(19)
(11)EP 2 715 966 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
10.04.2019 Bulletin 2019/15

(21)Application number: 11724175.2

(22)Date of filing:  01.06.2011
(51)Int. Cl.: 
H04L 5/00  (2006.01)
H04W 72/04  (2009.01)
H04W 56/00  (2009.01)
(86)International application number:
PCT/EP2011/059077
(87)International publication number:
WO 2012/163423 (06.12.2012 Gazette  2012/49)

(54)

SIGNALLING ARRANGEMENT FOR INTER-SITE CARRIER AGGREGATION HAVING ONLY SINGLE COMPONENT CARRIER AVAILABLE IN UPLINK DIRECTION

SIGNALVORRICHTUNG FÜR STANDORTÜBERGREIFENDE TRÄGERAGGREGATION MIT NUR EINKOMPONENTIGEM TRÄGER IN UPLINK-RICHTUNG

AGENCEMENT DE SIGNALISATION POUR AGRÉGATION DE PORTEUSES INTER-SITES AYANT UNIQUEMENT UNE PORTEUSE À UNE SEULE COMPOSANTE DANS LA DIRECTION DE LIAISON ASCENDANTE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(43)Date of publication of application:
09.04.2014 Bulletin 2014/15

(73)Proprietor: Nokia Solutions and Networks Oy
02610 Espoo (FI)

(72)Inventors:
  • TIIROLA, Esa Tapani
    FIN-90450 Kempele (FI)
  • HOOLI, Kari Juhani
    FIN-90540 Oulu (FI)
  • PAJUKOSKI, Kari Pekka
    FIN-90240 Oulu (FI)
  • LUNTTILA, Timo Erkki
    FIN-02200 Espoo (FI)

(74)Representative: Style, Kelda Camilla Karen et al
Page White & Farrer Bedford House John Street
London, WC1N 2BF
London, WC1N 2BF (GB)


(56)References cited: : 
US-A1- 2002 094 834
US-A1- 2011 070 907
  
  • LG: "LTE-Advanced", Telecommunications Technology Association Korea , 4 November 2010 (2010-11-04), XP55020579, Retrieved from the Internet: URL:http://edu.tta.or.kr:/sub3/down.php?No %3D73%26file%3DTTA_11%25BF%25F9%25B1%25B3% 25C0%25B0_LTE-A_%25C0%25B1%25BF%25B5%25BF% 25EC_r2.pdf [retrieved on 2012-02-29]
  • AKYILDIZ I F ET AL: "The evolution to 4G cellular systems: LTE-Advanced", PHYSICAL COMMUNICATION, ELSEVIER, AMSTERDAM, NL, vol. 3, no. 4, 1 December 2010 (2010-12-01), pages 217-244, XP027536175, ISSN: 1874-4907 [retrieved on 2010-10-27]
  • NOKIA ET AL: "Carrier aggregation configurations and DL/UL linkage", 3GPP DRAFT; R1-094642, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, no. Jeju; 20091109, 9 November 2009 (2009-11-09), XP050389048, [retrieved on 2009-11-02] cited in the application
  
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description

Field of the Invention



[0001] The present invention relates to apparatuses, methods and a computer program product for a signalling arrangement for inter-site carrier aggregation having only single component carrier available in uplink direction

Related background Art



[0002] The following meanings for the abbreviations used in this specification apply:
A/N, Ack/Nack
Acknowledgement/Negative Acknowledgement
CA
Carrier aggregation
CC
Component carrier
CQI
Channel quality indicator
CSI
Channel state information
DL
Downlink
DM
Demodulation
eNB
enhanced Node-B, LTE base station
FDD
Frequency division duplexing
HARQ
Hybrid automatic repeat request
LTE
Long term evolution
PMI
Precoder matrix indicator
PRACH
Physical random access channel
PRB
Physical resource block
PUCCH
Physical uplink control channel
PUSCH
Physical uplink shared channel
RF
Radio frequency
RI
Rank indicator
RS
Reference signal
SC-FDMA
Single carrier - frequency division multiple access
SR
Scheduling request
SRS
Sounding reference signal
TDM
Time division multiplexing
UCI
Uplink control information
UE
User equipment
UL
Uplink
X2
Standardized signalling interface between eNBs


[0003] Embodiments of the present invention relate to LTE-Advanced system which will most likely be part of LTE Rel. 11 or beyond. More specifically, we focus on uplink control signalling in the case of inter-site carrier aggregation having only single component carrier available in the UL direction. Carrier aggregation (CA) was introduced in Rel-10 of the E-UTRA specifications. By means of carrier aggregation (CA), two or more component carriers (CCs) are aggregated in order to support wider transmission bandwidths up to 100MHz.

[0004] An exemplary deployment scenario is depicted in Fig. 1. Fig. 1 shows an example for inter site carrier aggregation, and shows in more detail a heterogeneous network (HetNet) scenario with two carriers. In particular, a macro eNB which serves a macro cell indicated by F1 (Frequency 1), and a pico eNB which serves a pico cell indicated by F2 (Frequency 2) are shown. A UE is connected to both eNBs. One of the carriers is allocated to macro layer and another for femto/pico layer, respectively. Another assumption is that there is a (logical) signalling entity (e.g. X2 interface) between macro and femto/pico, which can be used to convey control signalling between non-collocated cells. However, latency requirements for the control signalling are relatively relaxed.

[0005] Considering the Scenario in Fig. 1, as said, the two carriers (cells) operate independently to a large extent (scheduling etc). However, it would be beneficial to utilize some of the carrier aggregation functionality also in that case, to enable e.g. simultaneous DL data transmission on both carriers. This sets also some new requirements to the UL.

[0006] The problem is that Rel-10 carrier aggregation does not work in inter-site carrier aggregation scenario having independent L1/L2 schedulers operating on different sites. Fig. 2 below shows the PUCCH (Physical Uplink Control Channel) arrangement in the case of Rel-10 carrier aggregation. The basic principle is that the PUCCH is always located on only one UL CC (the primary CC) and all the UL control signalling (related to all DL cells) is carried over that particular UL CC (UL CC#2 in Fig 2.). That is, in the example of Fig. 2, all the UL control signalling related to e.g. DL#2 and DL#3 are carried over a single PUCCH on UL#2.

[0007] However, in the scenario of interest this arrangement becomes infeasible, since it is clear that in this kind of scenario, the UL control signals (CQI/PMI/RI, HARQ ACK/NACK) corresponding to all aggregated DL component carriers need to be available at the same place (w/o delays). This is necessary to ensure that the two schedulers can operate fully independently.

