(19)
(11)EP 2 717 591 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
11.12.2019 Bulletin 2019/50

(21)Application number: 13185246.9

(22)Date of filing:  19.09.2013
(51)International Patent Classification (IPC): 
H04Q 9/00(2006.01)

(54)

SYSTEMS AND METHODS OF FAST WIRELESS OUTPUT DEVICE ACTIVATION IN A MESH NETWORK SYSTEM

SYSTEME UND VERFAHREN ZUR SCHNELLEN DRAHTLOSEN VORRICHTUNGSAKTIVIERUNG IN EINEM MESH-NETZWERKSYSTEM

SYSTÈMES ET PROCÉDÉS D'ACTIVATION D'UN DISPOSITIF DE SORTIE SANS FIL RAPIDE DANS UN SYSTÈME DE RÉSEAU MESH


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 05.10.2012 US 201213645766

(43)Date of publication of application:
09.04.2014 Bulletin 2014/15

(73)Proprietor: Life Safety Distribution AG
8604 Hegnau (CH)

(72)Inventor:
  • Frison, Andrea
    Morristown, NJ 07962-2245 (US)

(74)Representative: Houghton, Mark Phillip et al
Patent Outsourcing Limited 1 King Street
Bakewell, Derbyshire DE45 1DZ
Bakewell, Derbyshire DE45 1DZ (GB)


(56)References cited: : 
EP-A1- 2 469 493
WO-A2-2008/048933
EP-A2- 2 120 225
US-A1- 2004 145 465
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    FIELD



    [0001] The present invention relates generally to a mesh network system. More particularly, the present invention relates to systems and methods of fast wireless output device activation in a mesh network system.

    BACKGROUND



    [0002] Communication in a fire detection system is rare unless a prefire or fire scenario is occurring. For example, when devices in a fire detection system are sensing alarming levels of heat or smoke, all input devices in the system can transmit alarms and/or data to a gateway. Often, these transmissions can be substantially simultaneous. Accordingly, a cascading wave communication protocol can support communication in these types of worst-case scenarios.

    [0003] A cascading wave communication protocol works on the principal of data aggregation. For example, a wireless fire detection system can include four sensors S1, S2, S3, and S4. As seen in FIG. 1, a packet transmitted by sensor S4 includes only S4's data. When the packet is received by sensor S3, sensor S3 appends its data to S4's data and transmits the packet to sensor S2. When the packet reaches a panel P, the packet can include data from all four sensors S1, S2, S3, and S4.

    [0004] A large wireless fire system loop can include any number of devices, for example, N devices. In these systems, the cascading wave communication protocol can support a packet size large enough to aggregate data from all N devices. For example, each communication time slot can be long enough to accommodate a maximum size packet.

    [0005] To enable efficient data aggregation without increasing message latency, child nodes can be allocated communication time slots before the parent nodes. In FIG. 1, sensor S3 can be a router or parent of sensor S4, sensor S2 can be a parent of sensor S3, and so on. The communication time slots allocated to sensors S4, S3, S2, and S1 can be slot 1, slot 2, slot 3, and slot 4, respectively. Accordingly, a child node's data can always be available at the parent node during the parent node's communication time slot. In this manner, the parent node can aggregate its own data with the data received from its child node. Then, the parent node can transmit the aggregated data together in a single packet.

    [0006] In some systems, a parent node can have multiple child nodes. However, the communication time slots of all child nodes can occur before the communication time slot of the parent node. Accordingly, a packet transmitted by a parent can contain its own data aggregated with the data or alarms received from all of its child nodes.

    [0007] Due to the aggregation described above, the transmission of data from four nodes requires four communication time slots. Similarly, the transmission of data from N nodes requires N transmission time slots. In this manner, a control panel can receive data from each of the nodes in the network.

    [0008] Using the same protocol described above, a control panel can also transmit data to nodes in a network. For example, a fire panel can transmit data to N nodes in a network, and the data can reach each of the N nodes in respective ones of N time slots. When the control panel transmits data to nodes, the slot allocation of the nodes can be reversed.

