(19)
(11)EP 2 715 230 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
05.07.2017 Bulletin 2017/27

(21)Application number: 11866244.4

(22)Date of filing:  23.05.2011
(51)Int. Cl.: 
F22B 35/00  (2006.01)
F23K 3/00  (2006.01)
F23N 1/00  (2006.01)
F23N 5/00  (2006.01)
F24H 9/00  (2006.01)
(86)International application number:
PCT/US2011/037536
(87)International publication number:
WO 2012/161687 (29.11.2012 Gazette  2012/48)

(54)

SYSTEM AND METHOD FOR BOILER CONTROL

SYSTEM UND VERFAHREN ZUR BOILERREGELUNG

SYSTÈME ET MÉTHODE DE COMMANDE DE CHAUDIÈRE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(43)Date of publication of application:
09.04.2014 Bulletin 2014/15

(73)Proprietor: Utc Fire&Security Corporation
Farmington, CT 06032 (US)

(72)Inventor:
  • HAUGSTETTER, Christoph
    West Hartford, Connecticut 06107 (US)

(74)Representative: Schmitt-Nilson Schraud Waibel Wohlfrom Patentanwälte Partnerschaft mbB 
Destouchesstraße 68
80796 München
80796 München (DE)


(56)References cited: : 
EP-A1- 1 855 053
US-A- 4 362 269
US-A1- 2007 099 137
US-A1- 2007 119 349
JP-A- 2008 241 092
US-A1- 2002 101 212
US-A1- 2007 099 137
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND OF THE INVENTION



    [0001] Aspects of the invention are directed to a system for boiler control.

    [0002] Today's state-of-the-art boiler controllers are designed and tuned to run at or above a given quantity of exhaust gas 02. This is done for reasons of safety (carbon monoxide, flame stability), emission regulations and operational robustness but results in an efficiency penalty. Since CO is not measured, conservative margins are built into boiler systems in order to avoid violation of operational constraints. These conservative margins further erode efficiency.

    BRIEF DESCRIPTION OF THE INVENTION



    [0003] A system for boiler control is provided. The system includes supply units to provide supplies of combustion materials for combustion thereof, a vessel coupled to the supply units in which the combustion materials are combusted, a carbon monoxide (CO) sensor disposed at an outlet of the vessel to sense a quantity of exhaust CO output from the vessel as a product of combustion therein and a control unit. The control unit is coupled to the supply units and the sensor and configured to issue a main servo command and a pulse servo command to one or more of the supply units to control operations of the one or more supply units in accordance with the sensed quantity of the exhaust CO.

    [0004] Issuance of the main servo command provides baseline amounts of the combustion materials for combustion for baseline amounts of time. Issuance of the pulse servo command increases the amount of the combustion materials provided for combustion beyond the baseline amounts for short times that are shorter than the baseline amounts of time.

    [0005] A method of boiler control is provided. The method includes issuing a main servo command to one or more supply units coupled to a vessel for providing baseline amounts of the combustion materials to the vessel for combustion thereof within the vessel for baseline amounts of time and issuing a pulse servo command to the one or more supply units to increase the amount of the combustion materials provided for combustion thereof beyond the baseline amounts for short times that are shorter than the baseline amounts of time. The method further includes sensing a quantity of carbon monoxide (CO) produced by combustion within the vessel and controlling the issuing of the main and pulse servo commands in accordance with at least the sensed quantity of the CO.
    US 4 362 269 A shows a method and system for controlling the combustion of, coal or bark in a stoker boiler or black, liquor in a recovery boiler to provide operation at maximum efficiency. Control loops are provided for primary or undergrate air and secondary or overfire air. The undergrate air control loop is adjusted as a function of carbon dioxide or steam/fuel ratio, and the overfire air control loop is adjusted as a function of carbon monoxide. In addition to carbon monoxide, combustibles and opacity may be used. Air redistribution is also used to minimize combustibles or CO or opacity.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0006] The subject matter which is regarded as the invention is particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. The foregoing and other features, and advantages of the invention are apparent from the following detailed description taken in conjunction with the accompanying drawings in which:

    FIG. 1 is a schematic diagram of a boiler apparatus;

    FIG. 2 is a graphical display of main and pulse servo commands for use with the boiler apparatus of FIG. 1; and

    FIG. 3 is a schematic diagram of components of an exemplary control unit of the boiler apparatus of FIG. 1.


