(19)
(11)EP 2 716 702 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
04.11.2020 Bulletin 2020/45

(21)Application number: 12789789.0

(22)Date of filing:  23.05.2012
(51)Int. Cl.: 
C08K 3/013  (2018.01)
C08K 3/36  (2006.01)
C08K 5/31  (2006.01)
C08L 15/00  (2006.01)
C08K 3/04  (2006.01)
C08K 5/00  (2006.01)
C08K 5/548  (2006.01)
(86)International application number:
PCT/JP2012/063223
(87)International publication number:
WO 2012/161229 (29.11.2012 Gazette  2012/48)

(54)

METHOD FOR PRODUCING RUBBER COMPOSITION

VERFAHREN ZUR HERSTELLUNG EINER KAUTSCHUKZUSAMMENSETZUNG

PROCÉDÉ DE PRODUCTION D'UNE COMPOSITION DE CAOUTCHOUC


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 25.05.2011 JP 2011116869

(43)Date of publication of application:
09.04.2014 Bulletin 2014/15

(73)Proprietor: Bridgestone Corporation
Tokyo 104-8340 (JP)

(72)Inventor:
  • TSUJI, Takanori
    Kodaira-shi Tokyo 187-8531 (JP)

(74)Representative: Oxley, Robin John George et al
Marks & Clerk LLP 15 Fetter Lane
London EC4A 1BW
London EC4A 1BW (GB)


(56)References cited: : 
EP-A1- 2 213 687
WO-A1-96/30419
WO-A1-2007/120797
WO-A1-2008/123306
WO-A1-2011/049180
JP-A- 7 165 991
JP-A- 2002 521 515
JP-A- 2003 523 472
JP-A- 2004 149 684
US-A1- 2004 254 301
EP-A2- 1 963 110
WO-A1-2006/028254
WO-A1-2008/102513
WO-A1-2010/104149
WO-A2-02/48256
JP-A- 11 263 882
JP-A- 2002 521 516
JP-A- 2003 530 443
JP-A- 2007 154 130
US-B1- 6 765 045
  
     
    Remarks:
    The file contains technical information submitted after the application was filed and not included in this specification
     
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    Technical Field



    [0001] The present invention relates to a method for producing a rubber composition containing an inorganic filler and having an improved low-heat-generation property.

    Background Art



    [0002] Recently, in association with the movement of global regulation of carbon dioxide emission associated with the increase in attraction to environmental concerns, the demand for low fuel consumption by automobiles is increasing. To satisfy the requirement, it is desired to reduce rolling resistance relating to tire performance. Heretofore, as a means for reducing the rolling resistance of tires, a method of optimizing tire structures has been investigated; however, at present, a technique of using a low-heat-generating rubber composition for tires has become employed as the most common method.

    [0003] For obtaining such a low-heat-generating rubber composition, there is known a method of using an inorganic filler such as silica or the like.

    [0004] However, in incorporating an inorganic filler such as silica or the like in a rubber composition to prepare an inorganic filler-containing rubber composition, the inorganic filler, especially silica aggregates in the rubber composition (owing to the hydroxyl group in the surface of silica), and therefore, for preventing the aggregation, a silane coupling agent is used.

    [0005] Accordingly, for successfully solving the above-mentioned problem by incorporation of a silane coupling agent, various trials have been made for increasing the activity of the coupling function of the silane coupling agent.

    [0006] For example, PTL 1 proposes a rubber composition containing, as basic components, at least (i) one diene elastomer, (ii) a white filler as a reinforcing filler and (iii) an alkoxysilane polysulfide as a coupling agent (white filler/diene elastomer) along with (iv) an enamine and (v) a guanidine derivative.

    [0007] PTL 2 discloses a rubber composition containing, as basic components, at least (i) one diene elastomer, (ii) a white filler as a reinforcing filler and (iii) an alkoxysilane polysulfide as a coupling agent (white filler/diene elastomer) along with (iv) zinc thiophosphate and (v) a guanidine derivative.

    [0008] PTL 3 describes a rubber composition containing, as basic components, at least (i) a diene elastomer, (ii) an inorganic filler as a reinforcing filler and (iii) an alkoxysilane polysulfide (PSAS) as an (inorganic filler/diene elastomer) coupling agent, as combined with (iv) an aldimine (R-CH=N-R) and (v) a guanidine derivative.

    [0009] Further, PTL 4 proposes a rubber composition basically containing at least (i) a diene elastomer, (ii) an inorganic filer as a reinforcing filer and (iii) an alkoxysilane polysulfide as a coupling agent, as combined with (iv) 1,2-dihydropyridine and (v) a guanidine derivative.

    [0010] However, in these inventions, nothing is taken into consideration relating to kneading conditions.

    [0011] As a case of increasing the activity of the coupling function of a silane coupling agent in consideration of kneading conditions, there is mentioned PTL 5; however, it is desired to further improve the effect of enhancing the activity of the coupling function of a silane coupling agent.

    Citation List


    Patent Literature



    [0012] 

    PTL 1: JP-T 2002-521515

    PTL 2: JP-T 2002-521516

    PTL 3: JP-T 2003-530443

    PTL 4: JP-T 2003-523472

    PTL 5: WO2008/123306


    Summary of Invention


    Technical Problem



    [0013] Given the situation as above, an object of the present invention is to provide a method for producing a rubber composition containing a modified conjugated diene-based polymer, which can further increase the activity of the coupling function of a silane coupling agent to thereby favorably produce a low-heat-generating rubber composition. Solution to Problem

    [0014] For solving the above-mentioned problems, the present inventors have made various experiments by incorporating a rubber component containing a modified conjugated diene-based polymer, all or a part of an inorganic filler, all or a part of a silane coupling agent, and at least one promoter selected from guanidines, sulfenamides and thiazoles, and, as a result, have experimentally found that, in order to enhance the activity of the coupling function, it is good to incorporate at least one promoter selected from guanidines, sulfenamides and thiazoles in the first stage of the kneading step, and have completed the present invention.

    [0015] Specifically, the present invention is:
    1. [1] A method for producing a rubber composition containing a rubber component (A) that contains a modified conjugated diene-based polymer obtained by using a modifying agent that has a functional group compatible with silica, a filler containing an inorganic filler (B), a silane coupling agent (C), and at least one promoter (D) selected from guanidines, sulfenamides, thiazoles, thiurams, thioureas, dithiocarbamic acid compounds and xanthogenic acid compounds, wherein the rubber composition is kneaded in plural stages, and in the first stage (X) of kneading, the rubber component (A), all or a part of the inorganic filler (B), all or a part of the silane coupling agent (C) and the promoter (D) are added and kneaded, wherein the amount of the inorganic filler (B) in the rubber composition is from 20 to 120 parts by mass relative to 100 parts by mass of the rubber component (A), wherein the amount of the silane coupling agent (C) in the rubber composition is of from 1 to 20% by mass of the inorganic filler (B), and wherein the molar amount of the promoter (D) in the rubber composition in the first stage of kneading is from 0.1 to 1.0 times the molar amount of the silane coupling agent (C).

    Advantageous Effects of Invention



    [0016] According to the present invention, there is provided a method for producing a rubber composition containing a modified conjugated diene-based polymer obtained by using a modifying agent that has a functional group compatible with silica, in which the activity of the coupling function of the silane coupling agent used can be further increased to produce a rubber composition excellent in low-heat-generation property.

    Description of Embodiments



    [0017] The present invention is described in detail hereinunder.

    [0018] The method for producing a rubber composition of the present invention is a method for producing a rubber composition containing a rubber component (A) that contains a modified conjugated diene-based polymer obtained by using a modifying agent that has a functional group compatible with silica, a filler containing an inorganic filler (B), a silane coupling agent (C), and at least one promoter (D) selected from guanidines, sulfenamides, thiazoles, thiurams, thioureas, dithiocarbamic acid compounds and xanthogenic acid compounds, wherein the rubber composition is kneaded in plural stages, and in the first stage (X) of kneading, the rubber component (A), all or a part of the inorganic filler (B), all or a part of the silane coupling agent (C) and the promoter (D) are added and kneaded, wherein the amount of the inorganic filler (B) in the rubber composition is from 20 to 120 parts by mass relative to 100 parts by mass of the rubber component (A), wherein the amount of the silane coupling agent (C) in the rubber composition is of from 1 to 20% by mass of the inorganic filler (B), and wherein the molar amount of the promoter (D) in the rubber composition in the first stage of kneading is from 0.1 to 1.0 times the molar amount of the silane coupling agent (C).

    [0019] In the present invention, the promoter (D) is added and kneaded in the first stage of kneading, and this is for increasing the activity of the coupling function of the silane coupling agent (C).

    [0020] In the first stage of kneading in the present invention, it is more desirable that, after the rubber component (A), all or a part of the inorganic filler (B) and all or a part of the silane coupling agent (C) have been kneaded, the promoter (D) is added thereto and further kneaded in order that the effect of enhancing the activity of the coupling function through incorporation of the promoter (D) could be prevented from being reduced. This is because, after the reaction between the inorganic filler (B) and the silane coupling agent (C) could be fully attained, the reaction between the silane coupling agent (C) and the rubber component (C) could be attained.

    [0021] In the first stage of kneading, more preferably, the time taken after the addition of the rubber component (A), all or a part of the inorganic filler (B) and all or a part of the silane coupling agent (C) and until the addition of the promoter (D) during the first stage is from 10 to 180 seconds. The lower limit of the time is more preferably at least 30 seconds, and the upper limit is more preferably at most 150 seconds, even more preferably at most 120 seconds. When the time is at least 10 seconds, the reaction between (B) and (C) can be fully attained. Even though the time is more than 180 seconds, the method could not enjoy any additional effect since the reaction between (B) and (C) would have been fully attained, and therefore it is desirable that the upper limit is at most 180 seconds.

    [0022] In the present invention, preferably, the molar amount X of the organic acid in the rubber composition in the first stage of kneading satisfies the following relational formula [1] relative to the molar amount Y of the promoter (D). This is for the purpose of favorably preventing the effect of enhancing the activity of the coupling function through incorporation of the promoter (D) from being reduced owing to the presence of a large quantity of the organic acid.



    [0023] For reducing the amount of the organic acid in the first stage (X) of kneading, preferably, the organic acid is added in and after the second stage of kneading.

    [0024]  In the present invention, preferably, the highest temperature of the rubber composition in the first stage of kneading is from 120 to 190°C. This is for sufficiently attaining the reaction between the inorganic filler (B) and the silane coupling agent (C). From this viewpoint, the highest temperature of the rubber composition in the first stage of kneading is more preferably from 130 to 190°C, even more preferably from 140 to 180°C.

    [0025] The kneading step of the rubber composition in the present invention includes at least two stages of the first stage of kneading where the system does not contain any other vulcanizing agent or the like except the promoter (D) and the final stage of kneading where the system contains a vulcanizing agent, etc., and if desired, the step may further include an intermediate stage of kneading where the system does not contain any other vulcanizing agent or the like except the promoter (D). Here, vulcanizing agent or the like is meant to include a vulcanizing agent and a vulcanization accelerator.

    [0026] The first stage of kneading in the present invention is the first stage of kneading the rubber component (A), the inorganic filler (B) and the silane coupling agent (C), but not including the case of kneading the rubber component (A) and any other filler than the inorganic filler (B) in the first stage or the case of pre-kneading the rubber component (A) alone.

    [Silane Coupling Agent (C)]



    [0027] The silane coupling agent (C) for use in the rubber composition production method of the present invention is preferably at least one compound selected from a group consisting of compounds of the following general formulae (I) and (II) .

    [0028] Using the silane coupling agent (C) of the type, the rubber composition produced according to the method of the present invention is excellent in workability thereof and can give pneumatic tires having better abrasion resistance.

    [0029] The general formulae (I) and (II) are sequentially described below.
    [Chem. 1]

            (R1O)3-p(R2)pSi-R3-Sa-R3-Si(OR1)3-r(R2)r ···     (I)

    wherein plural R1's may be the same or different, each representing a linear, cyclic or branched alkyl group, having from 1 to 8 carbon atoms, or a linear or branched alkoxylalkyl group, having from 2 to 8 carbon atoms; plural R2's may be the same or different, each representing a linear, cyclic or branched alkyl group, having from 1 to 8 carbon atoms; plural R3's may be the same or different, each representing a linear or branched alkylene group, having from 1 to 8 carbon atoms; a indicates from 2 to 6 as a mean value; p and r may be the same or different, each indicating from 0 to 3 as a mean value, provided that both p and r are not 3 at the same time.

    [0030] Specific examples of the silane coupling agent (C) represented by the above-mentioned general formula (I) include bis(3-triethoxysilylpropyl) tetrasulfide, bis(3-trimethoxysilylpropyl) tetrasulfide, bis(3-methyldimethoxysilylpropyl) tetrasulfide, bis(2-triethoxysilylethyl) tetrasulfide, bis(3-triethoxysilylpropyl) disulfide, bis(3-trimethoxysilylpropyl) disulfide, bis(3-methyldimethoxysilylpropyl) disulfide, bis(2-triethoxysilylethyl) disulfide, bis(3-triethoxysilylpropyl) trisulfide, bis(3-trimethoxysilylpropyl) trisulfide, bis(3-methyldimethoxysilylpropyl) trisulfide, bis(2-triethoxysilylethyl) trisulfide, bis(3-monoethoxydimethylsilylpropyl) tetrasulfide, bis(3-monoethoxydimethylsilylpropyl) trisulfide, bis(3-monoethoxydimethylsilylpropyl) disulfide, bis(3-monomethoxydimethylsilylpropyl) tetrasulfide, bis(3-monomethoxydimethylsilylpropyl) trisulfide, bis(3-monomethoxydimethylsilylpropyl) disulfide, bis(2-monoethoxydimethylsilylethyl) tetrasulfide, bis(2-monoethoxydimethylsilylethyl) trisulfide, bis(2-monoethoxydimethylsilylethyl) disulfide.
    [Chem. 2]

            (R4O)3-s(R5)sSi-R6-Sk-R7-Sk-R6-Si(OR4)3-t(R5)t ···     (II)

    wherein plural R4's may be the same or different, each representing a linear, cyclic or branched alkyl group, having from 1 to 8 carbon atoms, or a linear or branched alkoxylalkyl group, having from 2 to 8 carbon atoms; plural R5's may be the same or different, each representing a linear, cyclic or branched alkyl group, having from 1 to 8 carbon atoms; plural R6's may be the same or different, each representing a linear or branched alkylene group, having from 1 to 8 carbon atoms; R7 represents a divalent group of a general formula (-S-R8-S-), (-RLSm1-R10-) or (-R11-Sm2-R12-Sm3-R13-) (where R8 to R13 may be the same or different, each representing a divalent aliphatic hydrocarbon group having from 1 to 20 carbon atoms, a divalent alicyclic hydrocarbon group having from 3 to 20 carbon atoms, a divalent aromatic group, or a divalent organic group containing a hetero element except sulfur and oxygen; m1, m2 and m3 may be the same or different, each indicating from 1 to less than 4 as a mean value); plural k's may be the same or different, each indicating from 1 to 6 as a mean value; s and t may be the same or different, each indicating from 0 to 3 as a mean value, provided that both s and t are not 3 at the same time.

