(19)
(11)EP 2 720 356 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
06.01.2021 Bulletin 2021/01

(21)Application number: 13150765.9

(22)Date of filing:  10.01.2013
(51)International Patent Classification (IPC): 
H02M 1/36(2007.01)
H02M 1/00(2006.01)
G06F 1/32(2019.01)

(54)

Power supply system and power control circuit thereof

Leistungsversorgungssystem und Leistungssteuerungsschaltung dafür

Système d'alimentation et son circuit de commande d'alimentation


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 09.10.2012 US 201261711267 P

(43)Date of publication of application:
16.04.2014 Bulletin 2014/16

(73)Proprietor: VIA Technologies, Inc.
Xindian District, New Taipei City 231 (TW)

(72)Inventor:
  • Huang, Wei-Te
    231 New Taipei City (TW)

(74)Representative: Käck, Stefan et al
Kahler Käck Mollekopf Partnerschaft von Patentanwälten mbB Vorderer Anger 239
86899 Landsberg/Lech
86899 Landsberg/Lech (DE)


(56)References cited: : 
EP-A2- 2 378 621
US-A- 5 463 261
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND OF THE INVENTION


    Field of the Invention



    [0001] The invention relates to a power supply system, and more particularly to a power control circuit thereof.

    Description of the Related Art



    [0002] Power supply and energy savings are important issues for electronic and electrical appliances. In a conventional power supply system, a power supply is directly connected to a voltage converter, which converts a supply voltage of the power supply to a desired voltage and supplies the desired voltage to an electronic device, such as a chipset of the electronic device. When the power supply is plugged in, there is power consumption even though the system is switched off or is not performing its primary function (for example, in a standby mode). This kind of power consumption, which is also called 'standby power consumption', may be caused by the power supply (which converts AC voltages into DC voltages), circuits and sensors that receive remote signals (such as a Wake-on-LAN signal), and soft keypads and displays that include LED status lights. For saving energy, the standby power consumption of devices is limited to be within a specific range; especially in developed countries having more stringent standards. Accordingly, power loss is an important issue for power supply systems.

    [0003] In EP 2 378 621 A2, an apparatus and a system for controlling power saving is disclosed. The system for controlling power saving includes: a battery supplying power; a power saving controlling apparatus including a sensing unit detecting a user's contact and generating an activation signal when a user's contact is acknowledged, a latch unit maintaining the activation signal which has been received from the sensing unit, and a switch unit disposed on a current path that delivers power, and connecting the current path according to the activation signal from the latch unit; and a microcomputer controlling an operation of the system connected upon receiving power from the power saving controlling apparatus.

    [0004] US 5,463,261 provides a power conservation device. The power conservation device for a peripheral interface module configured for use in an electronic device includes a sensing means that senses whether the module is in use, and a switching means that connects power from the electronic device to the module when the module is in use, and disconnects power from the electronic device to the module when the module is not in use.

    BRIEF SUMMARY OF THE INVENTION



    [0005] The invention is defined in claim 1. Particular embodiments are set out in the dependent claims.

    [0006] According to a first aspect of the invention, there is provided a power control circuit for a power supply system supplying power to an electronic device, wherein the power supply system comprises a power supply and a voltage converter, and the voltage converter converts a supply voltage of the power supply into a predetermined voltage and outputs the predetermined voltage to the electronic device, the power control circuit comprising: a switch, having a first terminal coupled to the power supply, a second terminal coupled to the voltage converter, and a control terminal; a first switch controller comprising a power-on switch, the first switch controller being coupled to the control terminal of the switch and the electronic device and controlling the switch to couple the power supply to the voltage converter according to a turning-on event when the power supply system is turned on by the power-on switch; and a second switch controller coupled between the control terminal of the switch and the electronic device, continuously receiving a high voltage level signal from the electronic device when the electronic device is operating to control the switch to maintain the coupling of the power supply to the voltage converter; wherein the switch does not couple the power supply to the voltage converter before the turning-on event of the power supply system; and wherein the power control circuit is configured such that when the power supply is plugged into an external AC voltage supply but before the power-on switch is turned on, the power supply is isolated from the voltage converter.

    [0007] A detailed description is given in the following embodiments with reference to the accompanying drawings.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0008] The invention can be more fully understood by reading the subsequent detailed description and examples with references made to the accompanying drawings, wherein:

    Fig. 1 illustrates a block diagram of a power supply system according to an embodiment of the invention;

    Fig. 2A illustrates a block diagram of a voltage converter according to an embodiment of the invention;

    Fig. 2B illustrates a block diagram of a voltage converter according to another embodiment of the invention;

    Fig. 3 illustrates a block diagram of a power supply system according to another embodiment of the invention; and

    Fig. 4 illustrates a block diagram of a power supply system according to an example outside of the invention.