[0008] From the signalling point of view the simplest way to cope with the issue is to have two UL in the UE operating somewhat autonomously, each of them transmitting the UL control signalling related to the corresponding DL CC. However, that solution would lead to rather complicated UE implementation, as it is far from trivial to include two full TX chains into the terminal with the capability to have them both transmitting simultaneously.

[0009] It was discussed already during Rel-10 standardization that it would be possible to define PUCCH/UCI functionality in a way that it consists of multiple symmetric DL/UL component carrier pairs (see e.g., RI-094642). This option is depicted in Fig. 3, which shows a potential UCI solution for inter-site CA. In this solution UL/DL control signalling is made completely independent between among different component carriers.

[0010] The main problems of this approach are:
  • It does not support asymmetric carrier aggregation having only one component carrier available in UL side (this is the most important UE category with carrier aggregation)
  • UL coverage is an issue with this kind of arrangement. This is due to the fact that UL power control needs to work independently among two UL CCs. This results in a 3-dB coverage loss compared to Rel-10 intra-site CA + potentially further degradation due to power back-off required to fulfil necessary emission requirements.


[0011] US patent publication no. US 2011/070907 A1 relates to cooperative transmission within heterogeneous stations.

Summary of the Invention



[0012] The invention is set out in the appended claims. The references to embodiments in the description falling outside the scope of the appended claims are to be understood as mere examples which are useful for understanding the invention. Embodiments of the present invention are aiming at addressing some of the problems discussed above and to enable uplink control signaling in case of inter-site carrier aggregation having only a single component carrier available in the UL direction.

[0013] According to some embodiments of the present invention, an apparatus is connectable to a first network node by a first downlink carrier and to at least a second network node by at least a second downlink carrier, wherein the apparatus provides only a single carrier in an uplink direction. The uplink carrier is shared among a first uplink carrier to the first network node and at least a second uplink carrier to the at least second network node.

[0014] Sharing among the first and second uplink carriers comprises sharing of uplink control signalling in a time divisional multiplexed manner.

[0015] In this way, it is possible to enable uplink control signaling even in case of an inter-site carrier aggregation in which only a single component carrier is available in the UL direction.

Brief Description of the Drawings



[0016] These and other objects, features, details and advantages will become more fully apparent from the following detailed description of embodiments of the present invention which is to be taken in conjunction with the appended drawings, in which:

Fig. 1 shows an example for inter site carrier aggregation,

Fig. 2 shows a PUCCH arrangement in Rel-10 carrier aggregation,

Fig. 3 shows a potential UCI solution of inter-site CA,

Fig. 4 shows an example for a user equipment according to an embodiment of the invention,

Fig. 5 shows an example for an eNB according to an embodiment of the invention,

Fig. 6 shows an example for a network control node according to an embodiment of the invention,

Fig. 7 illustrates a principle of embodiments of the invention,

Fig. 8 shows an exemplary UL subframe division between two carriers according to embodiments of the present invention, and

Fig. 9 shows an exemplary UL subframe division between two carriers according to embodiments of the present invention, wherein switching gaps are included.


Detailed Description of embodiments



[0017] In the following, description will be made to embodiments of the present invention. It is to be understood, however, that the description is given by way of example only, and that the described embodiments are by no means to be understood as limiting the present invention thereto.

[0018] According to several embodiments of the present invention, a shared UL functionality for multiple DL carriers is provided.

[0019] Fig. 4 illustrates a simplified block diagram of a user equipment 1 according to an embodiment of the present invention. It is noted that the user equipment is only an example, and the corresponding apparatus according to the embodiment may consist only of parts of the user equipment, so that the apparatus may be installed in a user equipment, for example.

[0020] The user equipment 1 comprises a transceiver 11 configured to be connectable to a first network node by a first downlink component carrier and to at least a second network node by a at least second downlink component carrier, wherein the transceiver is configured to provide a single uplink connection (i.e., a single uplink carrier, as described in the following). Furthermore, the user equipment comprises a processor 12 which is configured processor configured to control the transceiver such that the uplink connection is shared between a first uplink component carrier to the first network node and at least a second uplink component carrier to the at least second network node.

[0021] Thus, the single uplink connection (carrier) is shared for the uplink signalling in relation to the (at least) two downlink carriers.

[0022] The user equipment 1 may also comprise a memory 13 in which programs for carrying out the functions according to the embodiment are stored. The transceiver 11, the processor 12 and the memory 13 may be inter-connected by a suitable connection 14, e.g., a bus or the like.

[0023] Fig. 5 illustrates a simplified block diagram of a eNB 2 according to an embodiment of the present invention. It is noted that the eNB, and the corresponding apparatus according to the embodiment may consist only of parts of the eNB, so that the apparatus may be installed in an eNB, for example. Moreover, also the eNB is only an example and may be replaced by another suitable network node, such as a base station or the like.

[0024] The eNB 2 comprises a transceiver 21 configured to be connectable to a user equipment (e.g., UE 1 shown in Fig. 4) by a first downlink component carrier and by a single uplink connection. The uplink connection is shared among a first uplink component carrier for the eNB 2 and at least a second uplink component carrier for at least another eNB.

[0025] The eNB 2 may also comprise a processor 22 configured to control the transceiver 21. The eNB 2 may also comprise a memory 23 in which programs for carrying out the functions according to the embodiment are stored. The transceiver 21, the processor 22 and the memory 23 may be inter-connected by a suitable connection 24, e.g., a bus or the like.

[0026] The eNB 2 can be implemented in the macro eNB and/or the pico eNB shown in Fig. 1, for example. For example, when the eNB 2 is the macro eNB shown in Fig. 1, the other eNB is the pico eNB shown in Fig. 1.

[0027] The two eNBs may be connected via an X2 interface, as shown in Fig. 1.

[0028] Fig. 6 shows an example for a network control node 3 which coordinates the sharing of the single uplink connection between the two uplink carriers. The network control node 3 comprises a processor 31 which is configured to establish a sharing of a single uplink connection of a user entity, the user entity being connectable to a first network node by a first downlink component carrier and to at least a second network node by a at least second downlink component carrier, and by the single uplink connection, wherein the sharing is used to share the uplink connection among a first uplink component carrier for the first network node and at least a second uplink component carrier for the at least second network node.