    [0031] Preferred examples of the silane coupling agent (C) represented by the above-mentioned general formula (II) are compounds represented by an average compositional formula (CH3CH2O)3Si-(CH2)3-S2-(CH2)6-S2-(CH2)3-Si(OCH2CH3)3, an average compositional formula (CH3CH2O)3Si-(CH2)3-S2-(CH2)10-S2-(CH2)3-Si(OCH2CH3)3, an average compositional formula (CH3CH2O)3Si-(CH2)3-S3-(CH2)6-S3-(CH2)3-Si(OCH2CH3)3, an average compositional formula (CH3CH2O)3Si-(CH2)3-S4-(CH2)6-S4-(CH2)3-Si(OCH2CH3)3, an average compositional formula (CH3CH2O)3Si-(CH2)3-S-(CH2)6-S2-(CH2)6-S-(CH2)3-Si(OCH2CH3)3, an average compositional formula (CH3CH2O)3Si-(CH2)3-S-(CH2)6-S2.5-(CH2)6-S-(CH2)3-Si(OCH2CH3)3, an average compositional formula (CH3CH2O)3Si-(CH2)3-S-(CH2)6-S3-(CH2)6-S-(CH2)3-Si(OCH2CH3)3, an average compositional formula (CH3CH2O)3Si-(CH2)3-S-(CH2)6-S4-(CH2)6-S-(CH2)3-Si(OCH2CH3)3, an average compositional formula (CH3CH2O)3Si-(CH2)3-S-(CH2)10-S2-(CH2)10-S-(CH2)3-Si(OCH2CH3)3, an average compositional formula (CH3CH2O)3Si-(CH2)3-S4-(CH2)6-S4-(CH2)6-S4-(CH2)3-Si(OCH2CH3)3, an average compositional formula (CH3CH2O)3Si-(CH2)3-S2-(CH2)6-S2-(CH2)6-S2-(CH2)3-Si(OCH2CH3)3, an average compositional formula (CH3CH2O)3Si-(CH2)3-S-(CH2)6-S2-(CH2)6-S2-(CH2)6-S-(CH2)3-Si(OCH2CH3)3, etc.

    [0032] Examples of synthesis of the silane coupling agent (C) represented by the above-mentioned general formula (II) are described, for example, in WO2004/000930.

    [0033] Of the compounds represented by the above-mentioned general formulae (I) and (II), those represented by the general formula (I) are especially preferred as the silane coupling agent (C) for use in the present invention. This is because the promoter (D) can readily activate the polysulfide bond that reacts with the rubber component (A).

    [0034] In the present invention, one alone or two or more different types of the silane coupling agents (C) may be used either singly or as combined.

    [0035] The amount of the silane coupling agent (C) to be in the rubber composition in the present invention is from 1 to 20% by mass of the inorganic filler. When the amount is less than 1% by mass, then the rubber composition could hardly exhibit the effect of enhancing the low-heat-generation property thereof; and when more than 20% by mass, then the cost of the rubber composition would be too high and the economic potential thereof would lower. Further, the amount is more preferably from 3 to 20% by mass of the inorganic filler, even more preferably from 4 to 10% by mass of the inorganic filler.

    [Promoter (D)]



    [0036] The promoter (D) for use in the rubber composition production method of the present invention includes guanidines, sulfenamides, thiazoles, thiurams, thioureas, dithiocarbamic acid compounds and xanthogenic acid compounds.

    [0037] The guanidines include 1,3-diphenylguanidine, 1,3-di-o-tolylguanidine, 1-o-tolylbiguanide, dicatechol borate di-o-tolylguanidine salt, 1,3-di-o-cumenylguanidine, 1,3-di-o-biphenylguanidine, 1,3-di-o-cumenyl-2-propionylguanidine, etc. Preferred are 1,3-diphenylguanidine, 1,3-di-o-tolylguanidine and 1-o-tolylbiguanide as having high reactivity; and more preferred is 1,3-diphenylguanidine as having higher reactivity.

    [0038] The sulfenamides for use in the rubber composition production method of the present invention include N-cyclohexyl-2-benzothiazolylsulfenamide, N,N-dicyclohexyl-2-benzothiazolylsulfenamide, N-tert-butyl-2-benzothiazolylsulfenamide, N-oxydiethylene-2-benzothiazolylsulfenamide, N-methyl-2-benzothiazolylsulfenamide, N-ethyl-2-benzothiazolylsulfenamide, N-propyl-2-benzothiazolylsulfenamide, N-butyl-2-benzothiazolylsulfenamide, N-pentyl-2-benzothiazolylsulfenamide, N-hexyl-2-benzothiazolylsulfenamide, N-pentyl-2-benzothiazolylsulfenamide, N-octyl-2-benzothiazolylsulfenamide, N-2-ethylhexyl-2-benzothiazolylsulfenamide, N-decyl-2-benzothiazolylsulfenamide, N-dodecyl-2-benzothiazolylsulfenamide, N-stearyl-2-benzothiazolylsulfenamide, N,N-dimethyl-2-benzothiazolylsulfenamide, N,N-diethyl-2-benzothiazolylsulfenamide, N,N-dipropyl-2-benzothiazolylsulfenamide, N,N-dibutyl-2-benzothiazolylsulfenamide, N,N-dipentyl-2-benzothiazolylsulfenamide, N,N-dihexyl-2-benzothiazolylsulfenamide, N,N-dipentyl-2-benzothiazolylsulfenamide, N,N-dioctyl-2-benzothiazolylsulfenamide, N,N-di-2-ethylhexylbenzothiazolylsulfenamide, N-decyl-2-benzothiazolylsulfenamide, N,N-didodecyl-2-benzothiazolylsulfenamide, N,N-distearyl-2-benzothiazolylsulfenamide, etc. Of those, preferred are N-cyclohexyl-2-benzothiazolylsulfenamide and N-tert-butyl-2-benzothiazolylsulfenamide, as having high reactivity.

    [0039]  The thiazoles for use in the rubber composition production method of the present invention include 2-mercaptobenzothiazole, di-2-benzothiazolyl disulfide, 2-mercaptobenzothiazole zinc salt, 2-mercaptobenzothiazole cyclohexylamine salt, 2-(N,N-diethylthiocarbamoylthio)benzothiazole, 2-(4'-morpholinodithio)benzothiazole, 4-methyl-2-mercaptobenzothiazole, di-(4-methyl-2-benzothiazolyl) disulfide, 5-chloro-2-mercaptobenzothiazole, 2-mercaptobenzothiazole sodium, 2-mercapto-6-nitrobenzothiazole, 2-mercapto-naphtho[1,2-d]thiazole, 2-mercapto-5-methoxybenzothiazole, 6-amino-2-mercaptobenzothiazole, etc. Of those, preferred are 2-mercaptobenzothiazole and di-2-benzothiazolyl disulfide, as having high reactivity.

    [0040] The thiurams for use in the rubber composition production method of the present invention include tetramethylthiuram disulfide, tetraethylthiuram disulfide, tetrapropylthiuram disulfide, tetraisopropylthiuram disulfide, tetrabutylthiuram disulfide, tetrapentylthiuram disulfide, tetrahexylthiuram disulfide, tetraheptylthiuram disulfide, tetraoctylthiuram disulfide, tetranonylthiuram disulfide, tetradecylthiuram disulfide, tetradodecylthiuram disulfide, tetrastearylthiuram disulfide, tetrabenzylthiuram disulfide, tetrakis(2-ethylhexyl)thiuram disulfide, tetramethylthiuram monosulfide, tetraethylthiuram monosulfide, tetrapropylthiuram monosulfide, tetraisopropylthiuram monosulfide, tetrabutylthiuram monosulfide, tetrapentylthiuram monosulfide, tetrahexylthiuram monosulfide, tetraheptylthiuram monosulfide, tetraoctylthiuram monosulfide, tetranonylthiuram monosulfide, tetradecylthiuram monosulfide, tetradodecylthiuram monosulfide, tetrastearylthiuram monosulfide, tetrabenzylthiuram monosulfide, dipentamethylthiuram tetrasulfide, etc. Of those, preferred are tetrakis(2-ethylhexyl)thiuram disulfide and tetrabenzylthiuram disulfide, as having high reactivity.

    [0041] The thioureas for use in the rubber composition production method of the present invention include N,N'-diphenylthiourea, trimethylthiourea, N,N'-diethylthiourea, N,N'-dimethylthiourea, N,N'-dibutylthiourea, ethylenethiourea, N,N'-diisopropylthiourea, N,N'-dicyclohexylthiourea, 1,3-di(o-tolyl)thiourea, 1,3-di(p-tolyl)thiourea, 1,1-diphenyl-2-thiourea, 2,5-dithiobiurea, guanylthiourea, 1-(1-naphthyl)-2-thiourea, 1-phenyl-2-thiourea, p-tolylthiourea, o-tolylthiourea, etc. Of those, preferred are N,N'-diethylthiourea, trimethylthiourea, N,N'-diphenylthiourea and N,N'-dimethylthiourea, as having high reactivity.

    [0042] The dithiocarbamate salts for use in the rubber composition production method of the present invention include zinc dimethyldithiocarbamate, zinc diethyldithiocarbamate, zinc dipropyldithiocarbamate, zinc diisopropyldithiocarbamate, zinc dibutyldithiocarbamate, zinc dipentyldithiocarbamate, zinc dihexyldithiocarbamate, zinc diheptyldithiocarbamate, zinc dioctyldithiocarbamate, zinc di(2-ethylhexyl)dithiocarbamate, zinc didecyldithiocarbamate, zinc didodecyldithiocarbamate, zinc N-pentamethylenedithiocarbamate, zinc N-ethyl-N-phenyldithiocarbamate, zinc dibenzyldithiocarbamate, copper dimethyldithiocarbamate, copper diethyldithiocarbamate, copper dipropyldithiocarbamate, copper diisopropyldithiocarbamate, copper dibutyldithiocarbamate, copper dipentyldithiocarbamate, copper dihexyldithiocarbamate, copper diheptyldithiocarbamate, copper dioctyldithiocarbamate, copper di(2-ethylhexyl)dithiocarbamate, copper didecyldithiocarbamate, copper didodecyldithiocarbamate, copper N-pentamethylenedithiocarbamate, copper dibenzyldithiocarbamate, sodium dimethyldithiocarbamate, sodium diethyldithiocarbamate, sodium dipropyldithiocarbamate, sodium diisopropyldithiocarbamate, sodium dibutyldithiocarbamate, sodium dipentyldithiocarbamate, sodium dihexyldithiocarbamate, sodium diheptyldithiocarbamate, sodium dioctyldithiocarbamate, sodium di(2-ethylhexyl)dithiocarbamate, sodium didecyldithiocarbamate, sodium didodecyldithiocarbamate, sodium N-pentamethylenedithiocarbamate, sodium dibenzyldithiocarbamate, ferric dimethyldithiocarbamate, ferric diethyldithiocarbamate, ferric dipropyldithiocarbamate, ferric diisopropyldithiocarbamate, ferric dibutyldithiocarbamate, ferric dipentyldithiocarbamate, ferric dihexyldithiocarbamate, ferric diheptyldithiocarbamate, ferric dioctyldithiocarbamate, ferric di(2-ethylhexyl)dithiocarbamate, ferric didecyldithiocarbamate, ferric didodecyldithiocarbamate, ferric N-pentamethylenedithiocarbamate, ferric dibenzyldithiocarbamate, etc. Of those, preferred are zinc dibenzyldithiocarbamate, zinc N-ethyl-N-phenyldithiocarbamate, zinc dimethyldithiocarbamate and copper dimethyldithiocarbamate, as having high reactivity.

    [0043] The xanthate salts for use in the rubber composition production method of the present invention include zinc methylxanthate, zinc ethylxanthate, zinc propylxanthate, zinc isopropylxanthate, zinc butylxanthate, zinc pentylxanthate, zinc hexylxanthate, zinc heptylxanthate, zinc octylxanthate, zinc 2-ethylhexylxanthate, zinc decylxanthate, zinc dodecylxanthate, potassium methylxanthate, potassium ethylxanthate, potassium propylxanthate, potassium isopropylxanthate, potassium butylxanthate, potassium pentylxanthate, potassium hexylxanthate, potassium heptylxanthate, potassium octylxanthate, potassium 2-ethylhexylxanthate, potassium decylxanthate, potassium dodecylxanthate, sodium methylxanthate, sodium ethylxanthate, sodium propylxanthate, sodium isopropylxanthate, sodium butylxanthate, sodium pentylxanthate, sodium hexylxanthate, sodium heptylxanthate, sodium octylxanthate, sodium 2-ethylhexylxanthate, sodium decylxanthate, sodium dodecylxanthate, etc. Of those, preferred is zinc isopropylxanthate, as having high reactivity.

    [0044] In the first aspect of the present invention, the molar amount of the promoter (D) in the rubber composition in the first stage of kneading is from 0.1 to 1.0 times the molar amount of the silane coupling agent (C). When the amount is at least 0.1 times, the silane coupling agent (C) could be sufficiently activated; and when at most 1.0 time, the promoter would not have any significant influence on the vulcanization rate. More preferably, the number of molecules (molar number) of the promoter (D) is from 0.3 to 1.0 time the number of molecules (molar number) of the silane coupling agent (C).

    [0045] The promoter (D) may serve also as an accelerator for sulfur vulcanization, and therefore a desired amount of the promoter may also be incorporated in the final stage of kneading.

    [Rubber Component (A)]



    [0046] The rubber component (A) for use in the rubber composition production method of the present invention contains a modified conjugated diene-based polymer obtained by using a modifying agent that contains at least one selected from a silicon atom, a nitrogen atom and an oxygen atom.

    [0047] The modified conjugated diene-based polymer may be a modified conjugated diene copolymer or a modified conjugated diene homopolymer. The modified conjugated diene copolymer may be a modified aromatic vinyl-conjugated diene copolymer or a copolymer of plural conjugated dienes.

    [0048] The polymerization method may be any of anionic polymerization, coordination polymerization or emulsion polymerization. The modifying agent may be a modifying agent that reacts with the polymerization-active terminal in anionic polymerization or coordination polymerization, or may also be the amide moiety of a lithium amide compound to be used as a polymerization initiator. In emulsion polymerization, the modifying agent may be copolymerized as a monomer that contains at least one selected from a silicon atom, a nitrogen atom and an oxygen atom.

    [0049] Preferred examples of the modifying agent for use in the present invention are mentioned below.