    DETAILED DESCRIPTION OF THE INVENTION



    [0007] With reference to FIG. 1, a boiler apparatus 10 is provided. The boiler apparatus 10 includes first and second supply units 20, 21, a vessel 30, a carbon monoxide (CO) sensor 40 and a control unit 50. The first and second supply units 20, 21 are configured to provide supplies of combustion materials for combustion thereof to an interior 31 of the vessel 30, which is coupled to the first and second supply units 20, 21, and in which combustion of the combustion materials occurs. The carbon monoxide (CO) sensor 40 is disposed at an outlet 32 of the interior 31 of the vessel 30 to sense a quantity of exhaust CO that is output from the vessel 30 as a product of combustion therein. The control unit 50 is coupled to the first and second supply units 20, 21 and to the sensor 40. The control unit 50 is configured to issue a main servo command 501 and a pulse servo command 502 (see FIG. 2) to one or more of the first and second supply units 20, 21 to control operations thereof in accordance with the sensed quantity of the exhaust CO.

    [0008] Typically, fuel flow in a boiler is scheduled (statically) based on a 'firing rate' (a controller internal variable that another controller dynamically computes, based, e.g., on water temperature or steam pressure). In some systems, air flow is also scheduled based on the firing rate, while in other systems air flow is controlled to a firing rate dependant setpoint. For CO based control, this setpoint can be dynamically adjusted based on measurements of the sensed quantity of the exhaust CO. The pulse servo command 502 (or a 'MicroPulse') enables CO based control while limiting large CO excursions.

    [0009] All boilers run 'lean' (as opposed to stoichiometric like in a typical gasoline driven internal combustion engine) meaning there is always a surplus of air being flown into the boiler. An air-fuel ratio of 1.1 means that 10% more air than is stoichiometrically necessary is present. An objective of the pulse servo command 502 (i.e., the 'MicroPulse') is to temporarily lean-out the mixture to, for example, a ratio of 1.07. This can be achieved in various manners including, but not limited to, adding more fuel or flowing less air. These operations are_functionally nearly equivalent and interchangeable and the choice between them depends on engineering considerations (e.g. actuator speed).

    [0010] In accordance with embodiments, the vessel 30 may be a combustor of, for example, a gas turbine engine. In this and other similar cases, the first supply unit 20 provides a supply of air for combustion thereof to the interior 31 of the vessel 30 and the second supply unit 21 provides a supply of fuel for combustion thereof to the interior 31 of the vessel 30. The vessel 30 further includes a mixing 301 section in which the combustion materials (i.e., the air and fuel) are mixed and a combustion section 302. The combustion section 302 is disposed downstream from the mixing section 301 and is formed to define the interior 31 where combustion of the combustion materials occurs. The combustion section 302 is further formed to define the outlet 32 where the sensor 40 is disposed.

    [0011] With reference to FIGS. 1 and 2, the main servo command 501 includes one or both of a first base command 5010 to be issued to the first supply unit 20 and a second base command 5011 to be issued to the second supply unit 21. The first base command 5010 instructs the first supply unit 20 to provide to the interior 31 of the vessel 30 a baseline amount of air for combustion thereof for a baseline amount of time. The second base command 5011 instructs the second supply unit 21 to provide to the interior 31 of the vessel 30 a baseline amount of fuel for combustion thereof for a baseline amount of time. In accordance with embodiments, the respective baseline amounts of air, fuel and time may be associated with a boiler baseline performance of the boiler apparatus 10.

    [0012] The pulse servo command 502 includes one or both of a first additional command 5020 to be issued to the first supply unit 20 and a second additional command 5021 to be issued to the second supply unit 21. The first additional command 5020 instructs the first supply unit 20 to decrease the amount of air provided to the interior 31 of the vessel 30 for combustion thereof beyond the baseline amount of the air for a short time that is shorter than the baseline amount of time. The second additional command 5021 instructs the second supply unit 21 to increase the amount of fuel provided to the interior 31 of the vessel 30 for combustion thereof beyond the baseline amount of the fuel for a short time that is shorter than the baseline amount of time.

    [0013] As shown in FIG. 2, the main servo command 501 is variable over time and may increase over time by a steadily decreasing amount to an equilibrium at which no further increase occurs. The pulse servo command 502 is also variable over time and issued periodically. In accordance with an embodiment, the pulse servo command 502 may be issued for approximately 5 seconds every 30 seconds although it is to be understood that this is merely exemplary and that other frequencies and periods are possible. In this way, the pulse servo command 502 probes whether a current operating point of the boiler apparatus 10 as established by the main servo command 501 is near a critical air and fuel ratio at which a quantity of exhaust CO as sensed by the sensor 40 starts to rise sharply. The time displacement between each pulse accounts for the delay that would be expected before results of the pulse would be sensed. Since the pulse is relatively short, the time spent with such probing in effect is limited so as to limit the exhaust of an increased amount of CO for an extended period of time.