[0029] The network control node 3 may also comprise an interface 32 which is configured to provide a connection to the network nodes involved. The network control node 3 may be one of the first network node and the second network node (e.g., the macro eNB shown in Fig. 1), so that in this case the interface 32 may be an X2 interface. Furthermore, the network control node 3 may also comprise a memory 33 in which programs for carrying out the functions according to the embodiment are stored. The processor 31, the interface 32 and the memory 33 may be inter-connected by a suitable connection 34, e.g., a bus or the like.

[0030] Thus, according to certain embodiments of the present invention, a shared UL functionality for multiple DL carriers (or Cells) operating in FDD (Frequency Division Multiplexing) mode is provided. The operation principle is shown in Fig. 7.

[0031] In the proposed arrangement, the entire UL functionality including data channels (PUSCH) and control channels (PUCCH, UCI on PUSCH, PRACH) and reference signals (DM RS, SRS) are transmitted in time division multiplexed (TDM) manner among two UL carriers. That is, the UL is switched between the two carriers (cell #1 and cell #1).

[0032] In the considered solution, there is a pre-defined UL time division (e.g., sub-frame division) related to different DL component carriers. The time-division is applied only in uplink direction (DL is available for each sub-frame). The UL time division is configured by the network via higher layer signalling and in UE-specific manner.

[0033] Preferably, the following assumptions should be made in order to guarantee proper control signalling operation:
  • Frame synchronization between multiple UL carriers
  • The pre-defined time division may be coordinated by one of the eNBs (e.g., macro node) participating the inter-site carrier aggregation.
  • Predetermined switching time (e.g., sub-frame(s) or SC-FDMA symbols) may be used to provide the necessary UL CC switching time for the UE.


[0034] The remaining step is to provide the sufficient A/N signalling support to convey the necessary UL data-non-associated control signals via the available UL sub-frames.

[0035] Next, TDM aspects corresponding to shared UL carrier are considered in more detail.

Handling A/N:



[0036] 
  • A/N timing is changed according to a predetermined rule (see more details in Figure 8 and Figure 9)
  • A/N codebook size (i.e. number of A/N bits transmitted in a given UL subframe) is adjusted in a predetermined way taking into account the transmission mode of the DL CC and the number of A/N bits to be conveyed in different UL subframes.
  • Preferably, PUCCH Format 3 is used as A/N container for PUCCH. However, the invention is not limited to this, and also another suitable format may be used.

Handling periodic signals such as CQI/PMI/RI/SR:



[0037] 
  • Periodic signals are configured separately for each component carrier
  • Periodic signals which fall in the sub-frames allocated to another UL carrier are dropped
  • eNB can configure the CSI reporting in way which minimizes/avoids the CSI dropping.
  • Alternatively resources for periodic signals can be reserved on each UL carrier and the signals are transmitted on the available carrier / resource. In that case there is no need to drop signals.

Handling PUSCH:



[0038] 
  • eNB does not schedule PUSCH on the sub-frames allocated to another UL carrier (It is noted that those subframes are available for other UEs in the cell).
  • UL HARQ process arrangement can be adjusted in a way that it takes into account "missing UL frames".


[0039] Fig. 8 and Fig. 9 show exemplary timing diagram for DL HARQ A/N. The assumption is that there are two component carriers in the DL and UL side. Carrier #1 as been allocated to a macro cell and Carrier #2 to a pico cell, respectively. Fig. 9 assumes that pre-defined UL sub-frames have been allocated for the UE to perform the UL CC switching.

[0040] Arrows in Fig. 8 and Fig. 9 illustrate the timing relationship of LTE Rel-8/9/10 (FDD) in which A/N corresponding to DL subframe #n is transmitted on UL subframe #(n+4).

[0041] In both examples, a certain ratio between the two carriers (for the macro cell and the pico cell) is indicated. In Fig. 8, the macro-pico ratio is 2/4. That is, for 2 subframes provided for the macro cell (carrier #1), 4 subframes are provided for the pico cell (carrier #2). In Fig. 9 the macro-pico ratio is 1/7. That is, for 1 subframes provided for the macro cell (carrier #1), 7 subframes are provided for the pico cell (carrier #2). This ratio can be pre-configured according to the situation.

[0042] Summarizing, certain embodiments of the invention relate to the carrier aggregation in systems like LTE - targeting inter-eNB carrier aggregation with the limitation of the UE not being uplink carrier aggregation (UL CA) capable (can only transmit on one UL carrier) and having a "slow-X2" interface between the involved eNBs.

[0043] Certain embodiments of the invention introduce a time domain switching/sharing functionality that will allow a single-UL-carrier-UE to be connected to multiple eNBs (in a time multiplexed manner) i.e. this supports asymmetric (e.g. 2DL, 1UL) inter-site carrier aggregation by time domain multiplexing (TDM) the uplink control signalling to the two nodes so that only one UL CC is transmitted by the UE at a time.

[0044] In other words, in the context of inter-site LTE carrier aggregation (CA) with high delay and high jitter backhaul connection (X2) between sites, this invention introduces a method to provide carrier-related uplink control information to the geographically separated transmission points in case the UE does not support carrier aggregation in uplink (i.e. only able to transmit on one frequency at a time) . The idea is basically to introduce a TDM mechanism where uplink control information (UCI) for carrier 1 and carrier 2 are transmitted different subframes. The idea also introduces the possibility to have "blank" subframes to allow the UE to retune its radio frequency (RF). It is noted that instead of "blank" subframes it is possible to perform retuning the RF during a fraction of UL subframe. One example is to make the retuning during the time reserved for transmitting the sounding reference signal (SRS), i.e. to have a blank SC-FDMA symbol for retuning.

[0045] In the following, some advantages are described which can be achieved by the proposed scheme according to the embodiments described above.
  • Inter-site CA can be supported with for single-CC capable UEs
  • It provides better UL link budget compared to dual carrier solution
  • It supports fully independent scheduling
  • Standardization effort on top of existing carrier aggregation solution is feasible.


[0046] The switching gaps (as shown in Fig. 9) may reduce the UL throughput compared to collocated CA. However, this is considered as minor issue due to the following aspects:
  • DL carrier aggregation is a capacity booster for DL direction
  • UL link budget is not a problem for UEs connected to the pico/femto cells. It is possible to make the proper actions also in macro site to make sure that UL throughput is not an issue
  • Switching gaps are not needed in all scenarios (e.g., in intra-band cases).
  • Other UEs can utilized PUSCH resources corresponding to switching gaps (in other words, there is no degradation in system level).
  • It may be enough to reserve only a fraction of the sub-frame for the switching time (e.g., SRS symbol).