    [0050] The modifying agent for use for modification to give the modified conjugated diene-based polymer in the present invention is a modifying agent that has a functional group compatible with silica. Preferably, the modifying agent is a modifying agent having at least one atom selected from a silicon atom, a nitrogen atom and an oxygen atom. Specifically, the functional group compatible with silica is preferably one having at least one atom selected from a silicon atom, a nitrogen atom and an oxygen atom. This is because the functional group having any of a silicon atom, a nitrogen atom and an oxygen atom is compatible with silica.

    [0051] From the viewpoint of having compatibility with silica, the modifying agent for use in the present invention is more preferably a hydrocarbyloxysilane compound.

    [0052] The hydrocarbyloxysilane compound for use in the present invention is preferably a hydrocarbyloxysilane compound represented by the following general formula (III):



    [0053] In the above-mentioned general formula (III), n1 + n2 + n3 + n4 = 4 (wherein n2 is an integer of from 1 to 4, and n1, n3 and n4 each are an integer of from 0 to 3); A1 represents at least one functional group selected from a saturated cyclic tertiary amine compound residue, an unsaturated cyclic tertiary amine compound residue, a ketimine residue, a nitrile group, a (thio)isocyanate group, a (thio)epoxy group, a trihydrocarbyl isocyanurate group, a dihydrocarbyl carbonate group, a nitrile group, a pyridine group, a (thio)ketone group, a (thio)aldehyde group, an amide group, a (thio)carboxylate group, a (thio)carboxylate metal salt group, a carboxylic acid anhydride residue, a carboxylic acid halide residue, and a hydrolysable group-having, primary or secondary amino group or mercapto group. When n4 is 2 or more, then A1's may be the same or different, A1 may bond to Si to be a divalent group that forms a cyclic structure. R21 represents a monovalent aliphatic or alicyclic hydrocarbon group, having from 1 to 20 carbon atoms, or a monovalent aromatic hydrocarbon group having from 6 to 18 carbon atoms. When n1 is 2 or more, then R21's may be the same or different. R23 represents a monovalent aliphatic or alicyclic hydrocarbon group, having from 1 to 20 carbon atoms, a monovalent aromatic hydrocarbon group having from 6 to 18 carbon atoms, or a halogen atom (fluorine, chlorine, bromine, iodine). When n3 is 2 or more, then R23's may be the same or different. R22 represents a monovalent aliphatic or alicyclic hydrocarbon group, having from 1 to 20 carbon atoms or a monovalent aromatic hydrocarbon group having from 6 to 18 carbon atoms, optionally having a nitrogen atom and/or a silicon atom. When n2 is 2 or more, then R22's may be the same or different, or may bond to each other to form a ring. R24 represents a divalent aliphatic or alicyclic hydrocarbon group, having from 1 to 20 carbon atoms, or a divalent aromatic hydrocarbon group having from 6 to 18 carbon atoms. When n4 is 2 or more, then R24's may be the same or different.

    [0054] The hydrolysable group in the hydrolysable group-having, primary or secondary amino group or the hydrolysable group-having mercapto group is preferably a trimethylsilyl group or a tert-butyldimethylsilyl group, more preferably a trimethylsilyl group.

    [0055] In the present invention, "monovalent aliphatic or alicyclic hydrocarbon group, having from 1 to 20 carbon atoms" means "monovalent aliphatic hydrocarbon group having from 1 to 20 carbon atoms, or monovalent alicyclic hydrocarbon group having from 3 to 20 carbon atoms". The same shall apply to the divalent hydrocarbon group.

    [0056] More preferably, the hydrocarbyloxysilane compound represented by the above-mentioned general formula (III) is a hydrocarbyloxysilane compound represented by the following general formula (IV):



    [0057] In the above-mentioned general formula (IV), p1 + p2 + p3 = 2 (wherein p2 is an integer of from 1 to 2, and p1 and p3 each are an integer of from 0 to 1); A2 represents NRa (where Ra represents a monovalent hydrocarbon group, a hydrolysable group or a nitrogen-containing organic group; and the hydrolysable group is preferably a trimethylsilyl group or a tert-butyldimethylsilyl group, more preferably a trimethylsilyl group), or a sulfur; R25 represents a monovalent aliphatic or alicyclic hydrocarbon group, having from 1 to 20 carbon atoms, or a monovalent aromatic hydrocarbon group having from 6 to 18 carbon atoms; R27 represents a monovalent aliphatic or alicyclic hydrocarbon group, having from 1 to 20 carbon atoms, a monovalent aromatic hydrocarbon group having from 6 to 18 carbon atoms, or a halogen atom (fluorine, chlorine, bromine, iodine); R26 represents a monovalent aliphatic or alicyclic hydrocarbon group, having from 1 to 20 carbon atoms, a monovalent aromatic hydrocarbon group having from 6 to 18 carbon atoms or a nitrogen-containing organic group, optionally having a nitrogen atom and/or a silicon atom. When p2 is 2, then R26's may be the same or different, or may bond to each other to form a ring. R28 represents a divalent aliphatic or alicyclic hydrocarbon group, having from 1 to 20 carbon atoms, or a divalent aromatic hydrocarbon group having from 6 to 18 carbon atoms.

    [0058] Further, the hydrocarbyloxysilane compound represented by the above-mentioned general formula (III) is more preferably a hydrocarbyloxysilane compound represented by the following general formula (V) or (VI):





    [0059] In the above-mentioned general formula (V), q1 + q2 = 3 (where q1 is an integer of from 0 to 2, and q2 is an integer of from 1 to 3); R31 represents a divalent aliphatic or alicyclic hydrocarbon group, having from 1 to 20 carbon atoms, or a divalent aromatic hydrocarbon group having from 6 to 18 carbon atoms; R32 and R33 each independently represent a hydrolysable group, a monovalent aliphatic or alicyclic hydrocarbon group, having from 1 to 20 carbon atoms, or a monovalent aromatic hydrocarbon group having from 6 to 18 carbon atoms; R34 represents a monovalent aliphatic or alicyclic hydrocarbon group, having from 1 to 20 carbon atoms, or a monovalent aromatic hydrocarbon group having from 6 to 18 carbon atoms. When q1 is 2, then R34's may be the same or different. R35 represents a monovalent aliphatic or alicyclic hydrocarbon group, having from 1 to 20 carbon atoms, or a monovalent aromatic hydrocarbon group having from 6 to 18 carbon atoms. When q2 is 2 or more, then R35's may be the same or different.





    [0060] In the above-mentioned general formula (VI), r1 + r2 = 3 (where r1 is an integer of from 1 to 3, r2 is an integer of from 0 to 2); R36 represents a divalent aliphatic or alicyclic hydrocarbon group, having from 1 to 20 carbon atoms, or a divalent aromatic hydrocarbon group having from 6 to 18 carbon atoms; R37 represents a dimethylaminomethyl group, a dimethylaminoethyl group, a diethylaminomethyl group, a diethylaminoethyl group, a methylsilyl(methyl)aminomethyl group, a methylsilyl(methyl)aminoethyl group, a methylsilyl(ethyl)aminomethyl group, a methylsilyl(ethyl)aminoethyl group, a dimethylsilylaminomethyl group, a dimethylsilylaminoethyl group, a monovalent aliphatic or alicyclic hydrocarbon group, having from 1 to 20 carbon atoms, or a monovalent aromatic hydrocarbon group having from 6 to 18 carbon atoms. When r1 is 2 or more, then R37's may be the same or different. R38 represents a hydrocarbyloxy group having from 1 to 20 carbon atoms, a monovalent aliphatic or alicyclic hydrocarbon group, having from 1 to 20 carbon atoms, or a monovalent aromatic hydrocarbon group having from 6 to 18 carbon atoms. When r2 is 2, then R38's may be the same or different.

    [0061] Preferably, the modifying agent is a hydrocarbyloxysilane compound having two or more nitrogen atoms and represented by the following general formula (VII) or (VIII):



    [0062] In the above-mentioned general formula (VII), TMS represents a trimethylsilyl group; R40 represents a trimethylsilyl group, a monovalent aliphatic or alicyclic hydrocarbon group, having from 1 to 20 carbon atoms, or a monovalent aromatic hydrocarbon group having from 6 to 18 carbon atoms; R41 represents a hydrocarbyloxy group having from 1 to 20 carbon atoms, a monovalent aliphatic or alicyclic hydrocarbon group, having from 1 to 20 carbon atoms, or a monovalent aromatic hydrocarbon group having from 6 to 18 carbon atoms; R42 represents a divalent aliphatic or alicyclic hydrocarbon group, having from 1 to 20 carbon atoms, or a divalent aromatic hydrocarbon group having from 6 to 18 carbon atoms.



    [0063] In the above-mentioned general formula (VIII), TMS represents a trimethylsilyl group; R43 and R44 each independently represent a divalent aliphatic or alicyclic hydrocarbon group, having from 1 to 20 carbon atoms, or a divalent aromatic hydrocarbon group having from 6 to 18 carbon atoms; R45 represents a monovalent aliphatic or alicyclic hydrocarbon group, having from 1 to 20 carbon atoms, or a monovalent aromatic hydrocarbon group having from 6 to 18 carbon atoms, and plural R45's may be the same or different.

    [0064] Also preferably, the hydrocarbyloxysilane compound represented by the general formula (III) is a hydrocarbyloxysilane compound represented by the following general formula (IX):



    [0065] In the above-mentioned general formula (IX), r1 + r2 = 3 (wherein r1 is an integer of from 0 to 2, and r2 is an integer of from 1 to 3); TMS represents a trimethylsilyl group; R46 represents a divalent aliphatic or alicyclic hydrocarbon group, having from 1 to 20 carbon atoms, or a divalent aromatic hydrocarbon group having from 6 to 18 carbon atoms; R47 and R48 each independently represent a monovalent aliphatic or alicyclic hydrocarbon group, having from 1 to 20 carbon atoms, or a monovalent aromatic hydrocarbon group having from 6 to 18 carbon atoms, and plural R47's and R48's may be the same or different.

    [0066] Further, the modifying agent is preferably a hydrocarbyloxysilane compound represented by the following general formula (X):



    [0067] In the above-mentioned general formula (X), X represents a halogen atom; R49 represents a divalent aliphatic or alicyclic hydrocarbon group, having from 1 to 20 carbon atoms, or a divalent aromatic hydrocarbon group having from 6 to 18 carbon atoms; R50 and R51 each independently represent a hydrolysable group, or a monovalent aliphatic or alicyclic hydrocarbon group, having from 1 to 20 carbon atoms, or a monovalent aromatic hydrocarbon group having from 6 to 18 carbon atoms, or R50 and R51 bond to each other to form a divalent organic group; R52 and R53 each independently represent a halogen atom, a hydrocarbyloxy group, or a monovalent aliphatic or alicyclic hydrocarbon group, having from 1 to 20 carbon atoms, or a monovalent aromatic hydrocarbon group having from 6 to 18 carbon atoms. Preferably, R50 and R51 each are a hydrolysable group; and as the hydrolysable group, more preferred is a trimethylsilyl group or a tert-butyldimethylsilyl group, and even more preferred is a trimethylsilyl group.

    [0068] The hydrocarbyloxysilane compound represented by the above-mentioned general formulae (III) to (X) is preferably used as the modifying agent in producing the modified conjugated diene-based polymer for use in the present invention, through anionic polymerization.

    [0069] Also preferably, the hydrocarbyloxysilane compound represented by the above-mentioned general formulae (III) to (X) is an alkoxysilane compound.

    [0070] As the modifying agent to be preferably used for modification to give the modified conjugated diene-based polymer produced through anionic polymerization, preferred is at least one compound selected from 3,4-bis(trimethylsilyloxy)benzaldehyde, 3,4-bis(tert-butyldimethylsilyloxy)benzaldehyde, 2-cyanopyridine, 1,3-dimethyl-2-imidazolidinone and 1-methyl-2-pyrrolidone.

    [0071] Preferably, the modifying agent for use in the present invention is the amide moiety of a lithium amide compound to be used as a polymerization initiator in anionic polymerization.

    [0072] Preferably, the lithium amide compound is selected from lithium hexamethyleneimide, lithium pyrrolidide, lithium piperidide, lithium heptamethyleneimide, lithium dodecamethyleneimide, lithium dimethylamide, lithium diethylamide, lithium dibutylamide, lithium dipropylamide, lithium diheptylamide, lithium dihexylamide, lithium dioctylamide, lithium di-2-ehtylhexylamide, lithium didecylamide, lithium N-methylpiperadide, lithium ethylpropylamide, lithium ethylbutylamide, lithium ethylbenzylamide and lithium methylphenethylamide. For example, the amide moiety of lithium hexamethyleneimide to be the modifying agent is hexamethyleneimine; and the amide moiety of lithium pyrrolidide to be the modifying agent is pyrrolidine; and the amide moiety of lithium piperidide to be the modifying agent is piperidine.

    [0073] As the modifying agent preferred for use in the present invention for modification to give the modified conjugated diene-based polymer through coordination polymerization for use in the present invention, preferably mentioned is at least one compound selected from 2-cyanopyridine and 3,4-ditrimethylsilyloxybenzaldehyde.

    [0074] As the modifying agent preferred for use in the present invention for modification to give the modified conjugated diene-based polymer through emulsion polymerization for use in the present invention, preferably mentioned is at least one compound selected from 3,4-ditrimethylsilyloxybenzaldehyde and 4-hexamethyleneiminoalkylstyrene. The modifying agent preferred for use in emulsion polymerization is preferably copolymerized as a monomer that contains a nitrogen atom and/or a silicon atom, during emulsion polymerization.

    [0075] In case of anionic polymerization, the modified conjugated diene-based polymer in the present invention is preferably a modified anionically-polymerized aromatic vinyl-butadiene copolymer or a modified anionically-polymerized polybutadiene (hereinafter this may be abbreviated as "modified anionically-polymerized BR"); and as the modified anionically-polymerized aromatic vinyl-butadiene copolymer, preferred is a modified anionically-polymerized styrene-butadiene copolymer (hereinafter this may be abbreviated as "modified anionically-polymerized SBR").

    [0076] In case of coordination polymerization, also preferred is a modified coordination-polymerized polybutadiene (hereinafter this may be abbreviated as "modified coordination-polymerized BR").

    [0077] Further in case of emulsion polymerization, preferred is a modified emulsion-polymerized aromatic vinyl-butadiene copolymer; and as the modified emulsion-polymerized aromatic vinyl-butadiene copolymer, preferred is a modified emulsion-polymerized styrene-butadiene copolymer (hereinafter this may be referred to as "modified emulsion-polymerized SBR").

    [0078] In any case of the above-mentioned anionic polymerization, coordination polymerization and emulsion polymerization, any known polymerization method and any known modification method are usable.

    [0079] The rubber component (A) in the present invention may comprise at least one modified conjugated diene-based polymer of the above-mentioned, modified conjugated diene-based polymers, or may contain natural rubber and/or any other synthetic diene-based rubber in addition to at least one modified conjugated diene-based polymer of the above-mentioned, modified conjugated diene-based polymers.

