(19)
(11)EP 2 716 779 A1

(12)EUROPÄISCHE PATENTANMELDUNG

(43)Veröffentlichungstag:
09.04.2014  Patentblatt  2014/15

(21)Anmeldenummer: 12187151.1

(22)Anmeldetag:  04.10.2012
(51)Int. Kl.: 
C22C 19/03  (2006.01)
C22C 21/00  (2006.01)
C22C 30/02  (2006.01)
C22C 19/07  (2006.01)
C22C 30/00  (2006.01)
C22C 45/00  (2006.01)
(84)Benannte Vertragsstaaten:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR
Benannte Erstreckungsstaaten:
BA ME

(71)Anmelder: Siemens Aktiengesellschaft
80333 München (DE)

(72)Erfinder:
  • Clossen-von Lanken Schulz, Michael
    47661 Issum (DE)
  • Kadau, Kai
    Clover, 29710 (US)

  


(54)Metalllegierung mit Quasikristallpartikeln, Pulver, Bauteil, Verfahren und Schichtsystem


(57) Durch die Einbringung von Quasikristallen, die vergleichbare mechanische Eigenschaften wie Keramiken aufweisen, aber metallische Werkstoffe oder metallische Legierung angepasste thermische Ausdehnungskoeffizienten aufweisen, können verbesserte mechanische Eigenschaften erzielt werden.




Beschreibung


[0001] Die Erfindung betrifft Legierungen und metallische Bauteile, die Partikel aus Quasikristallen aufweisen, ein Verfahren zur Herstellung sowie Schichtsysteme.

[0002] Die Partikelverstärkung ist ein bekannter Mechanismus zur Verbesserung der mechanischen Eigenschaften von Metallen oder metallischen Legierungen.

[0003] Stand der Technik ist es, solche Partikelverstärkung durch keramische Partikel zu erreichen, die durch die unterschiedlichen thermischen Ausdehnungskoeffizienten und den dadurch initiierten Spannungen auch eine Festigkeitssteigerung erzielen können, aber auch Risse initiieren können, wenn die thermischen Spannungen zu groß werden, insbesondere, wenn das Bauteil mit einer solchen Legierung bei hohen Temperaturen eingesetzt wird und thermischen Temperaturgradienten ausgesetzt ist.

[0004] Es ist daher Aufgabe der Erfindung oben genanntes Problem zu lösen.

[0005] Die Aufgabe wird gelöst durch eine Legierung gemäß Anspruch 1, einem Pulver gemäß Anspruch 5, einem Bauteil gemäß Anspruch 6 und ein Verfahren nach Anspruch 10 oder 13 und ein Schichtsystem nach Anspruch 14, 15.

[0006] In den Unteransprüchen sind weitere vorteilhafte Maßnahmen aufgelistet, die beliebig miteinander kombiniert werden können, um weitere Vorteile zu erzielen.

[0007] Es wird vorgeschlagen Quasikristallpartikel (QKP) in Metalle oder Metalllegierungen einzubringen.

[0008] Quasikristalle haben Eigenschaften die zwischen den von Metallen und Keramiken einstellbar sind. Beispielsweise kann der thermische Ausdehnungskoeffizient nahe bei Metallen sein, welches thermische Spannungen zwischen Metallmatrix und QKP im Betrieb minimiert. Die QKP stabilisieren die metallische Mikrostruktur und helfen dem Material über dies hinaus höhere Versagensspannungen zu erlangen. Auch verbessern sich Abriebeigenschaften durch das Einbringen von QKP.
Da Quasikristalle eine schlechte Wärmeleitung haben können oberflächennahe QKP auch zur Wärmedämmung dienen, wobei diese allerdings nicht als Schicht mit ihrer Abplatzungsproblematik verstanden werden muss, sondern als gradueller Konzentrationsgradient der QKP.

[0009] Es zeigen:
Figur 1, 2, 3
verschiedene Ausführungsbeispiele der Erfindung,
Figur 4
zeigt eine Turbinenschaufel,
Figur 5
eine Liste von Superlegierungen.