    [0014] In particular, from time to to time tn, the control unit 50 issues the main servo command 501 to one or more of the first and second supply units 20, 21. The main servo command 501 instructs the one or more of the first and second supply units 20, 21 to steadily decrease/increase the corresponding supply(ies) of the air and/or fuel to interior 31 of the vessel 30. From time tn to time tx, the control unit 50 issues the pulse servo command 502 on top of the main servo command 501 as an instruction to decrease/increase the corresponding supply(ies) of the air and/or fuel for time tn to time tx. At time tx, the pulse servo command 502 ceases and the main servo command 501 continues to be issued and steadily decreased/increased by the control unit 50. The period from time tx to time ty is set to be sufficiently long relative to transport delays in the vessel 30 such that CO produced by the combustion therein can be sensed by the sensor 40 whereby the sensor 40 is able to determine whether the critical air and fuel ratio at which the quantity of exhaust CO starts to rise sharply has been or is soon to be reached without the apparatus 10 spending a significant amount of time in that air and fuel ratio range. If the sensor 40 determines that the critical air and fuel ratio has not been and will not soon be reached, the process continues with the control unit 50 again issuing the pulse servo command 502 on top of the main servo command from time ty to time tz. At time tz, the pulse servo command 502 ceases and the main servo command 501 continues to be issued and steadily increased by the control unit 50 until the sensor 40 determines that the critical air and fuel ratio has been or will soon be increased. Once that occurs, the pulse servo command 502 is no longer issued and the main servo command 501 is no longer increased at a significant rate by the control unit 50.

    [0015] With the control unit 50 coupled to the first and second supply units 20, 21 and the sensor 40, the control unit 50 is able to vary both the main servo command 501 and the pulse servo command 502 over time in accordance with at least the sensed quantity of the exhaust CO (and possibly other sensed properties, such as 02). That is, while the main servo command 501 can be steadily increased over time as described above, the pulse servo command 502 may be constant relative to the main servo command over time or decreased relative to the main servo command 501 over time. That is, a magnitude of 502a may be substantially similar to or different from a magnitude of 502b. For the latter case where 502a and 502b are different, the probing of the critical air and fuel ratio by the issuance of the pulse servo command 502 can therefore be achieved to an increasingly limited degree with an associated increased limitation of CO emissions. The degree to which the pulse servo command 502 is decreased relative to the main servo command 501 over time can be based on sensor 40 readings and/or historical CO emissions data for the apparatus 10.

    [0016] As mentioned above, the control unit 50 is able to cease issuance of the pulse servo command 502 in accordance with the sensed quantity of the exhaust CO. Still further, the control unit 50 may cease issuance of the pulse servo command 502 when the sensed quantity of the exhaust CO indicates that the main servo command 501 has been reached, will soon be reached or substantially approximates the critical air and fuel ratio (or an acceptable range thereof). The pulse servo command 502 may later resume as soon as the sensed quantity of the exhaust CO indicates a sufficiently large margin from the critical region.

    [0017] With reference to FIG. 3, the control unit 50 includes an input unit 51, a calculation unit 52 and an output unit 53. The input unit 51 serves to allow an input of conditions (i.e., sampling time, triggering period, pulse duration) for triggering issuance of the pulse servo command 502 as well as an input of a form and type (i.e., pulse height) of the pulse servo command 502. The calculation unit 52 determines whether the input conditions are currently met. The output unit 53 converts an affirmative result of the determination of the calculation unit 52 into a trigger to issue the servo pulse command 502.

    [0018] While the invention has been described in detail in connection with only a limited number of embodiments, it should be readily understood that the invention is not limited to such disclosed embodiments. Rather, the invention can be modified to incorporate any number of variations, alterations, substitutions or equivalent arrangements not heretofore described, but which are commensurate with the scope of the invention. Additionally, while various embodiments of the invention have been described, it is to be understood that aspects of the invention may include only some of the described embodiments. Accordingly, the invention is not to be seen as limited by the foregoing description, but is only limited by the scope of the appended claims.