    [0080] As the other synthetic diene-based rubber, usable here are a non-modified solution-polymerized styrene-butadiene copolymer rubber (hereinafter this may be referred to as "non-modified solution-polymerized SBR"), an emulsion-polymerized styrene-butadiene copolymer rubber (hereinafter this may be referred to as "emulsion-polymerized SBR"), a non-modified polybutadiene rubber (non-modified BR), a polyisoprene rubber (IR), a butyl rubber (IIR), an ethylenepropylene-diene tercopolymer rubber (EPDM), etc. One alone or two or more different types of natural rubbers and other diene-based rubbers may be used here either singly or as combined.

    [Organic Acid]



    [0081] Examples of the organic acid for use in the present invention includes saturated fatty acids and unsaturated fatty acids such as stearic acid, palmitic acid, myristic acid,lauric acid, arachidic acid, behenic acid, lignoceric acid, capric acid, pelargonic acid, caprylic acid, enanthic acid, caproic acid, oleic acid, vaccenic acid, linolic acid, linolenic acid, nervonic acid, etc.; as well as resin acids such as rosin acid, modified rosin acid, etc.

    [0082] In the present invention, preferably, 50 mol% or more of the organic acid is stearic acid, in order that the compound must fully exhibit the function as a vulcanization promoter aid.

    [0083] At most 50 mol% of the organic acid may be rosin acid (including modified rosin acid) and/or fatty acid contained in emulsion-polymerized styrene-butadiene copolymer.

    [Inorganic Filler (B)]



    [0084] As the inorganic filler (B) for use in the rubber composition production method of the present invention, usable are silica and an inorganic compound represented by the following general formula (XI):

            dM1·xSiOy·zH2O     (XI)



    [0085] In the general formula (XI), M1 represents at least one selected from a metal selected from aluminium, magnesium, titanium, calcium and zirconium, and oxides or hydroxides of those metals, their hydrates, or carbonates of the metals; d, x, y and z each indicate an integer of from 1 to 5, an integer of from 0 to 10, an integer of from 2 to 5, and an integer of from 0 to 10, respectively.

    [0086] In the general formula (XI), when x and z are both 0, then the inorganic compound is at least one metal selected from aluminium, magnesium, titanium, calcium and zirconium, or a metal oxide or metal hydroxide thereof.

    [0087] In the present invention, silica is preferred as the inorganic filler (B) from the viewpoint of satisfying both low rolling property and abrasion resistance. As silica, any commercially-available one is usable here; and above all, preferred is wet silica, dry silica or colloidal silica, and more preferred is wet silica. Preferably, the BET specific surface area (as measured according to ISO 5794/1) of silica for use herein is from 40 to 350 m2/g. Silica of which the BET specific surface area falls within the range is advantageous in that it satisfies both rubber-reinforcing capability and dispersibility in rubber component. From this viewpoint, silica of which the BET specific surface area falls within a range of from 80 to 350 m2/g is more preferred, and silica of which the BET specific surface area falls within a range of from 120 m2/g to 350 m2/g is even more preferred. As silicas of those types, usable here are commercial products of Tosoh Silica's trade names "Nipsil AQ" (BET specific surface area = 220 m2/g) and "Nipsil KQ", Degussa's trade name "Ultrasil VN3" (BET specific surface area = 175 m2/g), etc.

    [0088] As the inorganic compound represented by the general formula (XI), usable here are alumina (Al2O3) such as γ-alumina, α-alumina, etc.; alumina monohydrate (Al2O3·H2O) such as boehmite, diaspore, etc.; aluminium hydroxide [Al(OH)3] such as gypsite, bayerite, etc.; aluminium carbonate [Al2(CO3)2], magnesium hydroxide [Mg(OH)2], magnesium oxide (MgO), magnesium carbonate (MgCO3), talc (3MgO·4SiO2·H2O), attapulgite (5MgO·8SiO2·9H2O), titanium white (TiO2), titanium black (TiO2n-1), calcium oxide (CaO), calcium hydroxide [Ca(OH)2], aluminium magnesium oxide (MgO·Al2O3), clay (Al2O3-2SiO2), kaolin (Al2O3·2SiO2·2H2O), pyrophyllite (Al2O3·4SiO2·H2O), bentonite (Al2O3·4SiO2·2H2O), aluminium silicate (Al2SiO5, Al4·3SiO4·5H2O, etc.), magnesium silicate (Mg2SiO4, MgSiO3, etc.), calcium silicate (Ca2·SiO4, etc.), aluminium calcium silicate (Al2O3·CaO·2SiO2, etc.), magnesium calcium silicate (CaMgSiO4), calcium carbonate (CaCO3), zirconium oxide (ZrO2), zirconium hydroxide [ZrO(OH)2·nH2O], zirconium carbonate [Zr(CO3)2]; as well as crystalline aluminosilicate salts containing a charge-correcting hydrogen, alkali metal or alkaline earth metal such as various types of zeolite. Preferably, M1 in the general formula (XI) is at least one selected from aluminium metal, aluminium oxide or hydroxide, and their hydrates, or aluminium carbonate.

    [0089] One or more different types of the inorganic compounds of the general formula (XI) may be used here either singly or as combined. The mean particle size of the inorganic compound is preferably within a range of from 0.01 to 10 µm from the viewpoint of the balance of kneading workability, abrasion resistance and wet grip performance, and more preferably within a range of from 0.05 to 5 µm.

    [0090] As the inorganic filler (B) in the present invention, silica alone may be used, or silica as combined with at least one inorganic compound of the general formula (III) may be used.

    [0091] If desired, the filler in the rubber composition in the present invention may contain carbon black in addition to the above-mentioned inorganic filler (B). Containing carbon black, the filler enjoys the effect of lowering the electric resistance of the rubber composition to thereby prevent static electrification thereof. Carbon black for use herein is not specifically defined. For example, preferred is use of high, middle or low-structure SAF, ISAF, IISAF, N339, HAF, FEF, GPF, SRF-grade carbon black; and more preferred is use of SAF, ISAF, IISAF, N339, HAF, FEF-grade carbon black. Preferably, the nitrogen adsorption specific surface area (N2SA, as measured according to JIS K 6217-2:2001) of such carbon black is from 30 to 250 m2/g. One alone or two or more different types of such carbon black may be used here either singly or as combined. In the present invention, the inorganic filler (B) does not contain carbon black.

    [0092] The inorganic filler (B) in the rubber composition in the present invention is in an amount of from 20 to 120 parts by mass relative to 100 parts by mass of the rubber component (A). When the amount is at least 20 parts by mass, then it is favorable from the viewpoint of securing wet performance; and when at most 120 parts by mass, then it is favorable from the viewpoint of enhancing the low-heat-generation property. Further, the amount is more preferably from 30 to 100 parts by mass.

    [0093] Preferably, the filler in the rubber composition in the present invention is in an amount of from 20 to 150 parts by mass relative to 100 parts by mass of the rubber component (A). When the amount is at least 20 parts by mass, then it is favorable from the viewpoint of enhancing rubber composition reinforcing capability; and when at most 150 parts by mass, then it is favorable from the viewpoint of enhancing the low-heat-generation property.

    [0094] In the filler, preferably, the amount of the inorganic filler (B) is 40% by mass or more from the viewpoint of satisfying both wet performance and low-heat-generation property, more preferably 70% by mass or more.

    [0095] In the rubber composition production method of the present invention, various additives that are generally incorporated in a rubber composition, for example, a vulcanization activator such as zinc flower or the like, an antioxidant and others may be optionally added and kneaded in the first stage or the final stage of kneading, or in the intermediate stage between the first stage and the final stage.

    [0096] As the kneading apparatus for the production method of the present invention, usable is any of a Banbury mixer, a roll, an intensive mixer, etc.

    Examples



    [0097] The present invention is described in more detail with reference to the following Examples; however, the present invention is not limited at all by the following Examples.

    [0098] Heat-generation property (tanδ index) and abrasion resistance as well as the bound styrene content (% by mass) in SBR, the vinyl bond content (%) in the conjugated diene moiety of SBR and the cis-1,4-bond content (%) in BR were measured and evaluated according to the following methods.

    Heat-Generation Property (tanδ index)



    [0099] Using a viscoelasticity measuring device (by Rheometric), tanδ of the rubber composition sample was measured at a temperature of 60°C, at a dynamic strain of 5% and at a frequency of 15 Hz. Based on the tanδ in Comparative Example 3, 5, 7 or 9, as referred to 100, the data were expressed as index indication according to the following formula. The samples having a smaller index value have a better low-heat-generation property and have a smaller hysteresis loss.


    Abrasion Resistance (index)



    [0100] According to JIS K 6264-2:2005 and using a Lambourn abrasion tester, the depth of wear was measured at 23°C. Based on the reciprocal of the depth of wear in Comparative Example 3, 5, 7 or 9, as referred to 100, the data were expressed as index indication according to the following formula. The samples having a larger index value have a smaller depth of wear and have better abrasion resistance.


    Bound Styrene Content in SBR (% by mass in polymer)



    [0101] Measured according to 270 MHz 1H-NMR.
    Vinyl Bond content in Conjugated Diene Moiety of SBR (% relative to whole diene moiety)

    [0102] Measured according to 270 MHz 1H-NMR.
    Cis-1,4-bond Content (%) in BR
    Using a Fourier transform infrared spectrophotometer (trade name "FT/IR-4100", by Nippon Bunko), the cis-1,4-bond content (%) in polybutadiene was measured according to Fourier transform infrared spectroscopy described in JP-A 2005-015590.

    [0103] Various modifying agents as mentioned below were used here.

    [0104] As the modifying agent A (tetramethoxysilane), the modifying agent B (N-(1,3-dimethylbutylidene)-3-(triethoxysilyl)-1-propanamine, Chisso's "Sila-Ace S340"), the modifying agent I or N (2-cyanopyridine), the modifying agent J (1,3-dimethyl-2-imidazolidinone), the modifying agent K (1-methyl-2-pyrrolidone), the modifying agent Q (4-hexamethyleneiminoalkylstyrene) and hexamethyleneimine, used were commercial products or chemical reagents.

    [0105] The modifying agents C, D and F are the modifying agents H, i and E described in JP-A 2010-270212.

    [0106] The modifying agent E is the modifying agent 2 represented by the formula M2 described in JP-T 2009-512762

    [0107] The modifying agents G, O and P are 3,4-bis(trimethylsilyloxy)benzaldehyde described as Example 21 in WO2009/086490.

    [0108] The modifying agent H is N,N-bis(trimethylsilyl)-(3-amino-1-propyl)(methyl)(dichloro)silane described in JP-T 2010-530464.

    [0109] The modifying agent L is hexamethyleneimine to be the amide moiety of lithium hexamethyleneimide, and in anionic polymerization, lithium hexamethyleneimide was used as polymerization initiator.

    [0110] Chemical formulae of the modifying agents C, D, E, F and H are shown below. In the formulae, TMS is a trimethylsilyl group, Me is a methyl group and OEt is an ethoxy group.




    <Production of Modified Anionically-Polymerized SBR-A to M>



    [0111] A cyclohexane solution of 1,3-butadiene and a cyclohexane solution of styrene were put into a dried, nitrogen-purged, pressure-tight glass container having a volume of 800 mL, in such a manner that the amount of 1,3-butadiene therein could be 60 g and that of styrene could be 15 g. With that, 0.70 mmol of 2,2-ditetrahydrofurylpropane and 0.70 mmol of n-butyllithium were added thereto and then polymerized in a hot water bath at 50°C for 1.5 hours thereby giving a styrene-butadiene copolymer having a lithium-type active site at the terminal. The polymerization conversion ratio was almost 100%. Subsequently, 2 mL of an isopropanol 5 mass % solution of an antioxidant 2,6-di-t-butyl-4-cresol (BHT) was added thereto at 50°C to stop the polymerization, and further the reaction mixture was reprecipitated in isopropanol containing a small amount of BHT, and then dried in a drum drier to give a non-modified anionically-polymerized SBR. The bound styrene amount was 20% by mass, and the vinyl bond content in butadiene was 55%.

    [0112] To the polymerization system in which the polymerization conversion ratio of the lithium-type active site-terminated styrene-butadiene copolymer reached almost 100% in polymerization to give the non-modified anionically-polymerized SBR, any of the above-mentioned modifying agents A to K was added in an amount of 0.63 mmol to modify the polymer at 50°C for 30 minutes, and thereafter the system was processed in the same manner as in the above to give a modified anionically-polymerized SBR-A to K

    [0113] In polymerization to give the non-modified anionically-polymerized SBR, 0.70 mmol of lithium hexamethyleneimide was used in place of 0.70 mmol of n-butyllithium thereby giving a modified anionically-polymerized SBR-L where the modifying agent L was used.

    [0114] Similarly, in polymerization to give the non-modified anionically-polymerized SBR, 0.70 mmol of lithium hexamethyleneimide was used in place of 0.70 mmol of n-butyllithium, and 0.63 mmol of the modifying agent B was added to the polymerization system where the polymerization conversion ratio reached almost 100%, to modify the polymer at 50°C for 30 minutes thereby giving a modified anionically-polymerized SBR-M.

    [0115] The bound styrene amount (% by mass) in the modified anionically-polymerized SBR-A to M and the vinyl bond content (%) in butadiene are shown in Table 1.

    [Table 1]



    [0116] 
    Table 1
    Type of Non-modified/ Modified Anionically-Polymerized SBRABCDEFGHIJKLMNon-modified
    Bound Styrene Amount (% by mass) 20 21 19 20 20 19 20 21 21 20 20 20 19 20
    Vinyl Bond content in Butadiene (%) 54 55 53 55 56 55 55 54 55 55 56 55 56 55

    <Production of Modified Coordination-Polymerized BR-N and O>



    [0117] 7.11 g of a cyclohexane solution of butadiene (15.2% by mass), 0.59 mL of a cyclohexane solution of neodymium neodecanoate (0.56 mol/L), 10.32 mL of a toluene solution of methylaluminoxane MAO (Tosoh Akzo's PMAO) (3.23 mol as aluminium concentration), and 7.77 mL of a hexane solution of diisobutylaluminium hydride (by Kanto Chemical) 0.90 mol/L) were, in that order, put into a dried, nitrogen-purged, 100-mL glass bottle with a rubber stopper, and ripened at room temperature for 2 minutes, and then 1.45 mL of a hexane solution of diethylaluminium chloride (by Kanto Chemical) (0.95 mol/L) was added thereto and ripened for 15 minutes at room temperature with intermittently stirring. The neodymium concentration in the thus-obtained catalyst solution was 0.011 mol/L.

    [0118] Next, a glass bottle with a rubber stopper, having a volume of about 1 L, was dried and purged with nitrogen, and a cyclohexane solution of dried and purified butadiene and dry cyclohexane were put thereinto to provide a condition where 400 g of a cyclohexane solution of 12.0 mass % butadiene was kept in the bottle.