    [0009] When a device in a wireless system detects an alarm, the device can transmit data to a gateway. The gateway can be polled by a control panel in a wired system, which, depending on the content of the received data, can activate various output devices. When one of the output devices to be activated is part of the wireless system, the control panel can transmit instructions to the gateway, which can re-transmit the instructions to the output device. In these circumstances, the latency time to activate the output device in the wireless system can be the sum of the time for the gateway to receive data from a device, the time for the gateway to transmit data to the control panel, the time for the gateway to receive instructions from the control panel, and the time for the gateway to transmit the instructions to an output device. That is:



    [0010] In various situations, the length of this latency time can be problematic. Accordingly, there is a continuing, ongoing need for systems and methods of fast wireless output device activation in a mesh network system.

    [0011] Document EP 2469493 A1 discloses a configurable wireless fire system.

    SUMMARY OF THE PRESENT INVENTION



    [0012] The present invention is defined by the appended claims.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0013] 

    FIG. 1 is a block diagram of time-slotted communication using a cascading wave communication protocol;

    FIG. 2 is a block diagram of a wireless fire detection system connected to a wired fire detection system via a gateway;

    FIG. 3 is a flow diagram of a method in accordance with disclosed embodiments; and

    FIG. 4 is a block diagram of a wireless device in accordance with disclosed embodiments.


    DETAILED DESCRIPTION



    [0014] While this invention is susceptible of an embodiment in many different forms, there are shown in the drawings and will be described herein in detail specific embodiments thereof with the understanding that the present disclosure is to be considered as an exemplification of the principles of the invention. It is not intended to limit the invention to the specific illustrated embodiments.

    [0015] Embodiments disclosed herein include systems and methods of fast wireless output device activation in a mesh network system.

    [0016] In some embodiments, the status of a child device can be made available to a parent device substantially immediately. Accordingly, a mesh network can be organized in such a way that the output to be activated by a certain input is a parent of that input. When arranged in this manner, an output can be activated without waiting for a command from a control panel.

    [0017] FIG. 2 is a diagram of a wireless fire detection system 100 connected to a wired fire detection system 200 via a gateway 110. As seen in FIG. 1, the wireless system 100 can include four devices or nodes: a wireless output module 120-1, a wireless sounder strobe 120-2, a wireless call point 120-3, and a wireless detector 120-4. The call point 120-3 can be the child of both the sounder strobe 120-2 and the output module 120-1. The output module 120-2 can control an electromagnet to close a fire door 130.

    [0018] In some embodiment, the sounder strobe 120-2 and the output module 120-1 can check messages coming from the call point 120-3. When either the sounder strobe 120-2 or the output module 120-1 receives a message from the call point 120-3 that indicates an alarm condition, the sounder strobe 120-2 and/or the output module 120-1 can activate itself to emit an output. For example, the sounder strobe can emit a sounding siren or strobe a light. Similarly, the output module 120-1 can cause the electromagnet to close the fire door 130.

    [0019] In accordance with disclosed embodiments, the sounder strobe 120-2 and the output module 120-1 need not wait for a command transmitted by the control panel 210 via the gateway 110. Accordingly, the latency time to activate an output device in the wireless system can be reduced as compared to systems and methods known in the art.

    [0020] FIG. 3 is a flow diagram of a method 300 in accordance with disclosed embodiments. As seen in FIG. 3, the method 300 can include a parent node determining if any data has been received from one of its child nodes as in 310. For example, the parent node can include an output device, and the child node can include an input device. Both the parent node and the child node can be part of a wireless system.

    [0021] If the method 300 determines that the parent node has not received data from any of its child nodes as in 310, then the method 300 can continue determining if the parent node has received any data from one of its child nodes as in 310. However, if the method 300 determines that the parent node has received data from one of its child nodes as in 310, then the method 300 can include the parent node determining if the received data requires an output as in 320.

    [0022] If the method 300 determines that the received data does not require an output as in 320, then the method 300 can continue determining if the parent node has received any data from one of its child nodes as in 310. However, if the method 300 determines that the received data requires an output as in 320, then the method 300 can include the parent node activating its own output device as in 330.

    [0023] After the method 300 determines that the parent node has received data from one of its child nodes as in 310, the method 300 can also include the parent node appending its own data to the data received from the child node(s) as in 340. Then, the parent node can transmit a packet to the parent node's parent as in 350. For example, the packet transmitted by the parent node can include the data from the parent node appended to the data received from the child node(s). In some embodiments, the parent node's parent can include a gateway.

    [0024] In some embodiments, the parent node determining if the received data requires an output as in 320 and the parent node activating its output device as in 330 can occur substantially simultaneously with the parent node appending its data to data received from a child node as in 340 and the parent node transmitting a packet to the parent node's parent as in 350. Accordingly, in some embodiments, the parent node need not wait for instructions from the parent node's parent before activating its output device. That is, the parent node can activate its own output device prior to receiving instructions from a control panel or gateway.