    Claims

    1. A system for boiler control, comprising:

    supply units (20, 21) to provide supplies of combustion materials for combustion thereof;

    a vessel (30) coupled to the supply units (20, 21) in which the combustion materials are combusted;

    a carbon monoxide (CO) sensor (40) disposed at an outlet (32) of the vessel (30) to sense a quantity of exhaust CO output from the vessel (30) as a product of combustion therein; and

    a control unit (50) coupled to the supply units (20, 21) and the sensor (40), the control unit (50) being configured to issue a main servo command (501) and a pulse servo command (502) to one or more of the supply units (20, 21) to control operations thereof in accordance with the sensed quantity of the exhaust CO;

    wherein the main servo command (501) comprises:

    a first command for providing an amount of air for combustion thereof for an amount of time; and

    a second command for providing an amount of fuel for combustion thereof for an amount of time;

    characterized in that

    the first command is for providing a baseline amount of air for combustion thereof for a baseline amount of time;

    the second command is for providing a baseline amount of fuel for combustion thereof for an amount of time;

    the respective baseline amounts of air, fuel and time are associated with boiler baseline performance; and

    the pulse servo command (502) comprises an additional command to decrease the amount of air provided for combustion thereof beyond the baseline amount for a short time that is shorter than the baseline amount of time; or

    the pulse servo command (502) comprises an additional command to increase the amount of fuel provided for combustion thereof beyond the baseline amount for a short time that is shorter than the baseline amount of time.


     
    2. The system according to claim 1, wherein the supply units (20, 21) comprise:

    a first supply unit (20) to provide a supply of air for combustion thereof; and

    a second supply unit (21) to provide a supply of fuel for combustion thereof.


     
    3. The system according to claim 1, wherein the vessel (30) comprises:

    a mixing section (301) in which the combustion materials are mixed; and

    a combustion section (302) downstream from the mixing section (301) in which combustion of the combustion materials occurs.


     
    4. The system according to claim 1, wherein the main servo command (501) is variable over time.
     
    5. The system according to claim 1, wherein the pulse servo command (502) is variable over time and issued periodically, and/or wherein the pulse servo command (502) is issued for approximately 5 seconds every 30 seconds.
     
    6. The system according to claim 1, wherein the control unit (50) varies the main servo command (501) over time and ceases issuance of the pulse servo command (502) in accordance with the sensed quantity of the exhaust CO.
     
    7. The system according to claim 1, wherein the control unit (50) ceases issuance of the pulse servo command (502) when the sensed quantity of the exhaust CO indicates that the main servo command (501) substantially approximates a critical air and fuel ratio.
     
    8. The system according to claim 1, wherein the control unit (50) comprises:

    an input unit (51) by which conditions for triggering issuance of the pulse servo command (502) are input;

    a calculation unit (52) by which it is determined whether the input conditions are currently met; and

    an output unit (53) by which an affirmative result of the determination of the calculation unit (52) is converted into a trigger to issue the servo pulse command (502).


     
    9. The system according to claim 8, wherein sampling time, triggering period, pulse duration and pulse height of the pulse servo command (502) are input by way of the input unit (51).
     
    10. The system according to claim 1, comprising:

    the control unit (50) being configured to issue to one or more of the supply units (20, 21) in accordance with the sensed quantity of the exhaust CO:

    a main servo command (501) for providing baseline amounts of the combustion materials for combustion thereof for baseline amounts of time, and

    a pulse servo command (502) to increase the amount of the combustion materials provided for combustion thereof beyond the baseline amounts for short times that are shorter than the baseline amounts of time.


     
    11. The system according to claim 10, wherein the main servo command (501) is variable over time and the pulse servo command (502) is variable over time and issued periodically, or wherein the control unit (50) ceases issuance of the pulse servo command (502) in accordance with the sensed quantity of the exhaust CO.
     
    12. The system according to claim 10, wherein the control unit (50) comprises:

    an input unit (51) by which conditions for triggering issuance of the pulse servo command (502) are input;

    a calculation unit (52) by which it is determined whether the input conditions are currently met; and

    an output unit (53) by which an affirmative result of the determination of the calculation unit (52) triggers issuance of the servo pulse command (502).