    DETAILED DESCRIPTION OF THE INVENTION



    [0009] This description is made for the purpose of illustrating the general principles of the invention and should not be taken in a limiting sense. In addition, the present disclosure may repeat reference numerals and/or letters in the various examples. This repetition is for the purpose of simplicity and clarity and does not in itself dictate a relationship between the various embodiments and/or configurations discussed. The scope of the invention is best determined by reference to the appended claims.

    [0010] Fig. 1 illustrates a block diagram of a power supply system 10 according to an embodiment of the invention. The power supply system 10 comprises a power supply 100, a power control circuit 200, a voltage converter 300 and a chipset 400 of an electronic device. In one embodiment, the power supply 100 may provide DC voltage; in another embodiment, the power supply 100 may convert an AC voltage received from an external source, such as a plug, into a DC voltage. Moreover, the power supply 100 may be an external power source or an internal power source such as a rechargeable battery. The power control circuit 200 is connected between the power supply 100 and the voltage converter 300. The voltage converter 300 converts a supply voltage of the power supply 100 into a predetermined voltage and supplies the predetermined voltage to the chipset 400 for the operation of the chipset. The power control circuit 200 comprises a power-on switch S1, a P-type transistor switch M1, diodes D1, D2 and D3 and an N-type transistor switch M2. The power-on switch S1 is a switch to turn on the power supply system 10. A first terminal of the P-type transistor switch M1 is coupled to the power supply 100, a second terminal of the P-type transistor switch M1 is coupled to the voltage converter 300, and a control terminal (that is, a gate terminal) of the P-type transistor switch M1 is coupled to a node N1. The node N1 is coupled to an anode of the diode D1, a cathode of the diode D1 is coupled to one terminal of the power-on switch S1, and the other terminal of the power-on switch S1 is coupled to a ground voltage. A cathode of the diode D2 is coupled to the power-on switch S1, and an anode of the diode D2 is coupled to the chipset 400. A first terminal of the N-type transistor switch M2 is coupled to the node N1, a second terminal of the N-type transistor switch M2 is coupled to the ground voltage, and a control terminal of the N-type transistor switch M2 is coupled to a cathode of the diode D3. An anode of the diode D3 is coupled to the chipset 400.

    [0011] The power-on switch S1 and the diode D1 forms a first switch controller to control the P-type transistor switch M1. When the power supply 100 is plugged in and the power-on switch S1 is turned on, the cathode of the diode D1 is coupled to the ground voltage and then the diode D1 is conducting. Therefore, the voltage of the node N1 is pulled down to the ground voltage, and thus, the P-type transistor switch M1 couples the power supply 100 to the voltage converter 300. Accordingly, the voltage converter 300 can receive the supply voltage of the power supply 100 via the conducting P-type transistor switch M1, convert the supply voltage of the power supply 100 into the predetermined voltage, and then output the predetermined voltage to the chipset 400 to allow the chipset to operate. Furthermore, when the power-on switch S1 is turned on, the diode D2 provides the ground voltage to the chipset 400 to inform the chipset 400 of the turning-on of the power-on switch S1. In an example, when the chipset 400 is informed of the turning-on of the power-on switch S1, a status value stored in a register 410 of the chipset 400 records the turning-on event.

    [0012] The power-on switch S1 may be a power-on button having conduction only for a short period of time when the button is being pressed. The N-type transistor switch M2 and the diode D3 forms a second switch controller, to ensure that conduction of the P-type transistor switch M1 continues while the chipset 400 is operating even when the power-on switch S1 is not conducting. The chipset 400 continuously outputs a start up signal SS at a high voltage level when the chipset 400 is operating. Thus, the diode D3 is conducting and the N-type transistor switch M2 is conducting as well, and the voltage of the node N1 keeps being coupled to the ground voltage via the conducting N-type transistor switch M2. Therefore, the P-type transistor switch M1 maintains the coupling of the power supply 100 to the voltage converter 300 while the chipset 400 is in operation to ensure that the predetermined voltage is applied to the chipset 400.