[0010] Die Beschreibung und die Figuren stellen nur Ausführungsbeispiele der Erfindung dar.

[0011] In Figur 1 ist schematisch ein Bauteil 1, 120, 130 dargestellt, das aus einer metallischen Legierung oder Metall hergestellt wurde.

[0012] In dem Metall oder der Metalllegierung sind Partikel 4 aus Quasikristallen (QKP) gleichförmig verteilt. Das Bauteil 1, 120, 130 kann auch aus einem Pulver hergestellt werden, das eine Metalllegierung mit Quasikristallen aufweist.

[0013] Im Gegensatz zu Figur 1 sind in Figur 2 die Quasikristallpartikel nur im oberflächennahen Bereich 7 des Bauteils 1', 120, 130 vorhanden, wenn dort die größten Spannungen oder Belastungen auftreten.

[0014] In Figur 3 ist in der Komponente 1'', 120, 130 nur ein Teilbereich 7' vorgesehen, der Quasikristallpartikel (QKP) aufweist. Dies können mechanisch stärker belastete Bereiche des Bauteils sein. Bei Turbinenschaufeln 120, 130 ist dies z.B. die Anströmkante.

[0015] Beispielhafte Herstellverfahren für Bauteil mit Quasikristallen:

● QKP mit hohem Schmelzpunkt werden in Metallschmelze eingefügt oder mit aufgeschmolzen und schließen sich an gewöhnlichen Gussprozess an.

● Bestreuung/Beschichten des Formschalensystems von Gussbauteilen von Innen mit QKP.
Die QKP können hierbei mit Klebstoff oder elektrostatisch an die Formschale gebunden werden. Beim Eingießen der Metallschmelze werden die QKP sich oberflächennah platzieren und in der Schmelze erstarren. Die Schichtdicke, in der sich die QKP niederlassen, kann dabei durch die Abkühlrate und Schichtdicke der aufgebrachten QKP beeinflusst werden.

● Lasersintern der QKP an der Bauteiloberfläche.
Hierbei wird nach dem (Guss) Herstellungsverfahren die Oberfläche mit QKP bedeckt. Laserpulse schmelzen die Bauteiloberfläche an und ermöglichen ein Eindringen der QKP in die Oberfläche.

● Lasersintern der QKP gemischt mit Metallpartikeln.
Hierbei kann ein Gemisch aus Metallpartikeln und QKP in Bauteilaussparungen gefüllt werden. Anschließender Laserbeschuss schmilzt die Metallpartikel und erzeugt somit eine homogene Metall/QKP Matrix in der Aussparung. Diese Verfahren eignen sich auch als Reparaturverfahren: Ausmulden von Rissen führt zu oben genannten Aussparungen, die entsprechend wie beschrieben aufgebaut werden können.



[0016] Als QK Phasen können insbesondere Verbindungen der nominalen atomaren Zusammensetzung verwendet werden:

         AlwCoxMy,

wobei M wenigstens eines der Elemente ausgewählt aus der Gruppe Nickel (Ni) und Chrom (Cr) ist und wenigstens 30 Massenprozent der Verbindung als quasikristalline Struktur oder als Approximat vorliegen, wobei gilt 70 ≤ w ≤ 76 und w + x + y = 100 ist
oder
darüber hinaus folgende Verbindungen:

● Al65Cu20Co15

● Al70Co10Ni20

● Al75Co10Ni15

● Al70Pd15Mn15

● Al72MgxPd28-x 5<x<10

● Al62Cu25.5Fe12.5

● Zn-Mg-RE Quasikristalle (RE: Selten Erd Element)

● zwölfzählige Quasikristalle, z.B. Tantaltellurid,

● binäre Quasikristalle wie z.B. RE13Zn58, RECd6, ZnSc, Eu4Cd25, Dy13Zn57, Ca13Cd76.



[0017] In den zuerst genannten Verbindungen (insbesondere decagonal QC und icosahedral QC:) können die Elemente Ni durch Pd oder Ru ersetzen oder/und Co durch Fe oder Mn.