     
    13. A method of boiler control, the method comprising:

    issuing a main servo command (501) to one or more supply units (20, 21) coupled to a vessel (30) for providing baseline amounts of the combustion materials to the vessel (30) for combustion thereof within the vessel (30) for baseline amounts of time;

    issuing a pulse servo command (502) to the one or more supply units (20, 21) to increase the amount of the combustion materials provided for combustion thereof beyond the baseline amounts for short times that are shorter than the baseline amounts of time;

    sensing a quantity of carbon monoxide (CO) produced by combustion within the vessel (30); and

    controlling the issuing of the main and pulse servo commands (501, 502) in accordance with at least the sensed quantity of the CO;

    wherein the main servo command (501) comprises:

    a first command for providing an amount of air for combustion thereof for an amount of time; and

    a second command for providing an amount of fuel for combustion thereof for an amount of time;

    characterized in that

    the first command is for providing a baseline amount of air for combustion thereof for a baseline amount of time;

    the second command is for providing a baseline amount of fuel for combustion thereof for an amount of time;

    the respective baseline amounts of air, fuel and time are associated with boiler baseline performance; and

    the pulse servo command (502) comprises an additional command to decrease the amount of air provided for combustion thereof beyond the baseline amount for a short time that is shorter than the baseline amount of time; or

    the pulse servo command (502) comprises an additional command to increase the amount of fuel provided for combustion thereof beyond the baseline amount for a short time that is shorter than the baseline amount of time.


     


    Ansprüche

    1. System zur Boilersteuerung, umfassend:

    Zuführeinheiten (20, 21) zum Bereitstellen von Zufuhren von Verbrennungsmaterialien zur Verbrennung derselben;

    einen Behälter (30), der an die Zuführeinheiten (20, 21) gekoppelt ist und in dem die Verbrennungsmaterialien verbrannt werden;

    einen Kohlenmonoxid(CO)-Sensor (40), der an einem Auslass (32) des Behälters (30) angeordnet ist, um eine Menge an Abgas-CO zu messen, die von dem Behälter (30) als ein Produkt der Verbrennung darin ausgegeben wird; und

    eine Steuereinheit (50), die an die Zuführeinheiten (20, 21) und den Sensor (40) gekoppelt ist, wobei die Steuereinheit (50) dazu konfiguriert ist, einen Hauptservobefehl (501) und einen Impulsservobefehl (502) an eine oder mehrere der Zuführeinheiten (20, 21) auszugeben, um deren Betrieb gemäß der gemessenen Menge an Abgas-CO zu steuern;

    wobei der Hauptservobefehl (501) Folgendes umfasst:

    einen ersten Befehl zum Bereitstellen einer Menge an Luft zur Verbrennung derselben für eine Zeitdauer; und

    einen zweiten Befehl zum Bereitstellen einer Menge an Brennstoff zur Verbrennung desselben für eine Zeitdauer;

    dadurch gekennzeichnet, dass

    der erste Befehl zum Bereitstellen einer Grundmenge an Luft zur Verbrennung derselben für eine Grundzeitdauer dient;

    der zweite Befehl zum Bereitstellen einer Grundmenge an Brennstoff zur Verbrennung desselben für eine Zeitdauer dient;

    die jeweiligen Grundmengen an Luft, Brennstoff und Zeit mit einer Boilergrundleistung in Zusammenhang stehen; und

    der Impulsservobefehl (502) einen weiteren Befehl zum Senken der Menge an Luft umfasst, die zur Verbrennung derselben über die Grundmenge hinaus für eine kurze Zeit bereitgestellt wird, die kürzer als die Grundzeitdauer ist; oder

    der Impulsservobefehl (502) einen weiteren Befehl zum Erhöhen der Menge an Brennstoff umfasst, die zur Verbrennung desselben über die Grundmenge hinaus für eine kurze Zeit bereitgestellt wird, die kürzer als die Grundzeitdauer ist.


     
    2. System nach Anspruch 1, wobei die Zuführeinheiten (20, 21) Folgendes umfassen:

    eine erste Zuführeinheit (20) zum Bereitstellen einer Zufuhr von Luft zur Verbrennung derselben; und

    eine zweite Zuführeinheit (21) zum Bereitstellen einer Zufuhr von Brennstoff zur Verbrennung desselben.


     
    3. System nach Anspruch 1, wobei der Behälter (30) Folgendes umfasst:

    einen Mischabschnitt (301), in dem die Verbrennungsmaterialien vermischt werden; und

    einen Verbrennungsabschnitt (302) stromabwärts des Mischabschnitts (301), in dem die Verbrennung der Verbrennungsmaterialien stattfindet.


     
    4. System nach Anspruch 1, wobei der Hauptservobefehl (501) im Zeitverlauf variabel ist.
     
    5. System nach Anspruch 1, wobei der Impulsservobefehl (502) im Zeitverlauf variabel ist und regelmäßig ausgegeben wird und/oder wobei der Impulsservobefehl (502) alle 30 Sekunden ungefähr 5 Sekunden lang ausgegeben wird.
     