    [0013] In addition, when the power supply 100 is plugged in and before the power-on switch is turned-on, since there is no conduction via either the power-on switch S1 or the N-type transistor switch M2, the voltage of the node N1 is not coupled to the ground voltage. As a result, the P-type transistor switch M1 is not conducting, and thus, the power supply is isolated from the voltage converter 300 and the chipset 400. Therefore, there is no standby power consumption before the power supply system 10 is turned on.

    [0014] Fig. 2A illustrates a block diagram of a voltage converter 300A according an embodiment of the invention. The voltage converter 300A comprises a controller 310A and an output stage circuit 320A, wherein the output stage circuit 320A comprises a switch circuit. In one example, the switch circuit comprises a pull-up switch to couple an output terminal of the voltage converter 300A to a supply voltage SV and a pull-down switch to couple the output terminal to a ground voltage, and the controller 310A may generate nonoverlapping control signals to prevent the switches from conducting at the same time. In another example, the controller 310A may generate control signals to drive the switch circuit for pulse width modulation (PWM). The output stage circuit 320A receives the supply voltage SV of the power supply 100 and the switch circuit generates the predetermined voltage, which is converted from the supply voltage SV of the power supply 100, at the output terminal of the voltage converter 300A coupled to the chipset 400. The controller 310A is activated by an operation voltage CV outputted from the power supply 100 via the conducting P-type transistor switch M1 and controls the output stage circuit 320A to generate the predetermined voltage at the output terminal. The operation voltage CV may provide the voltage required for the operation of the controller 310A. Both the supply voltage SV and the operation voltage CV are provided by the power supply 100. In one example, the supply voltage SV and the operation voltage CV may have the same voltage; in another example, the supply voltage SV and the operation voltage CV may not have the same voltage.

    [0015] Fig. 2B illustrates a block diagram of a voltage converter 300B according another embodiment of the invention. The voltage converter 300B comprises a controller 310B and an output stage circuit 320B comprising a switch circuit (not shown). The output stage circuit 320B receives the supply voltage SV of the power supply 100 via the conducting P-type transistor switch M1 and the switch circuit generates the predetermined voltage, which is converted from the supply voltage SV of the power supply 100, at an output terminal of the voltage converter 300B coupled to the chipset 400. The controller 310B is activated by an operation voltage CV outputted from the power supply 100 and controls the output stage circuit 320A to generate the predetermined voltage at the output terminal. In still another embodiment, there may be two P-type transistor switches, whose control terminals both coupled to the node N1, coupling the operation voltage CV and the supply voltage SV to the controller 310A and the output stage circuit 320A, respectively.

    [0016] Fig. 3 illustrates a block diagram of a power supply system 30 according to an embodiment of the invention. The power supply system 30 comprises a power supply 100, a power control circuit 200A, a voltage converter 300 and a chipset 400 of an electronic device. The power supply 100, the voltage converter 300 and the chipset 400 are similar to that in Fig. 1 and will not be described again for brevity. The power control circuit 200A is coupled between the power supply 100 and the voltage converter 300 and is similar to the power control circuit 200 in Fig.2, and the similar parts will not be described again. The difference between the power control circuit 200A and the power control circuit 200 is that the power control circuit 200A further comprises a power recovery circuit 210 to automatically restart the power supply system 30 after a power failure incident occurs. The power recovery circuit comprises capacitors C1 and C2 and resistors R1 and R2. The capacitor C1 and the resistor R1 coupled in parallel are coupled between the first terminal and the control terminal of the P-type transistor switch M1. The capacitor C2 is coupled between the control terminal of the P-type transistor switch M1 and the ground voltage. The resistor R2 is a current-limiting resistor coupled between the node N1 and the control terminal of the P-type transistor switch M1 and may be discarded in some examples. The Basic Input/Output System (BIOS) of the electronic device may be configured to enable or disable an auto-restart function in advance. The status of enabling or disabling the auto-restart function may be stored in the register 410 of the chipset 400. When power failure occurs, the power supply 100 does not provide the supply voltage, and the chipset 400 does not operate, and thus, the chipset 400 does not output the start up signal SS. Therefore, the N-type transistor switch M2 is not conducting. In this situation, the power recovery circuit 210 maintains the voltage of the control terminal of the P-type transistor switch M1 for a certain period of time. When power is restored, the conduction of the P-type transistor switch M1 is temporarily maintained via the maintained voltage at the control terminal of the P-type transistor switch M1, and thus, the supply voltage is provided to the voltage converter 300 and then the predetermined voltage is supplied to the chipset 400. At this time, if the auto-restart function is enabled (may be determined by accessing the status of enabling or disabling the auto-restart function in the register 410), the chipset 400 restarts to continuously output the start up signal SS at the high voltage level for conduction of the N-type transistor switch M2. Accordingly, when power is restored, the P-type transistor switch M1 maintains the coupling of the power supply 100 to the voltage converter 300 due to the conduction of the N-type transistor switch M2 even though the power-on switch S1 is not turned on, allowing the power supply system 30 to automatically restart. Furthermore, if the auto-restart function is disabled, the chipset 400 does not output the startup signal SS, and thus, the power supply system 30 does not automatically restart after the power has been restored.

