyle substitué, un groupe pyrimidinyle substitué et un groupe triazinyle substitué.


 
12. Composé organométallique selon la revendication 10, dans lequel :

l'au moins un de Lm est représenté par la formule 2C ; et

X11a et X11b dans la formule 2C sont chacun indépendamment choisis dans le groupe constitué par O, P(R36)(R37) et As(R38)(R39).


 
13. Composé organométallique selon la revendication 10, dans lequel :

l'au moins un de Lm est représenté par un ligand choisi dans le groupe des formules 2D, 2E et 2F ;

le noyau C, le noyau D, le noyau E, le noyau F, le noyau G et le noyau H dans les formules 2D, 2E et 2F sont chacun indépendamment un benzène substitué ou non substitué, un pentalène substitué ou non substitué, un indène substitué ou non substitué, un naphtalène substitué ou non substitué, un azulène substitué ou non substitué, un heptalène substitué ou non substitué, un indacène substitué ou non substitué, un acénaphtylène substitué ou non substitué, un fluorène substitué ou non substitué, un spiro-fluorène substitué ou non substitué, un phénalène substitué ou non substitué, un phénanthrène substitué ou non substitué, un anthracène substitué ou non substitué, un fluoranthène substitué ou non substitué, un triphénylène substitué ou non substitué, un pyrène substitué ou non substitué, un chrysène substitué ou non substitué, un pyrrole substitué ou non substitué, un imidazole substitué ou non substitué, un pyrazole substitué ou non substitué, un isothiazole substitué ou non substitué, un isoxazole substitué ou non substitué, une pyridine substituée ou non substituée, une pyrazine substituée ou non substituée, une pyrimidine substituée ou non substituée, une pyridazine substituée ou non substituée, un isoindole substitué ou non substitué, un indole substitué ou non substitué, un indazole substitué ou non substitué, une purine substituée ou non substituée, une isoquinoléine substituée ou non substituée, une quinoléine substituée ou non substituée, une phtalazine substituée ou non substituée, une quinoxaline substituée ou non substituée, une quinazoline substituée ou non substituée ou une cinnoline substituée ou non substituée ;

quand le noyau C est substitué avec au moins deux substituants, deux adjacents des au moins deux substituants sont éventuellement liés ensemble pour former un noyau choisi dans le groupe constitué par un noyau alicyclique en C4 à C20 substitué ou non substitué, un noyau hétéroalicyclique en C2 à C20 substitué ou non substitué, un noyau aromatique en C6 à C20 substitué ou non substitué, et un noyau hétéroaromatique en C2 à C20 substitué ou non substitué ;

quand le noyau D est substitué avec au moins deux substituants, deux adjacents des au moins deux substituants sont éventuellement liés ensemble pour former un noyau choisi dans le groupe constitué par un noyau alicyclique en C4 à C20 substitué ou non substitué, un noyau hétéroalicyclique en C2 à C20 substitué ou non substitué, un noyau aromatique en C6 à C20 substitué ou non substitué, et un noyau hétéroaromatique en C2 à C20 substitué ou non substitué ;

quand le noyau E est substitué avec au moins deux substituants, deux adjacents des au moins deux substituants sont éventuellement liés ensemble pour former un noyau choisi dans le groupe constitué par un noyau alicyclique en C4 à C20 substitué ou non substitué, un noyau hétéroalicyclique en C2 à C20 substitué ou non substitué, un noyau aromatique en C6 à C20 substitué ou non substitué, et un noyau hétéroaromatique en C2 à C20 substitué ou non substitué ;

quand le noyau F est substitué avec au moins deux substituants, deux adjacents des au moins deux substituants sont éventuellement liés ensemble pour former un noyau choisi dans le groupe constitué par un noyau alicyclique en C4 à C20 substitué ou non substitué, un noyau hétéroalicyclique en C2 à C20 substitué ou non substitué, un noyau aromatique en C6 à C20 substitué ou non substitué, et un noyau hétéroaromatique en C2 à C20 substitué ou non substitué ;

quand le noyau G est substitué avec au moins deux substituants, deux adjacents des au moins deux substituants sont éventuellement liés ensemble pour former un noyau choisi dans le groupe constitué par un noyau alicyclique en C4 à C20 substitué ou non substitué, un noyau hétéroalicyclique en C2 à C20 substitué ou non substitué, un noyau aromatique en C6 à C20 substitué ou non substitué, et un noyau hétéroaromatique en C2 à C20 substitué ou non substitué ;