    6. System nach Anspruch 1, wobei die Steuereinheit (50) den Hauptservobefehl (501) im Zeitverlauf variieren lässt und das Ausgeben des Impulsservobefehls (502) gemäß der gemessenen Menge des Abgas-CO beendet.
     
    7. System nach Anspruch 1, wobei die Steuereinheit (50) das Ausgeben des Impulsservobefehls (502) beendet, wenn die gemessene Menge des Abgas-CO anzeigt, dass der Hauptservobefehl (501) sich im Wesentlichen einem kritischen Luft-Brennstoff-Verhältnis annähert.
     
    8. System nach Anspruch 1, wobei die Steuereinheit (50) Folgendes umfasst:

    eine Eingabeeinheit (51), durch die Bedingungen zum Auslösen der Ausgabe des Impulsservobefehls (502) eingegeben werden;

    eine Berechnungseinheit (52), durch die bestimmt wird, ob die Eingabebedingungen derzeit erfüllt werden; und

    eine Ausgabeeinheit (53), durch die ein bestätigendes Ergebnis der Bestimmung der Berechnungseinheit (52) in einen Auslöser zum Ausgeben des Servoimpulsbefehls (502) umgewandelt wird.


     
    9. System nach Anspruch 8, wobei Abtastzeit, Auslösezeitraum, Impulsdauer und Impulshöhe des Impulsservobefehls (502) mittels der Eingabeeinheit (51) eingegeben werden.
     
    10. System nach Anspruch 1, Folgendes umfassend:

    die Steuereinheit (50), die dazu konfiguriert ist, an eine oder mehrere Zuführeinheiten (20, 21) gemäß der gemessenen Menge des Abgas-CO Folgendes auszugeben:

    einen Hauptservobefehl (501) zum Bereitstellen von Grundmengen der Verbrennungsmaterialien zur Verbrennung derselben für Grundzeitdauern, und

    einen Impulsservobefehl (502) zum Erhöhen der Menge an Verbrennungsmaterialien, die zur Verbrennung derselben bereitgestellt wird, über die Grundmengen hinaus für kurze Zeiten, die kürzer als die Grundzeitdauern sind.


     
    11. System nach Anspruch 10, wobei der Hauptservobefehl (501) im Zeitverlauf variabel ist und der Impulsservobefehl (502) im Zeitverlauf variabel ist und regelmäßig ausgegeben wird, oder wobei die Steuereinheit (50) die Ausgabe des Impulsservobefehls (502) gemäß der gemessenen Menge des Abgas-CO beendet.
     
    12. System nach Anspruch 10, wobei die Steuereinheit (50) Folgendes umfasst:

    eine Eingabeeinheit (51), durch die Bedingungen zum Auslösen der Ausgabe des Impulsservobefehls (502) eingegeben werden;

    eine Berechnungseinheit (52), durch die bestimmt wird, ob die Eingabebedingungen derzeit erfüllt werden; und

    eine Ausgabeeinheit (53), durch die ein bestätigendes Ergebnis der Bestimmung der Berechnungseinheit (52) die Ausgabe des Servoimpulsbefehls (502) auslöst.


     
    13. Verfahren zur Boilersteuerung, wobei das Verfahren Folgendes umfasst:

    Ausgeben eines Hauptservobefehls (501) an eine oder mehrere Zuführeinheiten (20, 21), die an einen Behälter (30) gekoppelt sind, um Grundmengen der Verbrennungsmaterialien an den Behälter (30) zur Verbrennung derselben in dem Behälter (30) für Grundzeitdauern bereitzustellen;

    Ausgeben eines Impulsservobefehls (502) an die eine oder die mehreren Zuführeinheiten (20, 21) zum Erhöhen der Menge an Verbrennungsmaterialien, die zur Verbrennung derselben bereitgestellt wird, über die Grundmengen hinaus für kurze Zeiten, die kürzer als die Grundzeitdauern sind;

    Messen einer Menge an Kohlenmonoxid (CO), die durch Verbrennung in dem Behälter (30) erzeugt wird; und