    [0017] Fig. 4 illustrates a block diagram of a power supply system 40 according to an example outside of the invention. The power supply system 40 comprises a power supply 100, a power control circuit 200B, a voltage converter 300 and a chipset 400. The power control circuit 200B, coupled between the power supply 100 and the voltage converter 300, is similar to the power control circuit 200A in Fig. 3. The difference between the power control circuit 200B and the power control circuit 200A is that the power control circuit 200B further comprises a diode D4. A cathode of the diode D4 is coupled to the control terminal of the N-type transistor switch M2 and an anode of the diode D4 receives a disable signal DS. The power supply system 40 may be configured to disable the above power-saving function so that the power supply 100 is constantly coupled to the voltage converter 300 without activating the power-on switch. In one example, the power-saving function may be disabled to provide a Wake-on LAN (WOL) function, allowing the chipset 400 to be turned on by a WOL signal transmitted from a remote location through a network. The status of enabling or disabling the WOL function may be stored in a register of a local area network (LAN) chip or other IC chips (not shown). The disable signal DS may be provided from a super input/output chip or other IC chips (not shown). After the WOL function of the power supply system 40 is enabled, the disable signal DS remains at the high voltage level for conduction of the N-type transistor switch M2 even after the chipset 400 is turned off. The P-type transistor switch M1 is thus conducting due to the high-voltage-level disable signal DS and constantly couples the power supply 100 to the voltage converter 300 after the chipset 400 is turned off. Therefore, after the WOL function is enabled, when the WOL signal is received (by, for example, the LAN chip) via the network, the chipset 400 may start the turn-on process without the need of actually activating the power-on switch. If the WOL function of the power supply system 40 is disabled, the disable signal DS remains at a low voltage level, and thus, the power supply 100 is not coupled to the voltage converter 300 to achieve the power-saving function.

    [0018] In the embodiments described above, the P-type transistor switch M1 and the N-type transistor switch M2 may be field-effect transistors or bipolar junction transistors. This designation of the switches M1 and M2 as P-type and N-type transistors is made for the purpose of illustrating the general principles of the invention and should not be taken in a limiting sense. The switches M1 and M2 may cover different types or different devices performing similar switching functions. The diodes D1, D2 and D3 may be Schottky diodes. In another embodiment, a resistive voltage divider may be coupled between the cathode of the diode D3, the control terminal of the N-type transistor switch M2 and the ground voltage to adjust the voltage applied to the control terminal of the N-type transistor switch M2.

    [0019] In summary, a power supply system for reducing the standby power consumption to save energy is provided. When the power supply is plugged in but before the power-on switch is turned on, the power supply is isolated from the voltage converter and the chipset, and therefore there is no standby power consumption. The power supply system may be modified to provide functions such as the automatic restart after power failure or the disabling of the power-saving function for purposes such as WOL. The power supply system may be employed in any electric system to reduce power consumption, and the chipset described in above may include one or a group of integrated circuits or chips, which may be employed in energy-using products such as computers, displays, air conditioning systems, household appliances, and so on.

    [0020] While the invention has been described by ways of examples and in terms of preferred embodiments, it is to be understood that the invention is not limited thereto. The scope of the invention is defined by the appended claims.


    Claims

    1. A power control circuit for a power supply system supplying power to an electronic device, wherein the power supply system (10, 30, 40) comprises a power supply (100) and a voltage converter (300), and the voltage converter (300) converts a supply voltage of the power supply (100) into a predetermined voltage and outputs the predetermined voltage to the electronic device, the power control circuit (200) comprising:

    a switch (M1), having a first terminal coupled to the power supply (100), a second terminal coupled to the voltage converter (300), and a control terminal;

    a first switch controller (S1, D1) comprising a power-on switch (S1), the first switch controller (S1, D1) being coupled to the control terminal of the switch (M1) and the electronic device and controlling the switch (M1) to couple the power supply (100) to the voltage converter (300) according to a turning-on event when the power supply system (10, 30, 40) is turned on by the power-on switch (S1); and

    a second switch controller (M2, D3) coupled between the control terminal of the switch (M1) and the electronic device, continuously receiving a high voltage level signal (SS) from the electronic device when the electronic device is operating to control the switch (M1) to maintain the coupling of the power supply (100) to the voltage converter (300);

    wherein the switch (M1) does not couple the power supply (100) to the voltage converter (300) before the turning-on event of the power supply system (10, 30, 40); and

    wherein the power control circuit (200) is configured such that when the power supply (100) is plugged into an external AC voltage supply but before the power-on switch (S1) is turned on, the power supply (100) is isolated from the voltage converter (300).