[0047] According to the embodiments described above, two network nodes (eNBs, i.e., a macro eNB and a pico eNB) are applied. However, the number of network nodes is not limited. That is, depending on the situation, a carrier aggregation with respect to three or more eNBs may be applied.

[0048] Moreover, the scenario is not limited to different kinds of eNBs. That is, the UE may also be connected to two macro eNBs, for example.

[0049] Moreover, embodiments of the present invention were described by referring to LTE. However, the invention is not limited to this, and can be applied to any communication scheme in which a carrier aggregation or a similar measure can be applied and only a single uplink connection is available.

[0050] According to a first aspect of several embodiments of the invention, an apparatus is provided which comprises
a transceiver configured to be connectable to a first network node by a first downlink component carrier and to at least a second network node by a at least second downlink component carrier, wherein the transceiver is configured to provide a single uplink connection, and
a processor configured to control the transceiver such that the uplink connection is shared among a first uplink component carrier to the first network node and at least a second uplink component carrier to the at least second network node.

[0051] The first aspect may be modified as follows:
The processor may be configured to control the transceiver such that the sharing among the first and the second uplink carriers is performed in a time divisional multiplexed manner.

[0052] The processor may be configured to apply a pre-defined uplink time division on the uplink connection related to the first downlink component carrier and the at least second downlink component carrier.

[0053] The processor may be configured to receive the pre-defined uplink time division from a network control node.

[0054] The processor may be configured to perform a frame synchronization between the first uplink component carrier and the at least second uplink component carrier.

[0055] The time division may be performed by dividing sub-frames.

[0056] The processor may be configured to schedule predetermined sub-frames or single carrier frequency division multiple access symbols for providing uplink component carrier switching time.

[0057] The processor may be configured to schedule timing of control signals to be sent via the uplink component carriers according to a predetermined rule with respect to sharing of the uplink component carriers.

[0058] The apparatus may be a user entity or may be a part thereof.

[0059] According to a second aspect of several embodiments of the invention, an apparatus is provided which comprises
a transceiver configured to be connectable to a user equipment by a first downlink component carrier and by a single uplink connection,
wherein the uplink connection is shared among a first uplink component carrier for the apparatus and at least a second uplink component carrier for at least another network node.

[0060] The first aspect may be modified as follows:
The sharing among the first and the second uplink carriers may be performed in a time divisional multiplexed manner.

[0061] The apparatus may further comprise a processor,
wherein for the time divisional multiplexed manner, a pre-defined uplink time division on the uplink connection may be used, and the processor may be configured to establish the pre-defined uplink time division, wherein the transceiver may be configured to send the pre-defined uplink time division to the user equipment and to the at least other network node.

[0062] Predetermined sub-frames or single carrier frequency division multiple access symbols may be scheduled for providing uplink component carrier switching time.

[0063] The processor may be configured to schedule timing of control signals to be sent via the uplink component carriers according to a predetermined rule with respect to sharing of the uplink component carriers.

[0064] The apparatus may be an eNB or may be a part thereof.

[0065] According to a third aspect of several embodiments of the invention, an apparatus is provided which comprises
a processor configured to establish a sharing of a single uplink connection of a user entity, the user entity being connectable to a first network node by a first downlink component carrier and to at least a second network node by a at least second downlink component carrier and by the uplink connection, wherein the sharing is used to share the uplink connection among a first uplink component carrier for the first network node and at least a second uplink component carrier for the at least second network node.

[0066] The third aspect may be modified as follows:
The sharing among the first and the second uplink carriers may be performed in a time divisional multiplexed manner, and the processor may be configured to establish a pre-defined time division.

[0067] The processor may be configured to schedule predetermined sub-frames or single carrier frequency division multiple access symbols for providing uplink component carrier switching time.

[0068] The processor may be configured to schedule timing of control signals to be sent via the uplink component carriers according to a predetermined rule with respect to the time division of the uplink component carriers.

[0069] According to a fourth aspect of several embodiments of the invention, a method is provided which comprises
controlling a transceiver connectable to a first network node by a first downlink component carrier and to at least a second network node by a at least second downlink component carrier, wherein the transceiver is configured to provide a single uplink connection, and
controlling the transceiver such that the uplink connection is shared among a first uplink component carrier to the first network node and at least a second uplink component carrier to the at least second network node.

[0070] The fourth aspect may be modified as follows:
The method may further comprise controlling the transceiver such that the sharing among the first and the second uplink carriers is performed in a time divisional multiplexed manner.

[0071] The method may further comprise applying a pre-defined uplink time division on the uplink connection related to the first downlink component carrier and the at least second downlink component carrier.

[0072] The method may further comprise receiving the pre-defined uplink time division from a network control node.

[0073] The method may further comprise performing a frame synchronization between the first uplink component carrier and the at least second uplink component carrier.

[0074] The time division may be performed by dividing sub-frames.

[0075] The method may further comprise scheduling predetermined sub-frames or single carrier frequency division multiple access symbols for providing uplink component carrier switching time.

[0076] The method may further comprise scheduling timing of control signals to be sent via the uplink component carriers according to a predetermined rule with respect to sharing of the uplink component carriers

[0077] According to a fifth aspect of several embodiments of the invention, a method is provided which comprises
receiving uplink information from a user equipment by a single uplink connection, the user equipment being connected to a first network node and a second network node, and
wherein the uplink connection is shared among a first uplink component carrier for the first network node and at least a second uplink component carrier for the at least a second network node.

[0078] The fifth aspect may be modified as follows:
The sharing among the first and the second uplink carriers may be performed in a time divisional multiplexed manner.

[0079] The method may further comprise
using a pre-defined uplink time division on the uplink connection for the time divisional multiplexed manner,
establishing the pre-defined uplink time division, and
sending send the pre-defined uplink time division to the user equipment and to the at least second network node.

[0080] The method may further comprise scheduling predetermined sub-frames or single carrier frequency division multiple access symbols for providing uplink component carrier switching time.

[0081] The method may further comprise scheduling timing of control signals to be sent via the uplink component carriers according to a predetermined rule with respect to sharing of the uplink component carriers.

[0082] According to a sixth aspect of several embodiments of the invention, a method is provided which comprises
establishing a sharing of a single uplink connection of a user entity, the user entity being connectable to a first network node by a first downlink component carrier and to at least a second network node by a at least second downlink component carrier and by the uplink connection, wherein the sharing is used to share the uplink connection among a first uplink component carrier for the first network node and at least a second uplink component carrier for the at least second network node.