    Steuern der Ausgabe des Haupt- und des Impulsservobefehls (501, 502) gemäß wenigstens der gemessenen Menge des CO;

    wobei der Hauptservobefehl (501) Folgendes umfasst:

    einen ersten Befehl zum Bereitstellen einer Menge an Luft zur Verbrennung derselben für eine Zeitdauer; und

    einen zweiten Befehl zum Bereitstellen einer Menge an Brennstoff zur Verbrennung desselben für eine Zeitdauer;

    dadurch gekennzeichnet, dass

    der erste Befehl zum Bereitstellen einer Grundmenge an Luft zur Verbrennung derselben für eine Grundzeitdauer dient;

    der zweite Befehl zum Bereitstellen einer Grundmenge an Brennstoff zur Verbrennung desselben für eine Zeitdauer dient;

    die jeweiligen Grundmengen an Luft, Brennstoff und Zeit mit einer Boilergrundleistung in Zusammenhang stehen; und

    der Impulsservobefehl (502) einen weiteren Befehl zum Senken der Menge an Luft umfasst, die zur Verbrennung derselben über die Grundmenge hinaus für eine kurze Zeit bereitgestellt wird, die kürzer als die Grundzeitdauer ist; oder

    der Impulsservobefehl (502) einen weiteren Befehl zum Erhöhen der Menge an Brennstoff umfasst, die zur Verbrennung desselben über die Grundmenge hinaus für eine kurze Zeit bereitgestellt wird, die kürzer als die Grundzeitdauer ist.


     


    Revendications

    1. Système de commande de chaudière, comprenant :

    des unités d'alimentation (20, 21) pour fournir des apports en matériaux de combustion pour leur combustion ;

    une cuve (30) couplée aux unités d'alimentation (20, 21) dans laquelle sont brûlés les matériaux de combustion ;

    un capteur de monoxyde de carbone (CO) (40) disposé au niveau d'une sortie (32) de la cuve (30) pour détecter une quantité de sortie de CO d'échappement à partir de la cuve (30) en tant que produit de combustion à l'intérieur de celle-ci ; et

    une unité de commande (50) couplée aux unités d'alimentation (20, 21) et au capteur (40), l'unité de commande (50) étant configurée pour émettre une commande d'asservissement principale (501) et une commande d'asservissement d'impulsion (502) vers une ou plusieurs des unités d'alimentation (20, 21) pour commander leurs fonctionnements selon la quantité détectée du CO d'échappement ;

    dans lequel la commande d'asservissement principale (501) comprend :

    une première commande pour fournir une quantité d'air pour sa combustion pendant une quantité de temps ; et

    une seconde commande pour fournir une quantité de combustible pour sa combustion pendant une quantité de temps ;

    caractérisé en ce que

    la première commande consiste à fournir une quantité d'air de référence pour sa combustion pendant une quantité de temps de référence ;

    la seconde commande consiste à fournir une quantité de combustible de référence pour sa combustion pendant une quantité de temps ;

    les quantités respectives d'air, de combustible et de temps de référence sont associées à la performance de référence de la chaudière ; et

    la commande d'asservissement d'impulsion (502) comprend une autre commande pour réduire la quantité d'air fournie pour sa combustion au-delà de la quantité de référence pendant un temps court qui est plus courte que la quantité de temps de référence ; ou

    la commande d'asservissement d'impulsion (502) comprend une autre commande pour augmenter la quantité de combustible prévue pour sa combustion au-delà de la quantité de référence pendant un temps court qui est plus court que la quantité de temps de référence.


     
    2. Système selon la revendication 1, dans lequel les unités d'alimentation (20, 21) comprennent : une première unité d'alimentation (20) pour fournir un apport d'air pour sa combustion ; et une seconde unité d'alimentation (21) pour fournir un apport de combustible pour sa combustion.
     
    3. Système selon la revendication 1, dans lequel la cuve (30) comprend :

    une section de mélange (301) dans laquelle sont mélangés les matériaux de combustion ; et

    une section de combustion (302) en aval de la section de mélange (301) dans laquelle se produit la combustion des matériaux de combustion.


     
    4. Système selon la revendication 1, dans lequel la commande d'asservissement principale (501) est variable avec le temps.
     
    5. Système selon la revendication 1, dans lequel la commande d'asservissement d'impulsion (502) est variable avec le temps et émise périodiquement, et/ou dans lequel la commande d'asservissement d'impulsion (502) est émise pendant environ 5 secondes toutes les 30 secondes.
     
    6. Système selon la revendication 1, dans lequel l'unité de commande (50) fait varier la commande d'asservissement principale (501) avec le temps et cesse d'émettre la commande d'asservissement d'impulsion (502) en fonction de la quantité détectée de CO d'échappement.
     
    7. Système selon la revendication 1, dans lequel l'unité de commande (50) cesse d'émettre la commande d'asservissement d'impulsion (502) lorsque la quantité détectée de CO d'échappement indique que la commande d'asservissement principale (501) approche sensiblement un rapport d'air et de combustible critique.
     