     
    2. The power control circuit as claimed in claim 1, wherein the power-on switch (S1) has a first terminal coupled to a reference voltage and a second terminal, wherein the first switch controller (S1, D1) further comprises a first diode (D1), having a cathode coupled to the second terminal of the power-on switch (S1) and an anode coupled to the control terminal of the switch (M1), and wherein when the power-on switch (S1) is turned on, the switch (M1) couples the power supply (100) to the voltage converter (300).
     
    3. The power control circuit as claimed in claim 2, further comprising:
    a second diode (D2), having a cathode coupled to the second terminal of the power-on switch (S1) and an anode coupled to the electronic device, and informing the electronic device of the turning-on event of the power-on switch (S1).
     
    4. The power control circuit as claimed in claim 3, wherein the second switch controller (M2, D3) further comprises:

    an N-type transistor switch (M2), having a first terminal coupled to the control terminal of the switch (M1), a second terminal coupled to the reference voltage, and a control terminal; and

    a third diode (D3), having a cathode coupled to the control terminal of the N-type transistor switch (M2) and an anode coupled to the electronic device,

    wherein, when the electronic device is in operation, the electronic device continuously outputs the high voltage level signal (SS) to the control terminal of the N-type transistor switch (M2) via the third diode (D3).


     
    5. The power control circuit as claimed in claim 4, further comprising:

    a power recovery circuit (210) controlling the switch (M1) to couple the power supply (100) to the voltage converter (300) when the electronic device does not output the high voltage level signal (SS) to the N-type transistor switch (M2) during a temporary failure of the power supply (100),

    wherein after the temporary failure of the power supply (100) ends, the electronic device outputs the high voltage level signal (SS) to the control terminal of the N-type transistor switch (M2) via the third diode (D3) according to a restart enable status stored in a register (410) of the electronic device.


     
    6. The power control circuit as claimed in claim 5, wherein the power recovery circuit comprises:

    a first capacitor (C1) coupled between the first terminal and the control terminal of the switch (M1);

    a resistor (R1) coupled between the first terminal and the control terminal of the switch (M1); and

    a second capacitor (C2) coupled between the control terminal of the switch (M1) and the reference voltage.


     
    7. A power supply system for supplying power to an electronic device, comprising:

    a voltage converter (300; 300A; 300B), converting a supply voltage of a power supply (100) into a predetermined voltage and outputting the predetermined voltage to the electronic device; and

    a power control circuit (200; 200A; 200B) according to any of claims 1-6.


     
    8. The power supply system as claimed in claim 7, wherein the voltage converter (300A) further comprises:

    an output stage circuit (320A) coupled to the power supply (100) and the electronic device, receiving the supply voltage of the power supply (100); and

    a controller (310A) coupled to the second terminal of the switch (M1) and the output stage circuit (320A), receiving an operation voltage outputted from the power supply (100) via the switch (M1), and controlling the output stage circuit (320A) to output the predetermined voltage to the electronic device.


     
    9. The power supply system as claimed in claim 7, wherein the voltage converter (300B) further comprises:

    an output stage circuit (320B) coupled to the second terminal of the switch (M1) and the electronic device, receiving the supply voltage of the power supply (100) via the switch (M1); and

    a controller (310B) coupled to the power supply (100) and the output stage circuit (320B), receiving an operation voltage outputted from the power supply (100), and controlling the output stage circuit (320B) to output the predetermined voltage to the electronic device.