[0018] Die aufgeführten QK Typen bieten gute Flexibilität, um die vorgeschlagenen partikelbasierten quasikristallinen Schichtsysteme zu realisieren und auf die individuellen Anforderungen der Komponente anzupassen.

[0019] Die Figur 4 zeigt in perspektivischer Ansicht eine Laufschaufel 120 oder Leitschaufel 130 einer Strömungsmaschine, die sich entlang einer Längsachse 121 erstreckt.

[0020] Die Strömungsmaschine kann eine Gasturbine eines Flugzeugs oder eines Kraftwerks zur Elektrizitätserzeugung, eine Dampfturbine oder ein Kompressor sein.

[0021] Die Schaufel 120, 130 weist entlang der Längsachse 121 aufeinander folgend einen Befestigungsbereich 400, eine daran angrenzende Schaufelplattform 403 sowie ein Schaufelblatt 406 und eine Schaufelspitze 415 auf.
Als Leitschaufel 130 kann die Schaufel 130 an ihrer Schaufelspitze 415 eine weitere Plattform aufweisen (nicht dargestellt).

[0022] Im Befestigungsbereich 400 ist ein Schaufelfuß 183 gebildet, der zur Befestigung der Laufschaufeln 120, 130 an einer Welle oder einer Scheibe dient (nicht dargestellt).
Der Schaufelfuß 183 ist beispielsweise als Hammerkopf ausgestaltet. Andere Ausgestaltungen als Tannenbaum- oder Schwalbenschwanzfuß sind möglich.
Die Schaufel 120, 130 weist für ein Medium, das an dem Schaufelblatt 406 vorbeiströmt, eine Anströmkante 409 und eine Abströmkante 412 auf.

[0023] Bei herkömmlichen Schaufeln 120, 130 werden in allen Bereichen 400, 403, 406 der Schaufel 120, 130 beispielsweise massive metallische Werkstoffe, insbesondere Superlegierungen verwendet.
Solche Superlegierungen sind beispielsweise aus der EP 1 204 776 B1, EP 1 306 454, EP 1 319 729 A1, WO 99/67435 oder WO 00/44949 bekannt.
Die Schaufel 120, 130 kann hierbei durch ein Gussverfahren, auch mittels gerichteter Erstarrung, durch ein Schmiedeverfahren, durch ein Fräsverfahren oder Kombinationen daraus gefertigt sein.

[0024] Werkstücke mit einkristalliner Struktur oder Strukturen werden als Bauteile für Maschinen eingesetzt, die im Betrieb hohen mechanischen, thermischen und/oder chemischen Belastungen ausgesetzt sind.
Die Fertigung von derartigen einkristallinen Werkstücken erfolgt z.B. durch gerichtetes Erstarren aus der Schmelze. Es handelt sich dabei um Gießverfahren, bei denen die flüssige metallische Legierung zur einkristallinen Struktur, d.h. zum einkristallinen Werkstück, oder gerichtet erstarrt.
Dabei werden dendritische Kristalle entlang dem Wärmefluss ausgerichtet und bilden entweder eine stängelkristalline Kornstruktur (kolumnar, d.h. Körner, die über die ganze Länge des Werkstückes verlaufen und hier, dem allgemeinen Sprachgebrauch nach, als gerichtet erstarrt bezeichnet werden) oder eine einkristalline Struktur, d.h. das ganze Werkstück besteht aus einem einzigen Kristall. In diesen Verfahren muss man den Übergang zur globulitischen (polykristallinen) Erstarrung meiden, da sich durch ungerichtetes Wachstum notwendigerweise transversale und longitudinale Korngrenzen ausbilden, welche die guten Eigenschaften des gerichtet erstarrten oder einkristallinen Bauteiles zunichte machen.
Ist allgemein von gerichtet erstarrten Gefügen die Rede, so sind damit sowohl Einkristalle gemeint, die keine Korngrenzen oder höchstens Kleinwinkelkorngrenzen aufweisen, als auch Stängelkristallstrukturen, die wohl in longitudinaler Richtung verlaufende Korngrenzen, aber keine transversalen Korngrenzen aufweisen. Bei diesen zweitgenannten kristallinen Strukturen spricht man auch von gerichtet erstarrten Gefügen (directionally solidified structures).
Solche Verfahren sind aus der US-PS 6,024,792 und der EP 0 892 090 A1 bekannt.