    8. Système selon la revendication 1, dans lequel l'unité de commande (50) comprend :

    une unité d'entrée (51) au moyen de laquelle sont entrées les conditions de déclenchement de l'émission de la commande d'asservissement d'impulsion (502) ;

    une unité de calcul (52) au moyen de laquelle il est déterminé si les conditions d'entrée sont actuellement satisfaites ; et

    une unité de sortie (53) au moyen de laquelle un résultat affirmatif de la détermination de l'unité de calcul (52) est converti en un déclenchement pour émettre la commande d'impulsion d'asservissement (502).


     
    9. Système selon la revendication 8, dans lequel le temps d'échantillonnage, la période de déclenchement, la durée d'impulsion et la hauteur d'impulsion de la commande d'asservissement d'impulsion (502) sont entrés au moyen de l'unité d'entrée (51).
     
    10. Système selon la revendication 1, comprenant :

    l'unité de commande (50) configurée pour émettre vers une ou plusieurs des unités d'alimentation (20, 21) en fonction de la quantité détectée du CO d'échappement :

    une commande d'asservissement principale (501) pour fournir des quantités de référence des matériaux combustibles pour leur combustion pendant des quantités de temps de référence, et

    une commande d'asservissement d'impulsion (502) pour augmenter la quantité des matériaux de combustion fournis pour leur combustion au-delà des quantités de référence pendant des temps courts qui sont plus courts que les quantités de temps de référence.


     
    11. Système selon la revendication 10, dans lequel la commande d'asservissement principale (501) est variable avec le temps et la commande d'asservissement d'impulsion (502) est variable avec le temps et émise périodiquement, ou dans lequel l'unité de commande (50) cesse d'émettre la commande d'asservissement d'impulsion (502) en fonction de la quantité détectée du CO d'échappement.
     
    12. Système selon la revendication 10, dans lequel l'unité de commande (50) comprend :

    une unité d'entrée (51) au moyen de laquelle sont entrées les conditions de déclenchement de l'émission de la commande d'asservissement d'impulsion (502) ;

    une unité de calcul (52) au moyen de laquelle il est déterminé si les conditions d'entrée sont actuellement satisfaites ; et

    une unité de sortie (53) au moyen de laquelle un résultat affirmatif de la détermination de l'unité de calcul (52) déclenche l'émission de la commande d'impulsion d'asservissement (502).


     
    13. Procédé de commande de chaudière, le procédé comprenant :

    l'émission d'une commande d'asservissement principale (501) vers une ou plusieurs unités d'alimentation (20, 21) couplées à une cuve (30) pour fournir des quantités de référence des matériaux de combustion à la cuve (30) pour leur combustion à l'intérieur de la cuve (30) pendant des quantités de temps de référence ;

    l'émission d'une commande d'asservissement d'impulsion (502) vers l'unité ou les unités d'alimentation (20, 21) pour augmenter la quantité des matériaux de combustion fournis pour leur combustion au-delà des quantités de référence pendant des temps courts qui sont plus courts que les quantités de temps de référence ;

    la détection d'une quantité de monoxyde de carbone (CO) produite par combustion à l'intérieur de la cuve (30) ; et

    le contrôle de l'émission des commandes d'asservissement principale et d'impulsion (501, 502) en fonction d'au moins la quantité détectée du CO ;

    dans lequel la commande d'asservissement principale (501) comprend :

    une première commande pour fournir une quantité d'air pour sa combustion pendant une quantité de temps ;

    une seconde commande pour fournir une quantité de référence de combustible pour sa combustion pendant une quantité de temps ;

    caractérisé en ce que

    la première commande consiste à fournir une quantité de d'air de référence pour sa combustion pendant une quantité de temps de référence ;

    la seconde commande consiste à fournir une quantité de combustible de référence pour sa combustion pendant une quantité de temps ;

    les quantités respectives d'air, de combustible et de temps de référence sont associées à la performance de référence de la chaudière ; et

    la commande d'asservissement d'impulsion (502) comprend une commande supplémentaire pour réduire la quantité d'air fournie pour sa combustion au-delà de la quantité de référence pendant un temps court qui est plus court que la quantité de temps de référence ; ou

    la commande d'asservissement d'impulsion (502) comprend une autre commande pour augmenter la quantité de combustible prévue pour sa combustion au-delà de la quantité de référence pendant un temps court qui est plus court que la quantité de temps de référence.


     




    Drawing












    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description