    [0119] Next, 1.56 mL (0.017 mmol as neodymium) of the previously-prepared catalyst A was put into the above, and the polymerization was carried out in a water bath at 50°C for 1.5 hours. Subsequently, 2 mL of an isopropanol 5 mass % solution of an antioxidant 2,6-di-t-butyl-4-cresol (BHT) was added thereto at 50°C to stop the polymerization, and further the reaction mixture was reprecipitated in isopropanol containing a small amount of BHT, and then dried in a drum drier to give a non-modified coordination-polymerized BR at a yield of almost 100%. The cis-1,4-bond content was 90% or more.

    [0120] After polymerization for 1.5 hours in a water bath at 50°C to give the non-modified coordination-polymerized BR, the modifying agent N or O was added to the polymer in an amount of 25 equivalents relative to neodymium, and reacted in the water bath at 50°C for 1 hour. Subsequently, this was processed in the same manner as that for the non-modified coordination-polymerized BR to give a modified coordination-polymerized BR-N and O. The cis-1,4-bond content was 90% or more.

    <Production of Modified Emulsion-Polymerized SBR-P and Q>



    [0121] 200 parts of water, 3 parts of rosin acid soap, 71 parts of 1,3-butadiene and 26 parts of styrene as monomers, 3 parts of the modifying agent P or Q and 0.2 parts of a chain transfer agent t-dodecylmercaptan were put into a polymerization reactor equipped with a stirrer. At a reaction temperature of 5°C, as a radical initiator, 0.1 parts of cumene hydroperoxide, 0.2 parts of sodium formaldehyde sulfoxide and 0.01 parts of ferric sulfate were added and the polymerization was started.

    [0122] At the time when the conversion reached 60%, diethylhydroxylamine was added and the reaction was stopped. Next, the unreacted monomer was recovered through steam distillation, the copolymer was solidified with sulfuric acid and common salt, then washed with water and dried under reduced pressure to give a modified emulsion-polymerized SBR-P and Q. The bound styrene content was 23.5% by mass, and the amount of the modifying agent P or Q in the modified emulsion-polymerized SBR-P and Q was 3% by mass each.

    Examples 1 to 19, and Comparative Examples 1 to 28



    [0123] According to the formulation and the kneading method shown in Table 2, the components were mixed in a Banbury mixer in such a manner that the highest temperature of the rubber composition in the first stage of kneading (kneading time: 3 minutes) could be 150°C except in Comparative Example 2, thereby preparing 46 types of rubber compositions. The highest temperature of the rubber composition in the first stage of kneading (kneading time: 6 minutes) in Comparative Example 2 was 180°C. In the first stage of kneading of the rubber compositions 1, 3, 5 and 5 shown in Table 2, the rubber component (A), all of the inorganic filler (B) and the silane coupling agent (C) were kneaded, and after 60 seconds, the promoter (D) 1,3-diphenylguanidine, a type of guanidine was added thereto and further kneaded. On the other hand, in the first stage of kneading of the rubber compositions 2,4,6 and 8 in Table 2, the promoter (D) was not added. Thus obtained, 47 types of rubber compositions were evaluated in point of the heat-generation property (tanδ index) and the abrasion resistance, according to the above-mentioned methods. The results are shown in Tables 3 to 10.

    [Table 2]



    [0124] 
    Table 2
    part by massComposition Number
    12345678
    Formulation First Stage of Kneading Conjugated Diene-based Polymer *1 100 100 100 100 50 50 100 100
    Polvisoprene Rubber *2 - - - - 50 50 - -
    Carbon Black N220 *3 5 5 15 15 20 20 30 30
    Silica *4 60 60 50 50 50 50 35 35
    Silane Coupling Agent Si75 *5 4.8 4.8 4.0 4.0 4.0 4.0 2.4 2.4
    Aromatic Oil 10 10 10 10 15 15 10 10
    Stearic Acid - 2.0 - 2.0 - 2.0 - 2.0
    Antioxidant 6PPD *6 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
    1,3-Diphenylguanidine *7 1.0 - 1.0 - 1.0 - 1.0 -
    Final Stage of Kneading Stearic Acid 2.0 - 2.0 - 2.0 - 2.0 -
    Antioxidant TMDQ *8 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
    Zinc Flower 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5
    1,3-Diphenylguanidine *7 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6
    Vulcanization Accelerator MBTS *9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
    Vulcanization Accelerator TBBS *10 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6
    Sulfur 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5
    Molar Amount of Organic Acid in First Stage of Kneading [×10-3 mol] - 26.8 - 26.8 - 26.8 - 26.8
    Molar Amount of Guanidine in First Stage of Kneading [×10-3 mol] 4.7 - 4.7 - 4.7 - 4.7 -
    Molar Amount of Silane Coupling Agent in First Stage of Kneading [×10-3 mol] 9.8 9.8 8.2 8.2 8.2 8.2 4.9 4.9

    [Table 3]



    [0125] 
    Table 3
     ExampleComparative Example
    1234567891011121312
    Modifying Agent used for Conjugated Diene-based Polymer A B C D E F G H I J K L M Non-modified
    Vulcanized Rubber Properties of Composition No. 1 Heat-Generation Property 85 79 77 73 83 72 79 77 86 87 89 88 77 95 92
    Abrasion Resistance 114 121 122 125 117 127 121 123 116 112 113 113 122 104 107
    Note) Kneading time in the first stage of kneading: 3 minutes in Examples 1 to 13 and Comparative Example 1, and 6 minutes in Comparative Example 2.
    Table 4
     Comparative Example
    345678910111213141516
    Modifying Agent used for Conjugated Diene-based Polymer A B C D E F G H I J K L M Non-modified
    Vulcanized Rubber Properties of Composition No. 2 Heat-Generation Property 95 90 87 85 92 84 88 87 94 97 97 96 87 100
    Abrasion Resistance 104 110 112 113 108 115 110 111 105 102 103 103 113 100

    [Table 4]



    [0126] 
    Table 5
     ExampleComparative Example 17
    1415
    Modifying Agent used for Conjugated Diene-based Polymer A F Non-modified
    Vulcanized Rubber Properties of Composition No. 7 Heat-Generation Property 90 72 97
    Abrasion Resistance 108 130 104
    Table 6
     Comparative Example
    181920
    Modifying Agent used for Conjugated Diene-based Polymer A F Non-modified
    Vulcanized Rubber Properties of Composition No. 8 Heat-Generation Property 97 84 100
    Abrasion Resistance 101 114 100

    [Table 5]



    [0127] 
    Table 7
     ExampleComparative Example 21
    1617
    Modifying Agent used for Conjugated Diene-based Polymer N O Non-modified
    Vulcanized Rubber Properties of Composition No. 3 Heat-Generation Property 85 87 95
    Abrasion Resistance 115 114 104
    Table 8
     Comparative Example
    222324
    Modifying Agent used for Conjugated Diene-based Polymer N O Non-modified
    Vulcanized Rubber Properties of Composition No. 4 Heat-Generation Property 94 95 100
    Abrasion Resistance 103 105 100

    [Table 6]



    [0128] 
    Table 9
     ExampleComparative Example 25
    1819
    Modifying Agent used for Conjugated Diene-based Polymer P Q Non-modified
    Vulcanized Rubber Properties of Composition No. 5 Heat-Generation Property 88 87 97
    Abrasion Resistance 116 114 102
    Table 10
     Comparative Example
    262728
    Modifying Agent used for Conjugated Diene-based Polymer P Q Non-modified
    Vulcanized Rubber Properties of Composition No. 6 Heat-Generation Property 95 97 100
    Abrasion Resistance 106 105 100

    [Notes]



    [0129] 

    *1: Modified anionically-polymerized SBR-A to K modified anionically-polymerized SBR-A to M (Examples 1 to 15, Comparative Examples 3 to 15, and 18, 19), non-modified anionically-polymerized SBR (Comparative Examples 1, 2, 16, 17 and 20), modified coordination-polymerized BR-N and O (Examples 16, 17, Comparative Examples 22, 23), non-modified coordination-polymerized BR (Comparative Examples 21, 24), modified emulsion-polymerized SBR-P and Q (Examples 18, 19), and non-modified emulsion-polymerized SBR (Comparative Examples 25, 28)

    *2: JSR's trade name "IR2200"

    *3: Asahi Carbon's trade name "#80"

    *4: Tosoh Silica's Nipsil AQ, having BET surface area of 220 m2/g

    *5: Bis(3-triethoxysilylpropyl) disulfide (mean sulfur chain length: 2.35), Evonik's silane coupling agent, trade name "Si75" (registered trademark)

    *6: N-(1,3-dimehtylbutyl)-N'-phenyl-p-phenylenediamine, Ouchi Shinko Chemical Industry's trade name "Noclac 6C"

    *7: 1,3-Diphenylguanidine, Sanshin Chemical Industry's trade name "Sanceler D"

    *8: 2,2,4-Trimethyl-1,2-dihydroquinoline polymer, Ouchi Shinko Chemical Industry's trade name "Noclac 224"

    *9: Di-2-benzothiazolyl disulfide, Sanshin Chemical Industry's trade name "Sanceler DM"

    *10: N-tert-butyl-2-benzothiazolylsulfenamide, Sanshin Chemical Industry's trade name "Sanceler NS"



    [0130] As obvious from Table 3 to Table 10, the rubber compositions of Examples 1 to 19 all have low heat generation (tanδ index) and have improved abrasion resistance as compared with the comparative rubber compositions of Comparative Examples 1 to 28.

    Industrial Applicability



    [0131]  The rubber composition production method of the present invention is for producing a rubber composition containing a specific modified conjugated diene-based polymer, wherein the activity of the coupling function of the silane coupling agent can be further enhanced and a rubber composition excellent in low-heat-generation property and abrasion resistance can be obtained. Accordingly, the production method is favorable for production of constitutive members of various types of pneumatic tires for passenger cars, small-size trucks, minivans, pickup trucks and big-size vehicles (trucks, buses, construction vehicles, etc.) and others, especially for tread members of pneumatic radial tires.


    Claims

    1. A method for producing a rubber composition containing a rubber component (A) that contains a modified conjugated diene-based polymer obtained by using a modifying agent that has a functional group compatible with silica, a filler containing an inorganic filler (B), a silane coupling agent (C), and at least one promoter (D) selected from guanidines, sulfenamides, thiazoles, thiurams, thioureas, dithiocarbamic acid compounds and xanthogenic acid compounds, wherein the rubber composition is kneaded in plural stages, and in the first stage (X) of kneading, the rubber component (A), all or a part of the inorganic filler (B), all or a part of the silane coupling agent (C) and the promoter (D) are added and kneaded, wherein the amount of the inorganic filler (B) in the rubber composition is from 20 to 120 parts by mass relative to 100 parts by mass of the rubber component (A), wherein the amount of the silane coupling agent (C) in the rubber composition is of from 1 to 20% by mass of the inorganic filler (B), and wherein the molar amount of the promoter (D) in the rubber composition in the first stage of kneading is from 0.1 to 1.0 times the molar amount of the silane coupling agent (C).
     
    2. The method for producing a rubber composition according to claim 1, wherein in the first stage, after the rubber component (A), all or a part of the inorganic filler (B) and all or a part of the silane coupling agent are kneaded, the promoter (D) is added and further kneaded.
     
    3. The method for producing a rubber composition according to claim 1 or 2, wherein the rubber composition further contains an organic acid and the molar amount X of the organic acid in the rubber composition in the first stage satisfies the following relational formula [1] relative to the molar amount Y of the promoter (D):


     
    4. The method for producing a rubber composition according to claim 3, wherein the organic acid in the rubber composition is added in and after a second stage of kneading.
     
    5. The method for producing a rubber composition according to claim 3 or 4, wherein stearic acid accounts for 50 mol% or more of the organic acid.
     
    6. The method for producing a rubber composition according to any of claims 1 to 5, wherein the highest temperature of the rubber composition in the first stage is from 120 to 190°C.
     
    7. The method for producing a rubber composition according to any of claims 1 to 6, wherein the silane coupling agent (C) is one or more compound selected from a group consisting of the compounds of the following general formulae (I) and (II):
    [Chem. 1]

            (R1O)3-p(R2)pSi-R3-Sa-R3-Si(OR1)3-r(R2)r ...     (I)

    [wherein plural R1's may be the same or different, each representing a linear, cyclic or branched alkyl group, having from 1 to 8 carbon atoms, or a linear or branched alkoxylalkyl group, having from 2 to 8 carbon atoms; plural R2's may be the same or different, each representing a linear, cyclic or branched alkyl group, having from 1 to 8 carbon atoms; plural R3's may be the same or different, each representing a linear or branched alkylene group, having from 1 to 8 carbon atoms; a indicates from 2 to 6 as a mean value; p and r may be the same or different, each indicating from 0 to 3 as a mean value, provided that both p and r are not 3 at the same time];
    [Chem. 2]

            (R4O)3-s(R5)sSi-R6-Sk-R7-Sk-R6-Si(OR4)3-t(R5)t ...     (II)

    [wherein plural R4's may be the same or different, each representing a linear, cyclic or branched alkyl group, having from 1 to 8 carbon atoms, or a linear or branched alkoxylalkyl group, having from 2 to 8 carbon atoms; plural R5's may be the same or different, each representing a linear, cyclic or branched alkyl group, having from 1 to 8 carbon atoms; plural R6's may be the same or different, each representing a linear or branched alkylene group, having from 1 to 8 carbon atoms; R7 represents a divalent group of a general formula (-S-R8-S-), (-R9-Sm1-R10-) or (-R11-Sm2-R12-Sm3-R13-) (where R8 to R13 may be the same or different, each representing a divalent aliphatic or alicyclic hydrocarbon group, having from 1 to 20 carbon atoms, a divalent aromatic group, or a divalent organic group containing a hetero element except sulfur and oxygen; m1, m2 and m3 may be the same or different, each indicating from 1 to less than 4 as a mean value); plural k's may be the same or different, each indicating from 1 to 6 as a mean value; s and t may be the same or different, each indicating from 0 to 3 as a mean value, provided that both s and t are not 3 at the same time].
     
    8. The method for producing a rubber composition according to any of claims 1 to 7, wherein the filler contains carbon black.
     
    9. The method for producing a rubber composition according to any of claims 1 to 8, wherein the inorganic filler (B) is in an amount of 40% by mass or more in the filler.
     
    10. The method for producing a rubber composition according to any of claims 1 to 9, wherein the guanidine is at least one compound selected from 1,3-diphenylguanidine, 1,3-di-o-tolylguanidine and 1-o-tolylbiguanide; wherein the sulfenamide is N-cyclohexyl-2-benzothiazolylsulfenamide and/or N-tert-butyl-2-benzothiazolylsulfenamide; wherein the thiazole is 2-mercaptobenzothiazole and/or di-2-benzothiazolyl disulfide; wherein the thiuram is at least one compound selected from tetrakis(2-ethylhexyl)thiuram disulfide and tetrabenzylthiuram disulfide.; wherein the thiourea is at least one compound selected from N,N'-diethylthiourea, trimethylthiourea, N,N'-diphenylthiourea and N,N'-dimethylthiourea; wherein the dithiocarbamic acid compound is at least one compound selected from zinc dibenzyldithiocarbamate, zinc N-ethyl-N-phenyldithiocarbamate, zinc dimethyldithiocarbamate and copper dimethyldithiocarbamate.; or wherein the xanthogenic acid compound is zinc isopropylxanthate.
     