[0083] The second aspect may be modified as follows:
The sharing among the first and the second uplink carriers may be performed in a time divisional multiplexed manner, and the establishing may comprise establishing a pre-defined time division.

[0084] The method may further comprise scheduling predetermined sub-frames or single carrier frequency division multiple access symbols for providing uplink component carrier switching time.

[0085] The method may further comprise scheduling timing of control signals to be sent via the uplink component carriers according to a predetermined rule with respect to the time division of the uplink component carriers.

[0086] According to a seventh aspect of several embodiments of the invention, an apparatus is provided which comprises
transceiving means connectable to a first network node by a first downlink component carrier and to at least a second network node by a at least second downlink component carrier, and for providing a single uplink connection, and
control means for controlling the transceiving means such that the uplink connection is shared among a first uplink component carrier to the first network node and at least a second uplink component carrier to the at least second network node.

[0087] The seventh aspect may be modified as follows:
The apparatus may further comprise means for controlling transceiving means such that the sharing among the first and the second uplink carriers is performed in a time divisional multiplexed manner.

[0088] The apparatus may further comprise means for applying a pre-defined uplink time division on the uplink connection related to the first downlink component carrier and the at least second downlink component carrier.

[0089] The apparatus may further comprise means for receiving the pre-defined uplink time division from a network control node.

[0090] The apparatus may further comprise means for performing a frame synchronization between the first uplink component carrier and the at least second uplink component carrier.

[0091] The apparatus may further comprise means for scheduling predetermined sub-frames or single carrier frequency division multiple access symbols for providing uplink component carrier switching time.

[0092] The apparatus may further comprise means for scheduling timing of control signals to be sent via the uplink component carriers according to a predetermined rule with respect to sharing of the uplink component carriers.

[0093] Further modifications may be similar as modifications of the first aspect.

[0094] According to an eighth aspect of several embodiments of the invention, an apparatus is provided which comprises
a transceiving means connectable to a user equipment by a first downlink component carrier and by a single uplink connection, and
means for sharing the uplink connection among a first uplink component carrier for the apparatus and at least a second uplink component carrier for at least another network node.

[0095] The eighth aspect may be modified as follows:
For the time divisional multiplexed manner, a pre-defined uplink time division on the uplink connection may be used, and the apparatus may comprise means for establishing the pre-defined uplink time division and for sending the pre-defined uplink time division to the user equipment and to the at least other network node.

[0096] The apparatus may further comprise means for scheduling timing of control signals to be sent via the uplink component carriers according to a predetermined rule with respect to sharing of the uplink component carriers.

[0097] Further modifications may be similar as modifications of the second aspect.

[0098] According to a ninth aspect of several embodiments of the invention, an apparatus is provided which comprises
means for establishing a sharing of a single uplink connection of a user entity, the user entity being connectable to a first network node by a first downlink component carrier and to at least a second network node by a at least second downlink component carrier and by the uplink connection, wherein the sharing is used to share the uplink connection among a first uplink component carrier for the first network node and at least a second uplink component carrier for the at least second network node.

[0099] The third aspect may be modified as follows:
The sharing among the first and the second uplink carriers may be performed in a time divisional multiplexed manner, and the apparatus may comprise means for establishing a pre-defined time division.

[0100] The apparatus may further comprise means for scheduling predetermined sub-frames or single carrier frequency division multiple access symbols for providing uplink component carrier switching time.

[0101] The apparatus may further comprise means for scheduling timing of control signals to be sent via the uplink component carriers according to a predetermined rule with respect to the time division of the uplink component carriers.

[0102] Further modifications may be similar as modifications of the third aspect.

[0103] According to a tenth aspect of several embodiments of the present invention, a computer program product is provided which comprises code means for performing a method according to any one of the fourth to sixths aspects and their modifications when run on a processing means or module.

[0104] The computer program product may be embodied on a computer-readable medium, on which the software code portions are stored, and/or the program may be directly loadable into a memory of the processor.

[0105] It is to be understood that any of the above modifications can be applied singly or in combination to the respective aspects and/or embodiments to which they refer, unless they are explicitly stated as excluding alternatives.

[0106] For the purpose of the present invention as described herein above, it should be noted that
  • method steps likely to be implemented as software code portions and being run using a processor at a network element or terminal (as examples of devices, apparatuses and/or modules thereof, or as examples of entities including apparatuses and/or modules therefore), are software code independent and can be specified using any known or future developed programming language as long as the functionality defined by the method steps is preserved;
  • generally, any method step is suitable to be implemented as software or by hardware without changing the idea of the invention in terms of the functionality implemented;
  • method steps and/or devices, units or means likely to be implemented as hardware components at the above-defined apparatuses, or any module(s) thereof, (e.g., devices carrying out the functions of the apparatuses according to the embodiments as described above, eNode-B etc. as described above) are hardware independent and can be implemented using any known or future developed hardware technology or any hybrids of these, such as MOS (Metal Oxide Semiconductor), CMOS (Complementary MOS), BiMOS (Bipolar MOS), BiCMOS (Bipolar CMOS), ECL (Emitter Coupled Logic), TTL (Transistor-Transistor Logic), etc., using for example ASIC (Application Specific IC (Integrated Circuit)) components, FPGA (Field-programmable Gate Arrays) components, CPLD (Complex Programmable Logic Device) components or DSP (Digital Signal Processor) components;
  • devices, units or means (e.g. the above-defined apparatuses, or any one of their respective means) can be implemented as individual devices, units or means, but this does not exclude that they are implemented in a distributed fashion throughout the system, as long as the functionality of the device, unit or means is preserved;
  • an apparatus may be represented by a semiconductor chip, a chipset, or a (hardware) module comprising such chip or chipset; this, however, does not exclude the possibility that a functionality of an apparatus or module, instead of being hardware implemented, be implemented as software in a (software) module such as a computer program or a computer program product comprising executable software code portions for execution/being run on a processor;
  • a device may be regarded as an apparatus or as an assembly of more than one apparatus, whether functionally in cooperation with each other or functionally independently of each other but in a same device housing, for example.



Claims

1. An apparatus (1) comprising
transceiving means (11) connected to a first network node by a first downlink carrier and to at least a second network node by at least a second downlink carrier, and for providing only a single carrier to be available in an uplink direction;
controlling means (12) for controlling the transceiver such that the single carrier available in the uplink direction is shared among a first uplink carrier to the first network node and at least a second uplink carrier to the at least second network node; and,
wherein the sharing among the first and second uplink carriers comprises sharing of uplink control signalling in a time divisional multiplexed manner.
 