    [0025] The method 300 of FIG. 3 and others in accordance with disclosed embodiments can be executed by the wireless device 400 shown in FIG. 4. For example, the wireless device 400 can be part of the wireless fire detection system 100 shown in FIG. 1.

    [0026] As seen in FIG. 4, the wireless device 400 can include an output device 410, a transceiver 420, control circuitry 430, one or more programmable processors 440, and executable control software 450. The executable control software 450 can be stored on a transitory or non-transitory computer readable medium, including but not limited to, computer memory, RAM, optical storage media, magnetic storage media, flash memory, and the like. In some embodiments, the programmable processor 440 and the executable control software 450 can execute at least some steps of the method 300 shown in FIG. 3 as well as others described herein.

    [0027] For example, the programmable processor 440 and the executable control software 450 can use the transceiver 420 to determine if any data has been received from a child node of the wireless device 400. The programmable processor 440 and the executable control software 450 can also determine if any received data requires an output. If so, then the programmable processor 440 and the executable control software 450 can activate the output device 410.

    [0028] Although a few embodiments have been described in detail above, other modifications are possible. For example, the logic flows described above do not require the particular order described, or sequential order, to achieve desirable results. Other steps may be provided, or steps may be eliminated, from the described flows, and other components may be added to, or removed from, the described systems, within the scope of the appended claims.


    Claims

    1. A method of operating a fire detection system comprising:

    a parent node including an output device receiving first data from a child device (120-3);

    appending parent data to the first data received from the child device;

    a transceiver of the parent node transmitting a packet to a gateway when the parent node receives the first data from the child device to reduce a latency time to activate the output device, wherein the packet includes the parent data appended to the first data received from the child device;

    determining if the first data received from the child device requires an output; and

    if the first data received from the child device requires the output, the parent node activating the output device, wherein the parent node activates the output device prior to receiving instructions from the gateway.


     
    2. The method of claim 1 further comprising, responsive to the packet, receiving instructions from a control panel via the gateway.
     
    3. The method of claim 2 further comprising activating the output device prior to receiving the instructions from the control panel via the gateway.
     
    4. The method of claim 1 further comprising activating the output device substantially immediately after receiving the first data from the child device and determining that the first data received from the child device requires the output.
     
    5. A wireless device comprising:

    a transceiver (420) of a parent node,

    an output device (410) of the parent node;

    at least one programmable processor (440) of the parent node; and

    executable control software (450) stored on a non-transitory computer readable medium,

    wherein the transceiver receives first data from a child device,

    wherein the programmable processor (420) and the executable control software (450) append parent data to the first data received from the child device,

    wherein the transceiver (420) transmits a packet to a gateway when the parent node receives the first data from the child device,

    wherein the packet includes the parent data appended to the first data received from the child device,

    wherein the programmable processor and the executable control software determine if the first data received from the child device requires an output,

    wherein, if the first data received from the child device requires the output, the programmable processor and the executable control software activate the output device, and

    wherein the parent node activates its own output device prior to receiving instructions from a control panel or gateway.


     
    6. The wireless device of claim 5 wherein, responsive to the packet, the transceiver (420) receives instructions from a control panel via the gateway.
     
    7. The wireless device of claim 6 wherein the programmable processor and the executable control software activate the output device prior to the transceiver (420) receiving the instructions from the control panel via the gateway.
     
    8. The wireless device of claim 6 wherein the programmable processor (440) and the executable control software (450) activate the output device substantially immediately after the transceiver (420) receives the first data from the child device and the programmable processor and the executable control software determine if the first data received from the child device requires the output.
     
    9. The wireless device of claim 6 wherein the output device (410) includes one of a sounder, a strobe, and an electromagnet.
     