    11.  The method for producing a rubber composition according to any of claims 1 to 10, wherein the modifying agent is a modifying agent having at least one atom selected from a silicon atom, a nitrogen atom and an oxygen atom.
     
    12. The method for producing a rubber composition according to any of claims 1 to 11, wherein the modifying agent is a hydrocarbyloxysilane compound, preferably, wherein the hydrocarbyloxysilane compound is a hydrocarbyloxysilane compound represented by the following general formula (III):

    [wherein n1 + n2 + n3 + n4 = 4 (where n2 is an integer of from 1 to 4, and n1, n3 and n4 each are an integer of from 0 to 3); A1 represents at least one functional group selected from a saturated cyclic tertiary amine compound residue, an unsaturated cyclic tertiary amine compound residue, a ketimine residue, a nitrile group, a (thio)isocyanate group, a (thio)epoxy group, a trihydrocarbyl isocyanurate group, a dihydrocarbyl carbonate group, a nitrile group, a pyridine group, a (thio)ketone group, a (thio)aldehyde group, an amide group, a (thio)carboxylate group, a (thio)carboxylate metal salt group, a carboxylic acid anhydride residue, a carboxylic acid halide residue, and a hydrolysable group-having, primary or secondary amino group or mercapto group; when n4 is 2 or more, then A1's may be the same or different, A1 may bond to Si to be a divalent group that forms a cyclic structure; R21 represents a monovalent aliphatic or alicyclic hydrocarbon group, having from 1 to 20 carbon atoms, or a monovalent aromatic hydrocarbon group having from 6 to 18 carbon atoms; when n1 is 2 or more, then R21's may be the same or different; R23 represents a monovalent aliphatic or alicyclic hydrocarbon group, having from 1 to 20 carbon atoms, a monovalent aromatic hydrocarbon group having from 6 to 18 carbon atoms, or a halogen atom; when n3 is 2 or more, then R23's may be the same or different; R22 represents a monovalent aliphatic or alicyclic hydrocarbon group, having from 1 to 20 carbon atoms or a monovalent aromatic hydrocarbon group having from 6 to 18 carbon atoms, optionally having a nitrogen atom and/or a silicon atom; when n2 is 2 or more, then R22's may be the same or different, or may bond to each other to form a ring; R24 represents a divalent aliphatic or alicyclic hydrocarbon group, having from 1 to 20 carbon atoms, or a divalent aromatic hydrocarbon group having from 6 to 18 carbon atoms; when n4 is 2 or more, then R24's may be the same or different.], preferably, wherein the hydrocarbyloxysilane compound is a hydrocarbyloxysilane compound represented by the following general formula (IV):

    [wherein p1 + p2 + p3 = 2 (where p2 is an integer of from 1 to 2, and p1 and p3 each are an integer of from 0 to 1); A2 represents NRa (where Ra represents a monovalent hydrocarbon group, a hydrolysable group or a nitrogen-containing organic group), or a sulfur; R25 represents a monovalent aliphatic or alicyclic hydrocarbon group, having from 1 to 20 carbon atoms, or a monovalent aromatic hydrocarbon group having from 6 to 18 carbon atoms; R27 represents a monovalent aliphatic or alicyclic hydrocarbon group, having from 1 to 20 carbon atoms, a monovalent aromatic hydrocarbon group having from 6 to 18 carbon atoms, or a halogen atom; R26 represents a monovalent aliphatic or alicyclic hydrocarbon group, having from 1 to 20 carbon atoms or a monovalent aromatic hydrocarbon group having from 6 to 18 carbon atoms, optionally having a nitrogen atom and/or a silicon atom; when p2 is 2, then R26's may be the same or different, or may bond to each other to form a ring; R28 represents a divalent aliphatic or alicyclic hydrocarbon group, having from 1 to 20 carbon atoms, or a divalent aromatic hydrocarbon group having from 6 to 18 carbon atoms]; or wherein the hydrocarbyloxysilane compound is a hydrocarbyloxysilane compound represented by the following general formula (V) or (VI) :

    [wherein q1 + q2 = 3 (where q1 is an integer of from 0 to 2, and q2 is an integer of from 1 to 3); R31 represents a divalent aliphatic or alicyclic hydrocarbon group, having from 1 to 20 carbon atoms, or a divalent aromatic hydrocarbon group having from 6 to 18 carbon atoms; R32 and R33 each independently represent a hydrolysable group, a monovalent aliphatic or alicyclic hydrocarbon group, having from 1 to 20 carbon atoms, or a monovalent aromatic hydrocarbon group having from 6 to 18 carbon atoms; R34 represents a monovalent aliphatic or alicyclic hydrocarbon group, having from 1 to 20 carbon atoms, or a monovalent aromatic hydrocarbon group having from 6 to 18 carbon atoms; when q1 is 2, then R34's may be the same or different; R35 represents a monovalent aliphatic or alicyclic hydrocarbon group, having from 1 to 20 carbon atoms, or a monovalent aromatic hydrocarbon group having from 6 to 18 carbon atoms; when q2 is 2 or more, then R35's may be the same or different];

    [wherein r1 + r2 = 3 (where r1 is an integer of from 1 to 3, r2 is an integer of from 0 to 2); R36 represents a divalent aliphatic or alicyclic hydrocarbon group, having from 1 to 20 carbon atoms, or a divalent aromatic hydrocarbon group having from 6 to 18 carbon atoms; R37 represents a dimethylaminomethyl group, a dimethylaminoethyl group, a diethylaminomethyl group, a diethylaminoethyl group, a methylsilyl(methyl)aminomethyl group, a methylsilyl(methyl)aminoethyl group, a methylsilyl(ethyl)aminomethyl group, a methylsilyl(ethyl)aminoethyl group, a dimethylsilylaminomethyl group, a dimethylsilylaminoethyl group, a monovalent aliphatic or alicyclic hydrocarbon group, having from 1 to 20 carbon atoms, or a monovalent aromatic hydrocarbon group having from 6 to 18 carbon atoms; when r1 is 2 or more, then R37's may be the same or different; R38 represents a hydrocarbyloxy group having from 1 to 20 carbon atoms, a monovalent aliphatic or alicyclic hydrocarbon group, having from 1 to 20 carbon atoms, or a monovalent aromatic hydrocarbon group having from 6 to 18 carbon atoms; when r2 is 2, then R38's may be the same or different].
     
    13. The method for producing a rubber composition according to claim 12, wherein the hydrolysable group is at least one group selected from a trimethylsilyl group and a t-butyldimethylsilyl group.
     
    14. The method for producing a rubber composition according to claim 11, wherein the modifying agent is at least one compound selected from 3,4-bis(trimethylsilyloxy)benzaldehyde, 3,4-bis(tert-butyldimethylsilyloxy)benzaldehyde, 2-cyanopyridine, 1,3-dimethyl-2-imidazolidinone and 1-methyl-2-pyrrolidone; wherein the modifying agent is the amide moiety of a lithium amide compound to be used as the polymerization initiator in anionic polymerization; wherein the modifying agent is at least one compound selected from 2-cyanopyridine and 3,4-ditrimethylsilyloxybenzaldehyde; or wherein the modifying agent is at least one compound selected from 3,4-ditrimethylsilyloxybenzaldehyde and 4-hexamethyleneiminoalkylstyrene.
     
    15. The method for producing a rubber composition according to claim 14, wherein the lithium amide compound is a compound selected from lithium hexamethyleneimide, lithium pyrrolidide, lithium piperidide, lithium heptamethyleneimide, lithium dodecamethyleneimide, lithium dimethylamide, lithium diethylamide, lithium dibutylamide, lithium dipropylamide, lithium diheptylamide, lithium dihexylamide, lithium dioctylamide, lithium di-2-ethylhexylamide, lithium didecylamide, lithium N-methylpiperadide, lithium ethylpropylamide, lithium ethylbutylamide, lithium ethylbenzylamide and lithium methylphenethylamide.
     


    Ansprüche

    1. Verfahren zur Herstellung einer Kautschukzusammensetzung, enthaltend eine Kautschukkomponente (A), welche ein modifiziertes, konjugiertes, dienbasiertes Polymer enthält, welches unter Verwendung eines Modifizierungsmittels erzielt wird, welches eine Funktionsgruppe besitzt, kompatibel mit Siliziumdioxid, einen Füllstoff, enthaltend einen anorganischen Füllstoff (B), einen Silanhaftvermittler (C) und mindestens einen Förderer (D), gewählt aus Guanidinen, Sulfenamiden, Thiazolen, Thiuramen, Thioharnstoffen, Dithiocarbaminsäureverbindungen und Xanthogensäureverbindungen, wobei die Kautschukzusammensetzung in mehreren Schritten geknetet wird, und in dem ersten Knetschritt (X) die Kautschukkomponente (A), der gesamte oder ein Teil des anorganischen Füllstoffs (B), der gesamte oder ein Teil des Silanhaftvermittlers (C) und der Förderer (D) hinzugefügt und geknetet werden, wobei die Menge an anorganischem Füllstoff (B) in der Kautschukzusammensetzung 20 bis 120 Gewichtsanteile in Bezug auf 100 Gewichtsanteile der Kautschukkomponente (A) beträgt, wobei die Menge an Silanhaftvermittler (C) in der Kautschukzusammensetzung 1 bis 20 Gewichtsprozent des anorganischen Füllstoffs (B) beträgt, und wobei die Molmenge des Förderers (D) in der Kautschukzusammensetzung in dem ersten Knetschritt 0,1 bis 1,0 Mal die Molmenge des Silanhaftvermittlers (C) beträgt.
     
    2. Verfahren zur Herstellung einer Kautschukzusammensetzung nach Anspruch 1, wobei in dem ersten Schritt, nachdem die Kautschukkomponente (A), der gesamte oder ein Teil des anorganischen Füllstoffs (B) und der gesamte oder ein Teil des Silanhaftvermittlers geknetet wurden, der Förderer (D) hinzugefügt und weitergeknetet wird.
     
    3. Verfahren zur Herstellung einer Kautschukzusammensetzung nach Anspruch 1 oder 2, wobei die Kautschukzusammensetzung ferner eine organische Säure enthält und die Molmenge X der organischen Säure in der Kautschukzusammensetzung in dem ersten Schritt folgende Beziehungsformel [1] in Bezug auf die Molmenge Y des Förderers (D) erfüllt:


     
    4. Verfahren zur Herstellung einer Kautschukzusammensetzung nach Anspruch 3, wobei die organische Säure in der Kautschukzusammensetzung in und nach einem zweiten Knetschritt hinzugefügt wird.
     
    5. Verfahren zur Herstellung einer Kautschukzusammensetzung nach Anspruch 3 oder 4, wobei Stearinsäure 50 Molprozent oder mehr der organischen Säure ausmacht.
     
    6. Verfahren zur Herstellung einer Kautschukzusammensetzung nach einem der Ansprüche 1 bis 5, wobei die höchste Temperatur der Kautschukzusammensetzung in dem ersten Schritt 120 bis 190 °C beträgt.
     
    7. Verfahren zur Herstellung einer Kautschukzusammensetzung nach einem der Ansprüche 1 bis 6, wobei der Silanhaftvermittler (C) eine oder mehrere Verbindungen ist, gewählt aus einer Gruppe, bestehend aus den Verbindungen der folgenden allgemeinen Formeln (I) und (II):
    [Chem. 1]

            (R1O)3-p(R2)pSi-R3-Sa-R3-Si(OR1)3-r(R2)r ···     (I)

    [wobei mehrere R1's identisch oder unterschiedlich sein können und jeweils eine lineare, zyklische oder verzweigte Alkylgruppe darstellen, welche 1 bis 8 Kohlenstoffatome besitzt, oder eine lineare oder verzweigte Alkoxylalkylgruppe, welche 2 bis 8 Kohlenstoffatome besitzt; wobei mehrere R2's identisch oder unterschiedlich sein können und jeweils eine lineare, zyklische oder verzweigte Alkylgruppe darstellen, welche 1 bis 8 Kohlenstoffatome besitzt; wobei die R3's identisch oder unterschiedlich sein können, welche jeweils eine lineare oder verzweigte Alkylengruppe darstellen, welche 1 bis 8 Kohlenstoffatome besitzt; wobei a als Durchschnittswert 2 bis 6 angibt; und wobei p und r identisch oder unterschiedlich sein können und jeweils als Durchschnittswert 0 bis 3 angeben, vorausgesetzt, dass p und r nicht gleichzeitig 3 betragen];
    [Chem. 2]

            (R4O)3-s(R5)sSi-R6-Sk-R6-Si(OR4)3-t(R5)t ···     (II)

    [wobei mehrere R4's identisch oder unterschiedlich sein können und jeweils eine lineare, zyklische oder verzweigte Alkylgruppe darstellen, welche 1 bis 8 Kohlenstoffatome besitzt, oder eine lineare oder verzweigte Alkoxylalkylgruppe, welche 2 bis 8 Kohlenstoffatome besitzt; wobei mehrere R5's identisch oder unterschiedlich sein können und jeweils eine lineare, zyklische oder verzweigte Alkylgruppe darstellen, welche 1 bis 8 Kohlenstoffatome besitzt; wobei mehrere R6's identisch oder unterschiedlich sein können und jeweils eine lineare oder verzweigte Alkylengruppe darstellen, welche 1 bis 8 Kohlenstoffatome besitzt; wobei R7 eine zweiwertige Gruppe nach einer allgemeinen Formel (-S-R8-S-), (-R9-Sm1-R10-) oder (-R11-Sm2-R12-Sm3-R13-) darstellt, (wobei R8 bis R13 identisch oder unterschiedlich sein können und jeweils eine zweiwertige aliphatische oder alizyklische Kohlenwasserstoffgruppe darstellen, welche 1 bis 20 Kohlenstoffatome besitzt, eine zweiwertige aromatische Gruppe oder eine zweiwertige organische Gruppe, welche ein Heteroelement mit Ausnahme von Schwefel und Sauerstoff enthält; wobei m1, m2 und m3 identisch oder unterschiedlich sein können und jedes von ihnen 1 bis weniger als 4 als einen Durchschnittswert angibt); wobei mehrere k's identisch oder unterschiedlich sein können und jedes von ihnen 1 bis 6 als einen Durchschnittwert angibt; wobei s und t identisch oder unterschiedlich sein können und jedes von ihnen 0 bis 3 als einen Durchschnittswert angibt, vorausgesetzt, dass s und t nicht gleichzeitig 3 betragen].
     
    8. Verfahren zur Herstellung einer Kautschukzusammensetzung nach einem der Ansprüche 1 bis 7, wobei der Füllstoff Ruß enthält.
     