2. The apparatus according to claim 1, comprising means for applying a pre-defined uplink time division on the uplink connection related to the first downlink carrier and the at least second downlink carrier.
 
3. The apparatus according to any one of the claims 1 to 2, comprising means for performing a frame synchronization between the first uplink carrier and the at least second uplink carrier.
 
4. The apparatus according to any one of the claims 1 to 3, comprising means for scheduling timing of control signals to be sent via the uplink carriers according to a predetermined rule with respect to sharing of the uplink carriers.
 
5. A network node (2) comprising
transceiving means (21) connected to a user equipment by a first downlink carrier and by only a single carrier available in an uplink direction, and
means for sharing the single carrier available in the uplink direction among a first uplink carrier for the network node and at least a second uplink carrier for at least another network node, wherein the sharing among the first and second uplink carriers comprises sharing of uplink control signalling in a time divisional multiplexed manner.
 
6. The network node according to claim 5,
wherein, for the time divisional multiplexed manner, a pre-defined uplink time division on the uplink connection is used, and comprising means (22) for establishing the pre-defined uplink time division and for sending the predefined uplink time division to the user equipment and to the at least other network node.
 
7. The network node according to claim 5 or 6, wherein predetermined sub-frames or single carrier frequency division multiple access symbols are scheduled for providing uplink carrier switching time.
 
8. The network node according to claim 5, comprising means for scheduling timing of control signals to be sent via the uplink carriers according to a predetermined rule with respect to sharing of the uplink carriers.
 
9. An apparatus comprising
means for establishing a sharing of only a single carrier in an uplink direction of a user entity, the user entity being connected to a first network node by a first downlink carrier and to at least a second network node by at least second downlink carrier and by the single carrier available in the uplink direction wherein, the sharing is used to share the single carrier available in the uplink direction among a first uplink carrier for the first network node and at least a second uplink carrier for the at least second network node, wherein the sharing among the first and second uplink carriers comprises sharing of uplink control signalling in a time divisional multiplexed manner.
 
10. The apparatus according to claim 9, comprising means for establishing a pre-defined time division.
 
11. The apparatus according to claim 9 or 10, comprising means for scheduling predetermined sub-frames or single carrier frequency division multiple access symbols for providing uplink carrier switching time.
 
12. The apparatus according to any one of the claims 9 to 11, comprising means for scheduling timing of control signals to be sent via the uplink carriers according to a predetermined rule with respect to the time division of the uplink carriers.
 
13. A method comprising
controlling a transceiver (11) connectable to a first network node by a first downlink carrier and to at least a second network node by a at least second downlink carrier, wherein the transceiver is configured to provide only a single carrier to be available in an uplink direction, and
controlling the transceiver such that the single carrier available in the uplink direction is shared among a first uplink carrier to the first network node and at least a second uplink carrier to the at least second network node and wherein the sharing among the first and second uplink carriers comprises sharing of uplink control signalling in a time divisional multiplexed manner.
 
14. A method comprising
receiving uplink information from a user equipment by only a single carrier available in an uplink direction, the user equipment being connected to a first network node (2) and a second network node, and
wherein the single carrier available in the uplink direction is shared among a first uplink carrier for the first network node and at least a second uplink carrier for the at least a second network node, wherein the sharing among the first and second uplink carriers comprises sharing of uplink control signalling in a time divisional multiplexed manner.
 
15. A method comprising
establishing a sharing of only a single carrier available in an uplink direction of a user entity, the user entity being connectable to a first network node by a first downlink carrier and to at least a second network node by a at least second downlink carrier and by the single carrier available in the uplink direction wherein the sharing is used to share the single carrier available in the uplink direction among a first uplink carrier for the first network node and at least a second uplink carrier for the at least second network node, wherein the sharing among the first and second uplink carrier comprises sharing of uplink control signalling in a time divisional multiplexed manner.
 
16. A computer program product comprising code means for performing a method according to any one of claims 13 to 15 when run on a processing means or module.
 


Ansprüche

1. Gerät (1), umfassend
einen Transceiver (11), verbunden mit einem ersten Netzwerkknoten durch einen ersten Downlink-Träger und mit mindestens einem zweiten Netzwerkknoten durch einen mindestens zweiten Downlink-Träger, und zum Bereitstellen eines einzigen Trägers, der in einer Uplink-Richtung zur Verfügung steht;
einen Controller (12) zur Steuerung des Transceivers in der Art, dass der einzige in der Uplink-Richtung verfügbare Träger von einem ersten Uplink-Träger zum ersten Netzwerkknoten und mindestens einem zweiten Uplink-Träger zu mindestens einem zweiten Netzwerkknoten gemeinsam genutzt wird; und
wobei die gemeinsame Nutzung durch den ersten und den zweiten Uplink-Träger die gemeinsame Nutzung der Uplink-Steuersignalisierung in einer zeitmultiplexierten Weise umfasst.
 
2. Gerät nach Anspruch 1, umfassend Mittel zum Anwenden einer vordefinierten Uplink-Zeiteinteilung auf die Uplink-Verbindung bezüglich des ersten Downlink-Trägers und des mindestens zweiten Downlink-Trägers.
 
3. Gerät nach einem der Ansprüche 1 bis 2, umfassend Mittel zum Durchführen einer Frame-Synchronisation zwischen dem ersten Uplink-Träger und dem mindestens zweiten Uplink-Träger.
 
4. Gerät nach einem der Ansprüche 1 bis 3, umfassend Mittel zum Planen der Zeiteinteilung der Steuersignale, die über die Uplink-Träger gemäß einer vorgegebenen Regel bezüglich der gemeinsamen Nutzung der Uplink-Träger gesendet werden.
 
5. Netzwerkknoten (2) umfassend
einen Transceiver (21), verbunden mit einem Benutzerendgerät über einen ersten Downlink-Träger und über nur einen einzigen in einer Uplink-Richtung verfügbaren Träger, und
Mittel zur gemeinsamen Nutzung des einzigen in der Uplink-Richtung verfügbaren Trägers durch einen ersten Uplink-Träger für den Netzwerkknoten
und mindestens einen zweiten Uplink-Träger für mindestens einen weiteren Netzwerkknoten, wobei die gemeinsame Nutzung durch den ersten und den zweiten Uplink-Träger die gemeinsame Nutzung der Uplink-Steuersignalisierung in einer zeitmultiplexierten Weise umfasst.
 