[0025] Ebenso können die Schaufeln 120, 130 Beschichtungen gegen Korrosion oder Oxidation aufweisen, z. B. (MCrAlX; M ist zumindest ein Element der Gruppe Eisen (Fe), Kobalt (Co), Nickel (Ni), X ist ein Aktivelement und steht für Yttrium (Y) und/oder Silizium und/oder zumindest ein Element der Seltenen Erden, bzw. Hafnium (Hf)). Solche Legierungen sind bekannt aus der EP 0 486 489 B1, EP 0 786 017 B1, EP 0 412 397 B1 oder EP 1 306 454 A1.
Die Dichte liegt vorzugsweise bei 95% der theoretischen Dichte.
Auf der MCrAlX-Schicht (als Zwischenschicht oder als äußerste Schicht) bildet sich eine schützende Aluminiumoxidschicht (TGO = thermal grown oxide layer).

[0026] Vorzugsweise weist die Schichtzusammensetzung Co-30Ni-28Cr-8Al-0,6Y-0,7Si oder Co-28Ni-24Cr-10Al-0,6Y auf. Neben diesen kobaltbasierten Schutzbeschichtungen werden auch vorzugsweise nickelbasierte Schutzschichten verwendet wie Ni-10Cr-12Al-0,6Y-3Re oder Ni-12Co-21Cr-11Al-0,4Y-2Re oder Ni-25Co-17Cr-10Al-0,4Y-1,5Re.

[0027] Auf der MCrAlX kann noch eine Wärmedämmschicht vorhanden sein, die vorzugsweise die äußerste Schicht ist, und besteht beispielsweise aus ZrO2, Y2O3-ZrO2, d.h. sie ist nicht, teilweise oder vollständig stabilisiert durch Yttriumoxid und/oder Kalziumoxid und/oder Magnesiumoxid.
Die Wärmedämmschicht bedeckt die gesamte MCrAlX-Schicht. Durch geeignete Beschichtungsverfahren wie z.B. Elektronenstrahlverdampfen (EB-PVD) werden stängelförmige Körner in der Wärmedämmschicht erzeugt.
Andere Beschichtungsverfahren sind denkbar, z.B. atmosphärisches Plasmaspritzen (APS), LPPS, VPS oder CVD. Die Wärmedämmschicht kann poröse, mikro- oder makrorissbehaftete Körner zur besseren Thermoschockbeständigkeit aufweisen. Die Wärmedämmschicht ist also vorzugsweise poröser als die MCrAlX-Schicht.

[0028] Wiederaufarbeitung (Refurbishment) bedeutet, dass Bauteile 120, 130 nach ihrem Einsatz gegebenenfalls von Schutzschichten befreit werden müssen (z.B. durch Sandstrahlen). Danach erfolgt eine Entfernung der Korrosions- und/oder Oxidationsschichten bzw. -produkte. Gegebenenfalls werden auch noch Risse im Bauteil 120, 130 repariert. Danach erfolgt eine Wiederbeschichtung des Bauteils 120, 130 und ein erneuter Einsatz des Bauteils 120, 130.

[0029] Die Schaufel 120, 130 kann hohl oder massiv ausgeführt sein. Wenn die Schaufel 120, 130 gekühlt werden soll, ist sie hohl und weist ggf. noch Filmkühllöcher 418 (gestrichelt angedeutet) auf.