    9. Verfahren zur Herstellung einer Kautschukzusammensetzung nach einem der Ansprüche 1 bis 8, wobei der anorganische Füllstoff (B) in einer Menge von 40 Gewichtsprozent oder mehr in dem Füllstoff vorliegt.
     
    10. Verfahren zur Herstellung einer Kautschukzusammensetzung nach einem der Ansprüche 1 bis 9, bei welchem das Guanidin mindestens eine Verbindung ist, gewählt aus der Gruppe, bestehend aus 1,3-Diphenylguanidin, 1,3-Di-o-tolylguanidin und 1-o-Tolylbiguanid, wobei das Sulfenamid N-Cyclohexyl-2-benzothiazolylsulfenamid und/oder N-Tert-butyl-2-benzothiazolylsulfenamid ist, wobei das Thiazol 2-Mercaptobenzothiazol und/oder Di-2-benzothiazolyldisulfid ist, wobei das Thiuram mindestens eine Verbindung ist, gewählt aus Tetrakis(2-ethylhexyl)thiuramdisulfid und/oder Tetrabenzylthiuramdisulfid, wobei der Thioharnstoff mindestens eine Verbindung ist, gewählt aus N,N'-Diethyltthioharnstoff, Trimethylthioharnstoff, N,N'-Diphenylthioharnstoff und N,N'-Dimethylthioharnstoff, wobei die Dithiocarbaminsäureverbindung mindestens eine Verbindung ist, gewählt aus Zinkdibenzyldithiocarmamat, Zink-N-ethyl-N-phenyldithiocarbamat, Zinkdimethyldithiocarbamat und Kupferdimethyldithiocarbamat; oder wobei die Xanthogensäurevebindung Zinkisopropylxanthat ist.
     
    11. Verfahren zur Herstellung einer Kautschukzusammensetzung nach einem der Ansprüche 1 bis 10, wobei das Modifizierungsmittel ein Modifizierungsmittel ist, welches mindestens ein Atom besitzt, gewählt aus einem Siliziumatom, einem Stickstoffatom und einem Sauerstoffatom.
     
    12. Verfahren zur Herstellung einer Kautschukzusammensetzung nach einem der Ansprüche 1 bis 11, wobei das Modifizierungsmittel eine Hydrocarbyloxysilanverbindung ist, wobei vorzugsweise die Hydrocarbyloxysilanverbindung eine Hydrocarbyloxysilanverbindung ist, welche durch die folgende allgemeine Formel (III) dargestellt ist:

    [wobei n1 + n2 + n3 + n4 = 4 (wobei n2 eine Ganzzahl von 1 bis 4 ist, und n1, n3 und n4 jeweils eine Ganzzahl von 0 bis 3 sind); wobei A1 mindestens eine Funktionsgruppe darstellt, gewählt aus einem gesättigten zyklischen tertiären Arminverbindungsrückstand, einem ungesättigten zyklischen tertiären Arminverbindungsrückstand, einem Ketaminrückstand, einer Nitrilgruppe, einer (Thio)isocyanatgruppe, einer (Thio)epoxygruppe, einer Trihydrocarbylisocyanuratgruppe, einer Dihydrocarbylcarbonatgruppe, einer Nitrilgruppe, einer Pyridingruppe, einer (Thio)ketongruppe, einer (Thio)aldehydgruppe, einer Amidgruppe, einer (Thio)carboxylatguppe, einer (Thio)carboxylatmetallsalzgruppe, einem Carbonsäure-Anhydridrückstand, einem Carbonsäure-Halidrückstand, einer eine hydrolysierbare Gruppe enthaltende primäre oder sekundäre Aminogruppe oder Mercaptogruppe; wenn n4 2 oder darüber beträgt, können A1's identisch oder unterschiedlich sein, A1 kann an Si binden, um eine zweiwertige Gruppe zu bilden, welche eine zyklische Struktur bildet; wobei R21 eine einwertige aliphatische oder alizyklische Kohlenwasserstoffgruppe darstellt, welche 1 bis 20 Kohlenstoffatome besitzt, oder eine einwertige aromatische Kohlenwasserstoffgruppe, welche 6 bis 18 Kohlenstoffatome besitzt; wenn n1 2 oder darüber beträgt, können R21's identisch oder unterschiedlich sein; wobei R23 eine einwertige aliphatische oder alizyklische Kohlenwasserstoffgruppe darstellt, welche 1 bis 20 Kohlenstoffatome besitzt, eine einwertige aromatische Kohlenwasserstoffgruppe, welche 6 bis 18 Kohlenstoffatome oder ein Halogenatom besitzt; wenn n3 2 oder darüber beträgt, können R23's identisch oder unterschiedlich sein; wobei R22 eine einwertige aliphatische oder alizyklische Kohlenwasserstoffgruppe darstellt, welche 1 bis 20 Kohlenstoffatome besitzt, oder eine einwertige aromatische Kohlenwasserstoffgruppe, welche 6 bis 18 Kohlenstoffatome besitzt, welche optionsweise ein Stickstoffatom und/oder ein Siliziumatom besitzt; wenn n2 2 oder darüber beträgt, können R22's identisch oder unterschiedlich sein oder können aneinander binden, um einen Ring zu bilden; wobei R24 eine zweiwertige aliphatische oder alizyklische Kohlenwasserstoffgruppe darstellt, welche 1 bis 20 Kohlenstoffatome besitzt, oder eine einwertige aromatische Kohlenwasserstoffgruppe, welche 6 bis 18 Kohlenstoffatome besitzt; wenn n4 2 oder darüber beträgt, können R24's identisch oder unterschiedlich sein], wobei vorzugsweise die Hydrocarbyloxysilanverbindung eine Hydrocarbyloxysilanverbindung ist, welche durch die folgende allgemeine Formel (IV) dargestellt ist:

    [wobei p1 + p2 + p3 = 2 (wobei p2 eine Ganzzahl von 1 bis 2 ist, und p1 und p3 jeweils eine Ganzzahl von 0 bis 1 sind); wobei A2 NRa (wobei Ra eine einwertige Kohlenwasserstoffgruppe, eine hydrolysierbare Gruppe oder eine stickstoffhaltige organische Gruppe darstellt) oder einen Schwefel darstellt; wobei R25 eine einwertige aliphatische oder alizyklische Kohlenwasserstoffgruppe darstellt, welche 1 bis 20 Kohlenstoffatome besitzt, oder eine einwertige aromatische Kohlenwasserstoffgruppe, welche 6 bis 18 Kohlenstoffatome besitzt; wobei R27 eine einwertige aliphatische oder alizyklische Kohlenwasserstoffgruppe darstellt, welche 1 bis 20 Kohlenstoffatome besitzt, oder eine einwertige aromatische Kohlenwasserstoffgruppe, welche 6 bis 18 Kohlenstoffatome oder ein Halogenatom besitzt; wobei R26 eine einwertige aliphatische oder alizyklische Kohlenwasserstoffgruppe darstellt, welche 1 bis 20 Kohlenstoffatome besitzt, oder eine einwertige aromatische Kohlenwasserstoffgruppe, welche 6 bis 18 Kohlenstoffatome besitzt, welche optionsweise ein Stickstoffatom und/oder ein Siliziumatom besitzt; wenn p2 2 beträgt, können R26's identisch oder unterschiedlich sein oder können aneinander binden, um einen Ring zu bilden; wobei R28 eine zweiwertige aliphatische oder alizyklische Kohlenwasserstoffgruppe darstellt, welche 1 bis 20 Kohlenstoffatome besitzt, oder eine zweiwertige aromatische Kohlenwasserstoffgruppe, welche 6 bis 18 Kohlenstoffatome besitzt]; oder wobei die Hydrocarbyloxysilanverbindung eine Hydrocarbyloxysilanverbindung ist, welche durch die folgende allgemeine Formel (IV) oder (V) dargestellt ist:

    von 1 bis 3 ist); wobei R31 eine zweiwertige aliphatische oder alizyklische Kohlenwasserstoffgruppe darstellt, welche 1 bis 20 Kohlenstoffatome besitzt, oder eine zweiwertige aromatische Kohlenwasserstoffgruppe, welche 6 bis 18 Kohlenstoffatome besitzt; wobei R32 und R33 jeweils unabhängig eine hydrolysierbare Gruppe, eine einwertige aliphatische oder alizyklische Kohlenwasserstoffgruppe darstellen, welche 1 bis 20 Kohlenstoffatome besitzt, oder eine einwertige aromatische Kohlenwasserstoffgruppe, welche 6 bis 18 Kohlenstoffatome besitzt; wobei R34 eine einwertige aliphatische oder alizyklische Kohlenwasserstoffgruppe darstellt, welche 1 bis 20 Kohlenstoffatome besitzt, oder eine einwertige aromatische Kohlenwasserstoffgruppe, welche 6 bis 18 Kohlenstoffatome besitzt; wenn q1 2 beträgt, können R34's identisch oder unterschiedlich sein; wobei R35 eine einwertige aliphatische oder alizyklische Kohlenwasserstoffgruppe darstellt, welche 1 bis 20 Kohlenstoffatome besitzt, oder eine einwertige aromatische Kohlenwasserstoffgruppe, welche 6 bis 18 Kohlenstoffatome besitzt; wenn q2 2 oder darüber beträgt, können R35's identisch oder unterschiedlich sein];



    [wobei r1 + r2 = 3 (wobei r1 eine Ganzzahl von 1 bis 3 ist, und r2 eine Ganzzahl von 0 bis 2 ist); wobei R36 eine zweiwertige aliphatische oder alizyklische Kohlenwasserstoffgruppe darstellt, welche 1 bis 20 Kohlenstoffatome besitzt, oder eine zweiwertige aromatische Kohlenwasserstoffgruppe, welche 6 bis 18 Kohlenstoffatome besitzt; wobei R37 eine Dimethylaminomethylgruppe, eine Dimethylaminoethylgruppe, eine Diethylaminomethylgruppe, eine Diethylaminoethylgruppe, eine Methylsilyl(methyl)aminomethylgruppe, eine Methylsilyl(methyl)aminoethylgruppe, eine Methylsilyl(ethyl)aminomethylgruppe, eine Methylsilyl(ethyl)aminoethylgruppe, eine Dimethylsilylaminomethylgruppe, eine Dimethylsilylaminoethylgruppe, eine einwertige aliphatische oder alizyklische Kohlenwasserstoffgruppe, welche 1 bis 20 Kohlenstoffatome besitzt, oder eine einwertige aromatische Kohlenwasserstoffgruppe, welche 6 bis 18 Kohlenstoffatome besitzt; wenn r1 2 oder darüber beträgt, können R37's identisch oder unterschiedlich sein; wobei R38 eine Hydrocarbyloxygruppe darstellt, welche 1 bis 20 Kohlenstoffatome besitzt, eine einwertige aliphatische oder alizyklische Kohlenwasserstoffgruppe, welche 1 bis 20 Kohlenstoffatome besitzt, oder eine einwertige aromatische Kohlenwasserstoffgruppe, welche 6 bis 18 Kohlenstoffatome besitzt; wenn r2 2 beträgt, können R38's identisch oder unterschiedlich sein].
     
    13. Verfahren zur Herstellung einer Kautschukzusammensetzung nach Anspruch 12, wobei die hydrolysierbare Gruppe mindestens eine Gruppe ist, gewählt aus einer Trimethylsilylgruppe und einer t-Butyldimethylsilylgruppe.
     
    14. Verfahren zur Herstellung einer Kautschukzusammensetzung nach Anspruch 11, wobei das Modifizierungsmittel mindestens eine Verbindung ist, gewählt aus 3,4-Bis(trimethylsilyloxy)benzaldehyd, 3,4-Bis(tert-butyldimethylsilyloxy)benzaldehyd, 2-Cyanopyridin, 1,3-Dimethyl-2-imidazolidinon und 1-Methyl-2-pyrrolidon; wobei das Modifizierungsmittel die Amidgruppe einer Lithiumamidverbindung ist, welche als der Polymerisierungsinitiator in einer anionischen Polymerisierung verwendet werden soll; wobei das Modifizierungsmittel mindestens eine Verbindung ist, gewählt aus 2-Cyanopyridin und 3,4-Ditrimethylsilyloxybenzaldehyd; oder wobei das Modifizierungsmittel mindestens eine Verbindung ist, gewählt aus 3,4-Ditrimethylsilyloxybenzaldehyd und 4-Hexamethyleniminoalkylstyrol.
     
    15. Verfahren zur Herstellung einer Kautschukzusammensetzung nach Anspruch 14, wobei die Lithiumamidverbindung eine Verbindung ist, gewählt aus Lithiumhexamethylenimid, Lithiumpyrrolidid, Lithiumpiperidid, Lithiumheptamethylenimid, Lithiumdodecamethylenimid, Lithiumdimethylamid, Lithiumdiethylamid, Lithiumdibutylamid, Lithiumdipropylamid, Lithiumdiheptylamid, Lithiumdihexylamid, Lithiumdioctylamid, Lithium-di-2-ethylhexylamid, Lithiumdidecylamid, Lithium-N-methylpiperadid, Lithiumethylpropylamid, Lithiumethylbutylamid, Lithiumethylbenzylamid und Lithiummethylphenethylamid.
     


    Revendications

    1. Procédé de production d'une composition de caoutchouc contenant un composant caoutchouc (A) qui contient un polymère à base de diène conjugué modifié obtenu à l'aide d'un agent modificateur portant un groupe fonctionnel compatible avec la silice, une charge contenant une charge inorganique (B), un agent de couplage silane (C), et au moins un promoteur (D) choisi parmi les guanidines, sulfénamides, thiazoles, thiurames, thiourées, composés d'acide dithiocarbamique et composés d'acide xanthogénique, dans lequel la composition de caoutchouc est malaxée en plusieurs phases, et au cours de la première phase (X) de malaxage, le composant caoutchouc (A), tout ou partie de la charge inorganique (B), tout ou partie de l'agent de couplage silane (C) et le promoteur (D) sont ajoutés et malaxés, dans lequel la quantité de charge inorganique (B) au sein de la composition de caoutchouc est de 20 à 120 parties en masse pour 100 parties en masse de composant caoutchouc (A), dans lequel la quantité d'agent de couplage silane (C) au sein de la composition de caoutchouc est de 1 à 20 % en masse de la charge inorganique (B), et dans lequel la quantité molaire de promoteur (D) au sein de la composition de caoutchouc au cours de la première phase de malaxage est de 0,1 à 1,0 fois la quantité molaire d'agent de couplage silane (C).
     
    2. Procédé de production d'une composition de caoutchouc selon la revendication 1, dans lequel, au cours de la première phase, après que le composant caoutchouc (A), tout ou partie de la charge inorganique (B) et tout ou partie de l'agent de couplage silane ont été malaxés, le promoteur (D) est ajouté et malaxé ultérieurement.
     