    10. The wireless device of claim 9 wherein the electromagnet controls opening and closing a door.
     


    Ansprüche

    1. Verfahren zum Betreiben eines Feuerdetektionssystems, das Folgendes umfasst:

    einen Vorgängerknoten, der eine Ausgabevorrichtung enthält, die erste Daten von einer Nachfolgervorrichtung (120-3) empfängt;

    Anhängen von Vorgängerdaten an die ersten von der Nachfolgervorrichtung empfangenen Daten;

    einen Sendeempfänger des Vorgängerknotens, der ein Paket an ein Gateway sendet, wenn der Vorgängerknoten die ersten Daten von der Nachfolgervorrichtung empfängt, um eine Latenzzeit, um die Ausgabevorrichtung zu aktivieren, zu verringern, wobei das Paket die Vorgängerdaten enthält, die an die ersten von der Nachfolgervorrichtung empfangenen Daten angehängt sind;

    Bestimmen, ob die ersten von der Nachfolgervorrichtung empfangenen Daten eine Ausgabe benötigen; und

    dann, wenn die ersten von der Nachfolgervorrichtung empfangenen Daten die Ausgabe benötigen, der Vorgängerknoten die Ausgabevorrichtung aktiviert, wobei der Vorgängerknoten die Ausgabevorrichtung vor dem Empfangen von Anweisungen von dem Gateway aktiviert.


     
    2. Verfahren nach Anspruch 1, das ferner umfasst, als Reaktion auf das Paket Anweisungen von einer Steuertafel über das Gateway zu empfangen.
     
    3. Verfahren nach Anspruch 2, das ferner umfasst, die Ausgabevorrichtung vor dem Empfangen der Anweisungen von der Steuertafel über das Gateway zu aktivieren.
     
    4. Verfahren nach Anspruch 1, das ferner umfasst, die Ausgabevorrichtung im Wesentlichen unmittelbar nach dem Empfangen der ersten Daten von der Nachfolgervorrichtung und dem Bestimmen, dass die ersten von der Nachfolgervorrichtung empfangenen Daten die Ausgabe benötigen, zu aktivieren.
     
    5. Drahtlose Vorrichtung, die Folgendes umfasst:

    einen Sendeempfänger (420) eines Vorgängerknotens,

    eine Ausgabevorrichtung (410) des Vorgängerknotens;

    mindestens einen programmierbaren Prozessor (440) des Vorgängerknotens; und

    ausführbare Steuersoftware (450), die auf einem nicht transitorischen computerlesbaren Medium gespeichert ist, wobei der Sendeempfänger erste Daten von einer Nachfolgervorrichtung empfängt,

    wobei der programmierbare Prozessor (420) und die ausführbare Steuersoftware (450) Vorgängerdaten an die ersten von der Nachfolgervorrichtung empfangenen Daten anhängen,

    wobei der Sendeempfänger (420) ein Paket an ein Gateway sendet, wenn der Vorgängerknoten die ersten Daten von der Nachfolgervorrichtung empfängt,

    wobei das Paket die Vorgängerdaten enthält, die an die ersten von der Nachfolgervorrichtung empfangenen Daten angehängt sind,

    wobei der programmierbare Prozessor und die ausführbare Steuersoftware bestimmen, ob die ersten von der Nachfolgervorrichtung empfangenen Daten eine Ausgabe benötigen,

    wobei dann, wenn die ersten von der Nachfolgervorrichtung empfangenen Daten die Ausgabe benötigen, der programmierbare Prozessor und die ausführbare Steuersoftware die Ausgabevorrichtung aktivieren, und

    wobei der Vorgängerknoten seine eigene Ausgabevorrichtung vor dem Empfangen von Anweisungen von einer Steuertafel oder einem Gateway aktiviert.


     
    6. Drahtlose Vorrichtung nach Anspruch 5, wobei der Sendeempfänger (420) als Reaktion auf das Paket Anweisungen von einer Steuertafel über das Gateway empfängt.
     
    7. Drahtlose Vorrichtung nach Anspruch 6, wobei der programmierbare Prozessor und die ausführbare Steuersoftware die Ausgabevorrichtung aktivieren, bevor der Sendeempfänger (420) die Anweisungen von der Steuertafel über das Gateway empfängt.
     
    8. Drahtlose Vorrichtung nach Anspruch 6, wobei der programmierbare Prozessor (440) und die ausführbare Steuersoftware (450) die Ausgabevorrichtung im Wesentlichen unmittelbar nachdem der Sendeempfänger (420) die ersten Daten von der Nachfolgervorrichtung empfängt, aktivieren und der programmierbare Prozessor und die ausführbare Steuersoftware bestimmen, ob die ersten von der Nachfolgervorrichtung empfangenen Daten die Ausgabe benötigen.
     
    9. Drahtlose Vorrichtung nach Anspruch 6, wobei die Ausgabevorrichtung (410) einen Peilapparat oder ein Stroboskop oder einen Elektromagneten enthält.
     