6. Netzwerkknoten nach Anspruch 5, wobei für die zeitmultiplexierte Weise eine vordefinierte Uplink-Zeiteinteilung auf der Uplink-Verbindung verwendet wird, und umfassend Mittel (22) zum Festlegen der vordefinierten Uplink-Zeiteinteilung und zum Senden der vordefinierten Uplink-Zeiteinteilung an das Benutzerendgerät und den mindestens weiteren Netzwerkknoten.
 
7. Netzwerkknoten nach Anspruch 5 oder 6, wobei vorgegebene Sub-Frames oder Mehrfachzugriffs-Symbole für die Frequenzeinteilung des einzigen Trägers zur Bereitstellung einer Uplink-Träger-Umschaltzeit festgesetzt sind.
 
8. Netzwerkknoten nach Anspruch 5, umfassend Mittel zum Planen der Zeiteinteilung der Steuersignale, die über die Uplink-Träger gemäß einer vorgegebenen Regel bezüglich der gemeinsamen Nutzung der Uplink-Träger gesendet werden.
 
9. Gerät, umfassend Mittel zum Festlegen einer gemeinsamen Nutzung von nur einem einzigen Träger in einer Uplink-Richtung einer Benutzereinheit, wobei die Benutzereinheit mit einem ersten Netzwerkknoten durch einen ersten Downlink-Träger und mit mindestens einem zweiten Netzwerkknoten durch einen mindestens zweiten Downlink-Träger und durch den einzigen in der Uplink-Richtung verfügbaren Träger verbunden ist, wobei die gemeinsame Nutzung dazu verwendet wird, den einzigen in der Uplink-Richtung verfügbaren Träger durch einen ersten Uplink-Träger für den ersten Netzwerkknoten und mindestens einen zweiten Uplink-Träger für mindestens einen zweiten Netzwerkknoten gemeinsam zu nutzen, wobei die gemeinsame Nutzung durch den ersten und den zweiten Uplink-Träger die gemeinsame Nutzung der Uplink-Steuersignalisierung in einer zeitmultiplexierten Weise umfasst.
 
10. Gerät nach Anspruch 9, umfassend Mittel zum Festlegen einer vordefinierten Zeiteinteilung.
 
11. Gerät nach Anspruch 9 oder 10, umfassend Mittel zum Planen vorgegebener Sub-Frames oder Mehrfachzugriffs-Symbole für die Frequenzeinteilung des einzigen Trägers zur Bereitstellung einer Uplink-Träger-Umschaltzeit.
 
12. Gerät nach einem der Ansprüche 9 bis 11, umfassend Mittel zum Planen der Zeiteinteilung der Steuersignale, die über die Uplink-Träger gemäß einer vorgegebenen Regel bezüglich der Zeiteinteilung der Uplink-Träger gesendet werden.
 
13. Verfahren, umfassend
das Steuern eines Transceivers (11), verbindbar mit einem ersten Netzwerkknoten durch einen ersten Downlink-Träger und mit mindestens einem zweiten Netzwerkknoten durch einen mindestens zweiten Downlink-Träger, wobei der Transceiver so konfiguriert ist, dass er nur einen einzigen Träger bereitstellt, der in einer Uplink-Richtung zur Verfügung steht, und
das Steuern des Transceivers in der Art, dass der einzige in der Uplink-Richtung verfügbare Träger von einem ersten Uplink-Träger zum ersten Netzwerkknoten und mindestens einem zweiten Uplink-Träger zu mindestens einem zweiten Netzwerkknoten gemeinsam genutzt wird und wobei die gemeinsame Nutzung durch den ersten und den zweiten Uplink-Träger die gemeinsame Nutzung der Uplink-Steuersignalisierung in einer zeitmultiplexierten Weise umfasst.
 
14. Verfahren, umfassend das Empfangen von Uplink-Informationen von einem Benutzerendgerät über nur einen einzigen in einer Uplink-Richtung verfügbaren Träger, wobei das Benutzerendgerät mit einem ersten Netzwerkknoten (2) und einem zweiten Netzwerkknoten verbunden ist, und
wobei der einzige in der Uplink-Richtung verfügbare Träger von einem ersten Uplink-Träger für den ersten Netzwerkknoten und mindestens einem zweiten Uplink-Träger für mindestens einen zweiten Netzwerkknoten gemeinsam genutzt wird, wobei die gemeinsame Nutzung durch den ersten und den zweiten Uplink-Träger die gemeinsame Nutzung der Uplink-Steuersignalisierung in einer zeitmultiplexierten Weise umfasst.
 
15. Verfahren, umfassend
das Festlegen einer gemeinsamen Nutzung von nur einem einzigen in einer Uplink-Richtung verfügbaren Träger einer Benutzereinheit, wobei die Benutzereinheit mit einem ersten Netzwerkknoten durch einen ersten Downlink-Träger und mit mindestens einem zweiten Netzwerkknoten durch mindestens einen zweiten Downlink-Träger und durch den einzigen in der Uplink-Richtung verfügbaren Träger verbunden werden kann, wobei die gemeinsame Nutzung dazu verwendet wird, den einzigen in Uplink-Richtung verfügbaren Träger von einem ersten Uplink-Träger für den ersten Netzwerkknoten und mindestens einem zweiten Uplink-Träger für mindestens einen zweiten Netzwerkknoten gemeinsam zu nutzen, wobei die gemeinsame Nutzung durch den ersten und den zweiten Uplink-Träger die gemeinsame Nutzung der Uplink-Steuersignalisierung in einer zeitmultiplexierten Weise umfasst.
 
16. Computerprogrammprodukt, umfassen die Mittel zum Durchführen eines Verfahrens entsprechend einem der Ansprüche 13 bis 15, wenn es auf einer Verarbeitungseinrichtung oder einem Modul ausgeführt wird.
 


Revendications

1. Appareil (1) comprenant :

un moyen d'émission-réception (11) connecté à un premier noeud de réseau par une première porteuse de liaison descendante et à au moins un second noeud de réseau par au moins une seconde porteuse de liaison descendante, et permettant de fournir seulement une porteuse unique qui doit être disponible dans une direction de liaison montante ;

un moyen de commande (12) permettant de commander l'émetteur-récepteur de telle sorte que la porteuse unique disponible dans la direction de liaison montante soit partagée parmi une première porteuse de liaison montante sur le premier noeud de réseau et au moins une seconde porteuse de liaison montante sur l'au moins un second noeud de réseau ; et

dans lequel le partage parmi les première et seconde porteuses de liaison montante comprend le partage d'une signalisation de commande de liaison montante de manière multiplexée par répartition dans le temps.