    3. Procédé de production d'une composition de caoutchouc selon la revendication 1 ou 2, dans lequel la composition de caoutchouc contient en outre un acide organique et la quantité molaire X de l'acide organique au sein de la composition de caoutchouc au cours de la première phase satisfait la formule relationnelle [1] suivante par rapport à la quantité molaire Y de promoteur (D) :


     
    4. Procédé de production d'une composition de caoutchouc selon la revendication 3, dans lequel l'acide organique au sein de la composition de caoutchouc est ajouté pendant et après une deuxième phase de malaxage.
     
    5. Procédé de production d'une composition de caoutchouc selon la revendication 3 ou 4, dans lequel l'acide organique consiste en de l'acide stéarique à hauteur de 50 % en moles ou plus.
     
    6. Procédé de production d'une composition de caoutchouc selon l'une quelconque des revendications 1 à 5, dans lequel la température la plus élevée de la composition de caoutchouc au cours de la première phase va de 120 à 190 °C.
     
    7. Procédé de production d'une composition de caoutchouc selon l'une quelconque des revendications 1 à 6, dans lequel l'agent de couplage silane (C) consiste en un ou plusieurs composés choisis dans un groupe constitué par les composés des formules générales (I) et (II) suivantes :
    [Formule chimique 1]

            (R1O)3-p(R2)pSi-R3-Sa-R3-Si(OR1)3-r(R2)r ···     (I)

    [où les multiples R1 peuvent être identiques ou différents, chacun représentant un groupe alkyle linéaire, cyclique ou ramifié, possédant 1 à 8 atomes de carbone, ou un groupe alcoxyalkyle linéaire ou ramifié, possédant 2 à 8 atomes de carbone ; les multiples R2 peuvent être identiques ou différents, chacun représentant un groupe alkyle linéaire, cyclique ou ramifié, possédant 1 à 8 atomes de carbone ; les multiples R3 peuvent être identiques ou différents, chacun représentant un groupe alkylène linéaire ou ramifié, possédant 1 à 8 atomes de carbone ; a vaut de 2 à 6 en valeur moyenne ; p et r peuvent être identiques ou différents, chacun valant de 0 à 3 en valeur moyenne, pourvu que p et r ne valent pas 3 en même temps] ;
    [Formule chimique 2]

            (R4O)3-s(R5)sSi-R6-Sk-R6-Si(OR4)3-t(R5)t ···     (II)

    [où les multiples R4 peuvent être identiques ou différents, chacun représentant un groupe alkyle linéaire, cyclique ou ramifié, possédant 1 à 8 atomes de carbone, ou un groupe alcoxyalkyle linéaire ou ramifié, possédant 2 à 8 atomes de carbone ; les multiples R5 peuvent être identiques ou différents, chacun représentant un groupe alkyle linéaire, cyclique ou ramifié, possédant 1 à 8 atomes de carbone ; les multiples R6 peuvent être identiques ou différents, chacun représentant un groupe alkylène linéaire ou ramifié, possédant 1 à 8 atomes de carbone ; R7 représente un groupe divalent de formule générale (-S-R8-S-), (-R9-Sm1-R10-) ou (-R11-Sm2-R12-Sm3-R13-) (où R8 à R13 peuvent être identiques ou différents, chacun représentant un groupe hydrocarboné aliphatique ou alicyclique divalent, possédant 1 à 20 atomes de carbone, un groupe aromatique divalent, ou un groupe organique divalent contenant un hétéro-élément sauf le soufre et l'oxygène ; m1, m2 et m3 peuvent être identiques ou différents, chacun valant de 1 à moins de 4 en valeur moyenne) ; les multiples k peuvent être identiques ou différentes, chacun valant de 1 à 6 en valeur moyenne ; s et t peuvent être identiques ou différents, chacun valant de 0 à 3 en valeur moyenne, pourvu que s et t ne valent pas 3 en même temps].
     
    8. Procédé de production d'une composition de caoutchouc selon l'une quelconque des revendications 1 à 7, dans lequel la charge contient du noir de carbone.
     
    9. Procédé de production d'une composition de caoutchouc selon l'une quelconque des revendications 1 à 8, dans lequel la charge inorganique (B) est présente à hauteur de 40 % en masse ou plus au sein de la charge.
     
    10. Procédé de production d'une composition de caoutchouc selon l'une quelconque des revendications 1 à 9, dans lequel la guanidine est au moins un composé choisi parmi la 1,3-diphénylguanidine, la 1,3-di-o-tolylguanidine et la 1-o-tolylbiguanide ; dans lequel le sulfénamide est le N-cyclohexyl-2-benzothiazolylsulfénamide et/ou le N-tert-butyl-2-benzothiazolylsulfénamide ; dans lequel le thiazole est le 2-mercaptobenzothiazole et/ou le disulfure de di-2-benzothiazolyle ; dans lequel le thiurame est au moins un composé choisi parmi le disulfure de tétrakis(2-éthylhexyl)thiurame et le disulfure de tétrabenzylthiurame ; dans lequel la thiourée est au moins un composé choisi parmi la N,N'-diéthylthiourée, la triméthylthiourée, la N,N'-diphénylthiourée et la N,N'-diméthylthiourée ; dans lequel le composé d'acide dithiocarbamique est au moins un composé choisi parmi le dibenzyldithiocarbamate de zinc, le N-éthyl-N-phényldithiocarbamate de zinc, le diméthyldithiocarbamate de zinc et le diméthyldithiocarbamate de cuivre ; ou dans lequel le composé d'acide xanthogénique est l'isopropylxanthate de zinc.
     
    11. Procédé de production d'une composition de caoutchouc selon l'une quelconque des revendications 1 à 10, dans lequel l'agent modificateur est un agent modificateur possédant au moins un atome choisi parmi un atome de silicium, un atome d'azote et un atome d'oxygène.
     
    12. Procédé de production d'une composition de caoutchouc selon l'une quelconque des revendications 1 à 11, dans lequel l'agent modificateur est un composé hydrocarbyloxysilane, de préférence dans lequel le composé hydrocarbyloxysilane est un composé hydrocarbyloxysilane représenté par la formule générale (III) suivante :

    [où n1 + n2 + n3 + n4 = 4 (où n2 représente un entier valant de 1 à 4, et n1, n3 et n4 représentent chacun un entier valant de 0 à 3) ; A1 représente au moins un groupe fonctionnel choisi parmi un reste de composé d'amine tertiaire cyclique saturé, un reste de composé d'amine tertiaire cyclique non saturé, un reste de cétimine, un groupe nitrile, un groupe (thio)isocyanate, un groupe (thio)époxy, un groupe isocyanurate de trihydrocarbyle, un groupe carbonate de dihydrocarbyle, un groupe nitrile, un groupe pyridine, un groupe (thio)cétone, un groupe (thio)aldéhyde, un groupe amide, un groupe (thio)carboxylate, un groupe sel métallique de (thio)carboxylate, un reste d'anhydride d'acide carboxylique, un reste d'halogénure d'acide carboxylique et un groupe amino ou groupe mercapto primaire ou secondaire contenant un groupe hydrolysable ; lorsque n4 vaut 2 ou plus, alors les A1 peuvent être identiques ou différents, A1 peut se lier à Si pour constituer un groupe divalent formant une structure cyclique ; R21 représente un groupe hydrocarboné aliphatique ou alicyclique monovalent, possédant 1 à 20 atomes de carbone, ou un groupe hydrocarboné aromatique monovalent possédant 6 à 18 atomes de carbone ; lorsque n1 vaut 2 ou plus, alors les R21 peuvent être identiques ou différents ; R23 représente un groupe hydrocarboné aliphatique ou alicyclique monovalent, possédant 1 à 20 atomes de carbone, un groupe hydrocarboné aromatique monovalent possédant 6 à 18 atomes de carbone, ou un atome d'halogène ; lorsque n3 vaut 2 ou plus, alors les R23 peuvent être identiques ou différents ; R22 représente un groupe hydrocarboné aliphatique ou alicyclique monovalent, possédant 1 à 20 atomes de carbone ou un groupe hydrocarboné aromatique monovalent possédant 6 à 18 atomes de carbone, facultativement possédant un atome d'azote et/ou un atome de silicium ; lorsque n2 vaut 2 ou plus, alors les R22 peuvent être identiques ou différents, ou peuvent se lier entre eux pour former un cycle ; R24 représente un groupe hydrocarboné aliphatique ou alicyclique divalent, possédant 1 à 20 atomes de carbone, ou un groupe hydrocarboné aromatique divalent possédant 6 à 18 atomes de carbone ; lorsque n4 vaut 2 ou plus, alors les R24 peuvent être identiques ou différents], de préférence dans lequel le composé hydrocarbyloxysilane est un composé hydrocarbyloxysilane représenté par la formule générale (IV) suivante :

    [où p1 + p2 + p3 = 2 (où p2 représente un entier valant de 1 à 2, et p1 et p3 représentent chacun un entier valant de 0 à 1) ; A2 représente NRa (où Ra représente un groupe hydrocarboné monovalent, un groupe hydrolysable ou un groupe organique contenant de l'azote), ou un soufre ; R25 représente un groupe hydrocarboné aliphatique ou alicyclique monovalent, possédant 1 à 20 atomes de carbone, ou un groupe hydrocarboné aromatique monovalent possédant 6 à 18 atomes de carbone ; R27 représente un groupe hydrocarboné aliphatique ou alicyclique monovalent, possédant 1 à 20 atomes de carbone, un groupe hydrocarboné aromatique monovalent possédant 6 à 18 atomes de carbone, ou un atome d'halogène ; R26 représente un groupe hydrocarboné aliphatique ou alicyclique monovalent, possédant 1 à 20 atomes de carbone, ou un groupe hydrocarboné aromatique monovalent possédant 6 à 18 atomes de carbone, possédant facultativement un atome d'azote et/ou un atome de silicium ; lorsque p2 vaut 2, alors les R26 peuvent être identiques ou différents, ou peuvent se lier entre eux pour former un cycle ; R28 représente un groupe hydrocarboné aliphatique ou alicyclique divalent, possédant 1 à 20 atomes de carbone, ou un groupe hydrocarboné aromatique divalent possédant 6 à 18 atomes de carbone] ; ou dans lequel le composé hydrocarbyloxysilane est un composé hydrocarbyloxysilane représenté par la formule générale (V) ou (VI) suivante :

    [où q1 + q2 = 3 (où q1 représente un entier valant de 0 à 2, et q2 représente un entier valant de 1 à 3) ; R31 représente un groupe hydrocarboné aliphatique ou alicyclique divalent, possédant 1 à 20 atomes de carbone, ou un groupe hydrocarboné aromatique divalent possédant 6 à 18 atomes de carbone; R32 et R33 représentent chacun indépendamment un groupe hydrolysable, un groupe hydrocarboné aliphatique ou alicyclique monovalent, possédant 1 à 20 atomes de carbone, ou un groupe hydrocarboné aromatique monovalent possédant 6 à 18 atomes de carbone ; R34 représente un groupe hydrocarboné aliphatique ou alicyclique monovalent, possédant 1 à 20 atomes de carbone, ou un groupe hydrocarboné aromatique monovalent possédant 6 à 18 atomes de carbone ; lorsque q1 vaut 2, alors les R34 peuvent être identiques ou différents ; R35 représente un groupe hydrocarboné aliphatique ou alicyclique monovalent, possédant 1 à 20 atomes de carbone, ou un groupe hydrocarboné aromatique monovalent possédant 6 à 18 atomes de carbone ; lorsque q2 vaut 2 ou plus, alors les R35 peuvent être identiques ou différents] ;

    [où r1 + r2 = 3 (où r1 représente un entier valant de 1 à 3, r2 représente un entier valant de 0 à 2) ; R36 représente un groupe hydrocarboné aliphatique ou alicyclique divalent, possédant 1 à 20 atomes de carbone, ou un groupe hydrocarboné aromatique divalent possédant 6 à 18 atomes de carbone ; R37 représente un groupe diméthylaminométhyle, un groupe diméthylaminoéthyle, un groupe diéthylaminométhyle, un groupe diéthylaminoéthyle, un groupe méthylsilyl(méthyl)aminométhyle, un groupe méthylsilyl(méthyl)aminoéthyle, un groupe méthylsilyl(éthyl)aminométhyle, un groupe méthylsilyl(éthyl)aminoéthyle, un groupe diméthylsilylaminométhyle, un groupe diméthylsilylaminoéthyle, un groupe hydrocarboné aliphatique ou alicyclique monovalent, possédant 1 à 20 atomes de carbone, ou un groupe hydrocarboné aromatique monovalent possédant 6 à 18 atomes de carbone ; lorsque r1 vaut 2 ou plus, alors les R37 peuvent être identiques ou différents ; R38 représente un groupe hydrocarbyloxy possédant 1 à 20 atomes de carbone, un groupe hydrocarboné aliphatique ou alicyclique monovalent, possédant 1 à 20 atomes de carbone, ou un groupe hydrocarboné aromatique monovalent possédant 6 à 18 atomes de carbone; lorsque r2 vaut 2, alors les R38 peuvent être identiques ou différents].
     
    13. Procédé de production d'une composition de caoutchouc selon la revendication 12, dans lequel le groupe hydrolysable est au moins un groupe choisi parmi un groupe triméthylsilyle et un groupe t-butyldiméthylsilyle.
     
    14. Procédé de production d'une composition de caoutchouc selon la revendication 11, dans lequel l'agent modificateur est au moins un composé choisi parmi le 3,4-bis(triméthylsilyloxy)benzaldéhyde, le 3,4-bis(tert-butyldiméthylsilyloxy)benzaldéhyde, la 2-cyanopyridine, la 1,3-diméthyl-2-imidazolidinone et la 1-méthyl-2-pyrrolidone ; dans lequel l'agent modificateur est la fraction amide d'un composé amidure de lithium à utiliser comme amorceur de polymérisation dans une polymérisation anionique ; dans lequel l'agent modificateur est au moins un composé choisi parmi la 2-cyanopyridine et le 3,4-ditriméthylsilyloxybenzaldéhyde ; ou dans lequel l'agent modificateur est au moins un composé choisi parmi le 3,4-ditriméthylsilyloxybenzaldéhyde et le 4-hexaméthylèneiminoalkylstyrène.
     
    15. Procédé de production d'une composition de caoutchouc selon la revendication 14, dans lequel le composé amidure de lithium est un composé choisi parmi l'hexaméthylène-imidure de lithium, le pyrrolidure de lithium, le pipéridure de lithium, l'heptaméthylène-imidure de lithium, le dodecaméthylène-imidure de lithium, le diméthylamidure de lithium, le diéthylamidure de lithium, le dibutylamidure de lithium, le dipropylamidure de lithium, le diheptylamidure de lithium, le dihexylamidure de lithium, le dioctylamidure de lithium, le di-2-éthylhexylamidure de lithium, le didécylamidure de lithium, le N-méthylpipéradidure de lithium, l'éthylpropylamidure de lithium, l'éthylbutylamidure de lithium, l'éthylbenzylamidure de lithium et le méthylphenéthylamidure de lithium.
     




    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description