     


    Ansprüche

    1. Leistungssteuerschaltung für ein Leistungsversorgungssystem, das einer elektronischen Vorrichtung Leistung zuführt, wobei das Leistungsversorgungssystem (10, 30, 40) eine Leistungsversorgung (100) und einen Spannungswandler (300) umfasst, und der Spannungswandler (300) eine Versorgungsspannung der Leistungsversorgung (100) in eine vorbestimmte Spannung umwandelt und die vorbestimmte Spannung an die elektronische Vorrichtung ausgibt, wobei die Leistungssteuerschaltung (200) umfasst:

    einen Schalter (M1) mit einem ersten Anschluss, der mit der Leistungsversorgung (100) gekoppelt ist, einem zweiten Anschluss, der mit dem Spannungswandler (300) gekoppelt ist, und einem Steueranschluss;

    eine erste Schaltersteuerung (S1, D1), die einen Einschaltschalter (S1) umfasst, wobei die erste Schaltersteuerung (S1, D1) mit dem Steueranschluss des Schalters (M1) und der elektronischen Vorrichtung gekoppelt ist und den Schalter (M1) steuert, um die Leistungsversorgung (100) mit dem Spannungswandler (300) gemäß einem Einschalt-Ereignis zu koppeln, sobald das Leistungsversorgungssystem (10, 30, 40) durch den Einschaltschalter (S1) eingeschaltet wird; und

    eine zweite Schaltersteuerung (M2, D3), die zwischen dem Steueranschluss des Schalters (M1) und der elektronischen Vorrichtung gekoppelt ist und kontinuierlich ein Signal des Hochspannungspegels (SS) von der elektronischen Vorrichtung empfängt, sobald die elektronische Vorrichtung in Betrieb ist, um den Schalter (M1) zu steuern, um die Kopplung der Leistungsversorgung (100) mit dem Spannungswandler (300) aufrechtzuerhalten;

    wobei der Schalter (M1) die Leistungsversorgung (100) nicht mit dem Spannungswandler (300) vor dem Einschalt-Ereignis des Leistungsversorgungssystems (10, 30, 40) koppelt; und

    wobei die Leistungssteuerschaltung (200) so konfiguriert ist, dass, sobald die Leistungsversorgung (100) in eine externe Wechselspannungsversorgung eingesteckt wird, noch bevor der Einschaltschalter (S1) eingeschaltet wird, die Leistungsversorgung (100) von dem Spannungswandler (300) isoliert ist.


     
    2. Leistungssteuerschaltung nach Anspruch 1, wobei der Einschaltschalter (S1) einen ersten Anschluss, der mit einer Referenzspannung gekoppelt ist, und einen zweiten Anschluss aufweist, wobei die erste Schaltersteuerung (S1, D1) ferner eine erste Diode (D1) umfasst, die eine Kathode, die mit dem zweiten Anschluss des Einschaltschalters (S1) gekoppelt ist, und eine Anode, die mit dem Steueranschluss des Schalters (M1) gekoppelt ist, aufweist und wobei, sobald der Einschaltschalter (S1) eingeschaltet wird, der Schalter (M1) die Leistungsversorgung (100) mit dem Spannungswandler (300) koppelt.
     
    3. Leistungssteuerschaltung nach Anspruch 2, die ferner umfasst:
    eine zweite Diode (D2), die eine mit dem zweiten Anschluss des Einschaltschalters (S1) gekoppelte Kathode und eine mit der elektronischen Vorrichtung gekoppelte Anode aufweist und die elektronische Vorrichtung über das Einschalt-Ereignis des Einschaltschalters (S1) informiert.
     
    4. Leistungssteuerschaltung nach Anspruch 3, wobei die zweite Schaltersteuerung (M2, D3) ferner umfasst:

    einen N-Typ-Transistorschalter (M2) mit einem ersten Anschluss, der mit dem Steueranschluss des Schalters (M1) gekoppelt ist, einem zweiten Anschluss, der mit der Referenzspannung gekoppelt ist, und einem Steueranschluss; und

    eine dritte Diode (D3) mit einer Kathode, die mit dem Steueranschluss des N-Typ Transistorschalters (M2) gekoppelt ist, und einer Anode, die mit der elektronischen Vorrichtung gekoppelt ist,

    wobei, sobald die elektronische Vorrichtung in Betrieb ist, die elektronische Vorrichtung kontinuierlich das Signal des Hochspannungspegels (SS) an den Steueranschluss des N-Typ Transistorschalters (M2) über die dritte Diode (D3) ausgibt.


     
    5. Leistungssteuerschaltung nach Anspruch 4, die ferner umfasst:

    eine Leistungswiederherstellungsschaltung (210), die den Schalter (M1) steuert, um die Leistungsversorgung (100) mit dem Spannungswandler (300) zu koppeln, wenn die elektronische Vorrichtung bei einem vorübergehenden Ausfall der Leistungsversorgung (100) das Signal des Hochspannungspegels (SS) nicht an den N-Typ Transistorschalter (M2) ausgibt,

    wobei nach dem Ende des vorübergehenden Ausfalls der Leistungsversorgung (100) die elektronische Vorrichtung das Signal des Hochspannungspegels (SS) an den Steueranschluss des N-Typ Transistorschalters (M2), entsprechend einem in einem Register (410) der elektronischen Vorrichtung gespeicherten Wiederanlauf-Freigabestatus, über die dritte Diode (D3) ausgibt.