Ansprüche

1. Metall oder Metalllegierung,
die Quasikristallpartikel (4) aufweist.
 
2. Metall oder Metalllegierung nach Anspruch 1,
die eine nickel- oder kobaltbasierte Legierung aufweist.
 
3. Metall oder Metalllegierung nach einem oder beiden der Ansprüche 1 oder 2,
bei dem die Quasikristallpartikel die Zusammensetzung AlwCoxMy mit 70 ≤ w ≤ 76 und w + x + y = 100 aufweisen.
 
4. Metalle oder Metalllegierung nach einem oder mehreren der Ansprüche 1 bis 3,
bei dem die Quasikristallpartikel die Zusammensetzung aufweisen:

Al65Cu20Co15 und/oder

Al70Co10Ni20 und/oder

Al75Co10Ni15 und/oder

Al70Pd15Mn15 und/oder

A172MgxPd28-x mit 5<x<10 und/oder

Al62Cu25.5Fe12.5 und/oder

Zn-Mg-RE Quasikristalle und/oder

zwölfzählige Quasikristalle, insbesondere Tantaltellurid,

und/oder

binäre Quasikristalle, insbesondere RE13Zn58, RECd6, ZnSc, Eu4Cd25, Dy13Zn57, Ca13Cd76,

wobei jeweils die Elemente Ni durch Pd oder Ru ersetzen oder/und

Co durch Fe oder Mn ersetzt sind (RE: Selten Erd Element).


 
5. Pulver,
aufweisend eine Legierung nach einem oder mehreren der Ansprüche 1 bis 4,
insbesondere bestehend daraus.
 
6. Bauteil (1, 1', 1'', 120, 130)
hergestellt aus einer Metalllegierung oder einem Metall gemäß Anspruch 1, 2 oder 3, 4
oder
aus einem Pulver gemäß Anspruch 5.
 
7. Bauteil nach Anspruch 6,
bei dem die Quasikristallpartikel (4) gleichförmig im ganzen Bauteil (1) verteilt sind.
 
8. Bauteil nach Anspruch 6,
bei dem die Quasikristallpartikel (4) nur im oberflächennahen Bereich (7) des Bauteils (1') vorhanden sind.
 
9. Bauteil nach einem oder beiden der Ansprüche 6 oder 8,
bei dem die Quasikristallpartikel (4) nur in einem bestimmten Bereich (7') des Bauteils (1') vorhanden sind.
 
10. Verfahren zur Herstellung eines Bauteils nach einem oder mehreren der Ansprüche 6 bis 9,
bei dem Quasikristallpartikel (4) beim Gussprozess verwendet werden.
 
11. Verfahren nach Anspruch 10,
bei dem eine Schmelze mit Quasikristallpartikel (4) abgegossen wird.
 
12. Verfahren nach Anspruch 10,
insbesondere zur Herstellung eines Bauteils nach Anspruch 7,
bei dem Quasikristallpartikel (4) vorab in oder auf die Oberfläche einer Gussform eingebracht werden und
bei dem ein flüssiges Metall in die Gussform eingegossen wird.
 
13. Verfahren zur Herstellung eines Bauteils nach einem oder beiden der vorherigen Ansprüche 8 oder 9,
bei dem die Oberfläche des Bauteils (120, 130) mit Quasikristallpartikeln (4) bedeckt wird und Laserpulse die Bauteiloberfläche anschmelzen und so ein Eindringen der Quasikristallpartikel (4) in die Oberfläche ermöglichen.
 
14. Schichtsystem,
das ein Substrat nach Anspruch 6, 7, 8 oder 9 aufweist.
 
15. Schichtsystem,
das eine metallische Schicht mit Quasikristallpartikeln (4) aufweist.
 




Zeichnung





























IN DER BESCHREIBUNG AUFGEFÜHRTE DOKUMENTE



Diese Liste der vom Anmelder aufgeführten Dokumente wurde ausschließlich zur Information des Lesers aufgenommen und ist nicht Bestandteil des europäischen Patentdokumentes. Sie wurde mit größter Sorgfalt zusammengestellt; das EPA übernimmt jedoch keinerlei Haftung für etwaige Fehler oder Auslassungen.

In der Beschreibung aufgeführte Patentdokumente