 
2. Appareil selon la revendication 1, comprenant un moyen d'appliquer une répartition dans le temps de liaison montante prédéfinie sur la connexion de liaison montante liée à la première porteuse de liaison descendante et à l'au moins une seconde porteuse de liaison descendante.
 
3. Appareil selon l'une quelconque des revendications 1 à 2, comprenant un moyen d'exécuter une synchronisation de trame entre la première porteuse de liaison montante et l'au moins une seconde porteuse de liaison montante.
 
4. Appareil selon l'une quelconque des revendications 1 à 3, comprenant un moyen de programmer une synchronisation de signaux de commande qui doivent être envoyés par le biais des porteuses de liaison montante en fonction d'une règle prédéterminée par rapport à un partage des porteuses de liaison montante.
 
5. Noeud de réseau (2) comprenant :

un moyen d'émission-réception (21) connecté à un équipement utilisateur par une première porteuse de liaison descendante et par seulement une porteuse unique disponible dans une direction de liaison montante, et

un moyen de partage de la porteuse unique disponible dans la direction de liaison montante parmi une première porteuse de liaison montante pour le noeud de réseau et au moins une seconde porteuse de liaison montante pour au moins un autre noeud de réseau, dans lequel le partage parmi les première et seconde porteuses de liaison montante comprend le partage d'une signalisation de commande de liaison montante d'une manière multiplexée par répartition dans le temps.


 
6. Noeud de réseau selon la revendication 5,
dans lequel, pour la manière multiplexée par répartition dans le temps, on utilise une répartition dans le temps de liaison montante prédéfinie sur la connexion de liaison montante, et comprenant un moyen (22) d'établir la répartition dans le temps de liaison montante prédéfinie et d'envoyer la répartition dans le temps de liaison montante prédéfinie à l'équipement utilisateur et à l'au moins un autre noeud de réseau.
 
7. Noeud de réseau selon la revendication 5 ou 6, dans lequel des sous-trames prédéterminées ou des symboles d'accès multiple à répartition de fréquences de porteuse unique sont programmés pour fournir un temps de commutation de porteuses de liaison montante.
 
8. Noeud de réseau selon la revendication 5, comprenant un moyen de programmer une synchronisation de signaux de commande qui doivent être envoyés par le biais de porteuses de liaison montante en fonction d'une règle prédéterminée par rapport au partage des porteuses de liaison montante.
 
9. Appareil comprenant :

un moyen d'établir un partage de seulement une porteuse unique dans une direction de liaison montante d'une entité d'utilisateurs, l'entité d'utilisateurs étant connectée à un premier noeud de réseau par une première porteuse de liaison descendante et à au moins un second noeud de réseau par au moins une seconde porteuse de liaison descendante et par la porteuse unique disponible dans la direction de liaison montante,

dans lequel le partage est utilisé pour partager la porteuse unique disponible dans la direction de liaison montante parmi une première porteuse de liaison montante pour le premier noeud de réseau et au moins une seconde porteuse de liaison montante pour l'au moins un second noeud de réseau, dans lequel le partage parmi les première et seconde porteuses de liaison montante comprend le partage d'une signalisation de commande de liaison montante d'une manière multiplexée par répartition dans le temps.


 
10. Appareil selon la revendication 9, comprenant un moyen d'établir une répartition dans le temps prédéfinie.
 
11. Appareil selon la revendication 9 ou 10, comprenant un moyen de programmer des sous-trames prédéterminées ou des symboles d'accès multiple par répartition de fréquences de porteuse unique pour fournir un temps de commutation de porteuses de liaison montante.
 
12. Appareil selon l'une quelconque des revendications 9 à 11, comprenant un moyen de programmer la synchronisation de signaux de commande devant être envoyés par le biais des porteuses de liaison montante en fonction d'une règle prédéterminée par rapport à la répartition dans le temps des porteuses de liaison montante.
 
13. Procédé comprenant :

la commande d'un émetteur-récepteur (11) pouvant être connecté à un premier noeud de réseau par une première porteuse de liaison descendante et à au moins un second noeud de réseau par au moins une seconde porteuse de liaison descendante, dans lequel l'émetteur-récepteur est configuré pour fournir seulement une porteuse unique qui doit être disponible dans une direction de liaison montante, et

la commande de l'émetteur-récepteur de telle sorte que la porteuse unique disponible dans la direction de liaison montante soit partagée parmi une première porteuse de liaison montante sur le premier noeud de réseau et au moins une seconde porteuse de liaison montante sur l'au moins un second noeud de réseau, et dans lequel le partage parmi les première et seconde porteuses de liaison montante comprend le partage d'une signalisation de commande de liaison montante d'une manière multiplexée par répartition dans le temps.


 
14. Procédé comprenant :

la réception d'informations de liaison montante à partir d'un équipement utilisateur par seulement une porteuse unique disponible dans une direction de liaison montante, l'équipement utilisateur étant connecté à un premier noeud de réseau (2) et à un second noeud de réseau, et

dans lequel la porteuse unique disponible dans la direction de liaison montante est partagée parmi une première porteuse de liaison montante pour le premier noeud de réseau et au moins une seconde porteuse de liaison montante pour l'au moins un second noeud de réseau, dans lequel le partage parmi les première et seconde porteuses de liaison montante comprend le partage d'une signalisation de commande de liaison montante d'une manière multiplexée par répartition dans le temps.


 
15. Procédé comprenant :

l'établissement d'un partage de seulement une porteuse unique disponible dans une direction de liaison montante d'une entité d'utilisateurs, l'entité d'utilisateurs pouvant être connectée à un premier noeud de réseau par une première porteuse de liaison descendante et à au moins un second noeud de réseau par au moins une seconde porteuse de liaison descendante et par la porteuse unique disponible dans la direction de liaison montante,

dans lequel le partage est utilisé pour partager la porteuse unique disponible dans la direction de liaison montante parmi une première porteuse de liaison montante pour le premier noeud de réseau et au moins une seconde porteuse de liaison montante pour l'au moins un second noeud de réseau, dans lequel le partage parmi les première et seconde porteuses de liaison montante comprend le partage d'une signalisation de commande de liaison montante d'une manière multiplexée par répartition dans le temps.


 
16. Produit de programme informatique comprenant un moyen de code permettant d'exécuter un procédé selon l'une quelconque des revendications 13 à 15 lorsqu'il est exécuté sur un moyen ou un module de traitement.
 




Drawing


















REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description