     
    6. Leistungssteuerschaltung nach Anspruch 5, wobei die Leistungswiederherstellungsschaltung umfasst:

    einen ersten Kondensator (C1), der zwischen dem ersten Anschluss und dem Steueranschluss des Schalters (M1) gekoppelt ist;

    einen Widerstand (R1), der zwischen den ersten Anschluss und den Steueranschluss des Schalters (M1) geschaltet ist; und

    einen zweiten Kondensator (C2), der zwischen den Steueranschluss des Schalters (M1) und die Referenzspannung geschaltet ist.


     
    7. Leistungsversorgungssystem zur Leistungsversorgung einer elektronischen Vorrichtung, umfassend:

    einen Spannungswandler (300; 300A; 300B), der eine Versorgungsspannung einer Leistungsversorgung (100) in eine vorbestimmte Spannung umwandelt und die vorbestimmte Spannung an die elektronische Vorrichtung ausgibt; und

    eine Leistungssteuerschaltung (200; 200A; 200B) gemäß einem der Ansprüche 1-6.


     
    8. Das Leistungsversorgungssystem nach Anspruch 7, wobei der Spannungswandler (300A) ferner umfasst:

    eine Endstufenschaltung (320A), die mit der Leistungsversorgung (100) und der elektronischen Vorrichtung gekoppelt ist und die die Versorgungsspannung der Leistungsversorgung (100) empfängt; und

    eine mit dem zweiten Anschluss des Schalters (M1) und der Endstufenschaltung (320A) gekoppelte Steuerung (310A), die eine von der Leistungsversorgung (100) über den Schalter (M1) ausgegebene Betriebsspannung empfängt und die Endstufenschaltung (320A) steuert, um die vorbestimmte Spannung an die elektronische Vorrichtung auszugeben.


     
    9. Das Leistungsversorgungssystem nach Anspruch 7, wobei der Spannungswandler (300B) ferner umfasst:

    eine Endstufenschaltung (320B), die mit dem zweiten Anschluss des Schalters (M1) und der elektronischen Vorrichtung gekoppelt ist und die die Versorgungsspannung der Leistungsversorgung (100) über den Schalter (M1) empfängt; und

    eine Steuereinheit (310B), die mit der Leistungsversorgung (100) und der Endstufenschaltung (320B) gekoppelt ist, die eine Betriebsspannung empfängt, die von der Leistungsversorgung (100) ausgegeben wird, und die Endstufenschaltung (320B) steuert, um die vorbestimmte Spannung an die elektronische Vorrichtung auszugeben.


     


    Revendications

    1. Circuit de commande d'alimentation pour un système d'alimentation électrique alimentant un dispositif électronique, dans lequel le système d'alimentation électrique (10, 30, 40) comprend une alimentation électrique (100) et un convertisseur de tension (300), et le convertisseur de tension (300) convertit une tension d'alimentation de l'alimentation électrique (100) en une tension prédéterminée et délivre en sortie la tension prédéterminée au dispositif électronique, le circuit de commande d'alimentation (200) comprenant :

    un commutateur (M1), ayant une première borne couplée à l'alimentation électrique (100), une deuxième borne couplée au convertisseur de tension (300), et une borne de commande ;

    une première unité de commande de commutateur (S1, D1) comprenant un commutateur de mise sous tension (S1), la première unité de commande de commutateur (S1, D1) étant couplée à la borne de commande du commutateur (M1) et au dispositif électronique et commandant le commutateur (M1) pour coupler l'alimentation électrique (100) au convertisseur de tension (300) en fonction d'un événement de mise en marche lorsque le système d'alimentation électrique (10, 30, 40) est mis en marche par le commutateur de mise sous tension (S1) ; et

    une deuxième unité de commande de commutateur (M2, D3) couplée entre la borne de commande du commutateur (M1) et le dispositif électronique, recevant de manière continue un signal de niveau de haute tension (SS) à partir du dispositif électronique lorsque le dispositif électronique fonctionne pour commander le commutateur (M1) pour maintenir le couplage de l'alimentation électrique (100) au convertisseur de tension (300) ;

    dans lequel le commutateur (M1) ne couple pas l'alimentation électrique (100) au convertisseur de tension (300) avant l'événement de mise en marche du système d'alimentation électrique (10, 30, 40) ; et

    dans lequel le circuit de commande d'alimentation (200) est configuré de sorte que, lorsque l'alimentation électrique (100) est branchée sur une alimentation en tension alternative externe mais avant que le commutateur de mise sous tension (S1) ne soit mis en marche, l'alimentation électrique (100) soit isolée du convertisseur de tension (300).