quand le noyau H est substitué avec au moins deux substituants, deux adjacents des au moins deux substituants sont éventuellement liés ensemble pour former un noyau choisi dans le groupe constitué par un noyau alicyclique en C4 à C20 substitué ou non substitué, un noyau hétéroalicyclique en C2 à C20 substitué ou non substitué, un noyau aromatique en C6 à C20 substitué ou non substitué, et un noyau hétéroaromatique en C2 à C20 substitué ou non substitué.


 
14. Composé organométallique selon la revendication 1, le composé organométallique étant représenté par un composé choisi dans le groupe constitué par les formules 3A-(2), 3A-(6), 3A-(7) et 3A-(8).





où, dans les formules 3A-(2), 3A-(6), 3A-(7) et 3A-(8) :

M est le platine (Pt) ; et

R1a, R4a, R5a, R1b, R4b, R5b, R11a à R14a, R11b à R14b, R21a à R28a et R21b à R28b sont chacun indépendamment choisis dans le groupe constitué par un atome d'hydrogène, un atome de deutérium, un atome d'halogène, un groupe hydroxyle, un groupe cyano, un groupe nitro, un groupe amino, un groupe amidino, une hydrazine, une hydrazone, un groupe carboxyle ou un de ses sels, un groupe acide sulfonique ou un de ses sels, un groupe acide phosphorique ou un de ses sels, un groupe alkyle en C1 à C20, un groupe alkoxy en C1 à C20, un groupe alkyle en C1 à C20 substitué, un groupe alkoxy en C1 à C20 substitué, un groupe phényle, un groupe naphtyle, un groupe anthryle, un groupe fluorényle, un groupe carbazolyle, un groupe pyridinyle, un groupe pyrimidinyle, un groupe triazinyle, et un groupe cyclique substitué qui est substitué avec au moins un substituant choisi dans le groupe constitué par :

un atome de deutérium, un atome d'halogène, un groupe hydroxyle, un groupe cyano, un groupe nitro, un groupe amino, un groupe alkyle en C1 à C20, un groupe alkoxy en C1 à C20, un groupe phényle, un groupe naphtyle, un groupe anthryle, un groupe fluorényle, un groupe carbazolyle, un groupe pyridinyle, un groupe pyrimidinyle et un groupe triazinyle ;

le groupe alkyle en C1 à C20 substitué et le groupe alkoxy en C1 à C20 substitué sont chacun substitués avec un substituant choisi dans le groupe constitué par un atome de deutérium, un atome d'halogène, un groupe hydroxyle, un groupe cyano, un groupe nitro et un groupe amino ; et

le groupe cyclique substitué est choisi dans le groupe constitué par un groupe phényle substitué, un groupe naphtyle substitué, un groupe anthryle substitué, un groupe fluorényle substitué, un groupe carbazolyle substitué, un groupe pyridinyle substitué, un groupe pyrimidinyle substitué et un groupe triazinyle substitué.


 
15. Composé organométallique selon la revendication 14 :

le composé organométallique étant représenté par un composé choisi dans le groupe constitué par les formules 3A-(2), 3A-(6) et 3A(8) ; et

R1a = R1b, R4a = R4b, R5a = R5b, R11a = R11b, R12a = R12b, R13a = R13b, R14a = R14b, R21a = R21b, R22a = R22b, R23a = R23b, R24a = R24b, R25a = R25b, R26a = R26b, R27a = R27b et R28a = R28b.


 
16. Composé organométallique selon la revendication 1, dans lequel n est 3 et m est 0.
 
17. Composé organométallique selon la revendication 1, dans lequel n est 1 et m est un nombre entier de 1 à 4.
 
18. Composé organométallique selon la revendication 1, le composé organométallique étant un composé choisi dans le groupe constitué par les composés 29 à 36 :








 
19. Dispositif électroluminescent organique, comprenant :

un substrat ;

une première électrode ;

une seconde électrode opposée à la première électrode ; et

une couche organique entre la première électrode et la seconde électrode, la couche organique comprenant un composé organométallique selon l'une des revendications précédentes.


 




Drawing








Cited references

REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description