    10. Drahtlose Vorrichtung nach Anspruch 9, wobei der Elektromagnet das Öffnen und Schließen einer Tür steuert.
     


    Revendications

    1. Procédé de fonctionnement d'un système de détection d'incendie comprenant :

    la réception par un nœud parent comprenant un dispositif de sortie de premières données depuis un dispositif enfant (120-3) ;

    l'ajout de données de parent aux premières données reçues depuis le dispositif enfant ;

    la transmission par un émetteur-récepteur du nœud parent d'un paquet à une passerelle quand le nœud parent reçoit les premières données depuis le dispositif enfant afin de réduire un temps de latence pour activer le dispositif de sortie, dans lequel le paquet comporte les données de parent ajoutées aux premières données reçues depuis le dispositif enfant ;

    la détermination si les premières données reçues depuis le dispositif enfant doivent être produites en sortie ou non ; et

    si les premières données reçues depuis le dispositif enfant doivent être produites en sortie, l'activation par le nœud parent du dispositif de sortie, dans lequel le nœud parent active le dispositif de sortie avant la réception d'instructions depuis la passerelle.


     
    2. Procédé selon la revendication 1 comprenant en outre, en réponse au paquet, la réception d'instructions depuis un panneau de commande par l'intermédiaire de la passerelle.
     
    3. Procédé selon la revendication 2, comprenant en outre l'activation du dispositif de sortie avant la réception des instructions depuis le panneau de commande par l'intermédiaire de la passerelle.
     
    4. Procédé selon la revendication 1 comprenant en outre l'activation du dispositif de sortie sensiblement immédiatement après la réception des premières données depuis le dispositif enfant et la détermination que les premières données reçues depuis le dispositif enfant doivent être produites en sortie.
     
    5. Dispositif sans fil comprenant :

    un émetteur-récepteur (420) d'un nœud parent,

    un dispositif de sortie (410) du nœud parent ;

    au moins un processeur programmable (440) du nœud parent ; et

    un logiciel de commande exécutable (450) mémorisé sur un support non transitoire lisible par ordinateur,

    dans lequel l'émetteur-récepteur reçoit des premières données depuis un dispositif enfant,

    dans lequel le processeur programmable (420) et le logiciel de commande exécutable (450) ajoutent des données de parent aux premières données reçues depuis le dispositif enfant,

    dans lequel l'émetteur-récepteur (420) transmet un paquet à une passerelle quand le nœud parent reçoit les premières données depuis le dispositif enfant,

    dans lequel le paquet comporte les données de parent ajoutées aux premières données reçues depuis le dispositif enfant,

    dans lequel le processeur programmable et le logiciel de commande exécutable déterminent si les premières données reçues depuis le dispositif enfant doivent ou non être produites en sortie,

    dans lequel, si les premières données reçues depuis le dispositif enfant doivent être produites en sortie, le processeur programmable et le logiciel de commande exécutable activent le dispositif de sortie, et

    dans lequel le nœud parent active son propre dispositif de sortie avant la réception d'instructions depuis un panneau de commande ou une passerelle.


     
    6. Dispositif sans fil selon la revendication 5 dans lequel, en réponse au paquet, l'émetteur-récepteur (420) reçoit des instructions depuis un panneau de commande par l'intermédiaire de la passerelle.
     
    7. Dispositif sans fil selon la revendication 6, dans lequel le processeur programmable et le logiciel de commande exécutable activent le dispositif de sortie avant la réception par l'émetteur-récepteur (420) des instructions depuis le panneau de commande par l'intermédiaire de la passerelle.
     
    8. Dispositif sans fil selon la revendication 6 dans lequel le processeur programmable (440) et le logiciel de commande exécutable (450) activent le dispositif de sortie sensiblement immédiatement après que l'émetteur-récepteur (420) reçoit les premières données depuis le dispositif enfant et le processeur programmable et le logiciel de commande exécutable déterminent si les premières données reçues depuis le dispositif enfant doivent être produites en sortie.
     
    9. Dispositif sans fil selon la revendication 6 dans lequel le dispositif de sortie (410) comporte un élément parmi un dispositif sonore, un stroboscope et un électroaimant.
     
    10. Dispositif sans fil selon la revendication 9 dans lequel l'électroaimant commande l'ouverture et la fermeture d'une porte.
     




    Drawing

















    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description