     
    2. Circuit de commande d'alimentation tel que revendiqué dans la revendication 1, dans lequel le commutateur de mise sous tension (S1) a une première borne couplée à une tension de référence et une deuxième borne, dans lequel la première unité de commande de commutateur (S1, D1) comprend en outre une première diode (D1), ayant une cathode couplée à la deuxième borne du commutateur de mise sous tension (S1) et une anode couplée à la borne de commande du commutateur (M1), et dans lequel, lorsque le commutateur de mise sous tension (S1) est mis en marche, le commutateur (M1) couple l'alimentation électrique (100) au convertisseur de tension (300).
     
    3. Circuit de commande d'alimentation tel que revendiqué dans la revendication 2, comprenant en outre :
    une deuxième diode (D2), ayant une cathode couplée à la deuxième borne du commutateur de mise sous tension (S1) et une anode couplée au dispositif électronique, et informant le dispositif électronique de l'événement de mise en marche du commutateur de mise sous tension (S1).
     
    4. Circuit de commande d'alimentation tel que revendiqué dans la revendication 3, dans lequel la deuxième unité de commande de commutateur (M2, D3) comprend en outre :

    un commutateur à transistor de type N (M2), ayant une première borne couplée à la borne de commande du commutateur (M1), une deuxième borne couplée à la tension de référence, et une borne de commande ; et

    une troisième diode (D3), ayant une cathode couplée à la borne de commande du commutateur à transistor de type N (M2) et une anode couplée au dispositif électronique,

    dans lequel, lorsque le dispositif électronique est en fonctionnement, le dispositif électronique délivre en sortie de manière continue le signal de niveau de haute tension (SS) à la borne de commande du commutateur à transistor de type N (M2) par l'intermédiaire de la troisième diode (D3).


     
    5. Circuit de commande d'alimentation tel que revendiqué dans la revendication 4, comprenant en outre :

    un circuit de récupération de puissance (210) commandant le commutateur (M1) pour coupler l'alimentation électrique (100) au convertisseur de tension (300) lorsque le dispositif électronique ne délivre pas en sortie le signal de niveau de haute tension (SS) au commutateur à transistor de type N (M2) lors d'une panne temporaire de l'alimentation électrique (100),

    dans lequel, après la fin de la panne temporaire de l'alimentation électrique (100), le dispositif électronique délivre en sortie le signal de niveau de haute tension (SS) à la borne de commande du commutateur à transistor de type N (M2) par l'intermédiaire de la troisième diode (D3) en fonction d'un état d'activation de redémarrage stocké dans un registre (410) du dispositif électronique.


     
    6. Circuit de commande d'alimentation tel que revendiqué dans la revendication 5, dans lequel le circuit de récupération de puissance comprend :

    un premier condensateur (C1) couplé entre la première borne et la borne de commande du commutateur (M1) ;

    une résistance (R1) couplée entre la première borne et la borne de commande du commutateur (M1) ; et

    un deuxième condensateur (C2) couplé entre la borne de commande du commutateur (M1) et la tension de référence.


     
    7. Système d'alimentation électrique pour alimenter un dispositif électronique, comprenant :

    un convertisseur de tension (300 ; 300A ; 300B), convertissant une tension d'alimentation d'une alimentation électrique (100) en une tension prédéterminée et délivrant en sortie la tension prédéterminée au dispositif électronique ; et

    un circuit de commande d'alimentation (200 ; 200A ; 200B) selon l'une des revendications 1 à 6.


     
    8. Système d'alimentation électrique tel que revendiqué dans la revendication 7, dans lequel le convertisseur de tension (300A) comprend en outre :

    un circuit d'étage de sortie (320A) couplé à l'alimentation électrique (100) et au dispositif électronique, recevant la tension d'alimentation de l'alimentation électrique (100) ; et

    une unité de commande (310A) couplée à la deuxième borne du commutateur (M1) et au circuit d'étage de sortie (320A), recevant une tension de fonctionnement délivrée en sortie à partir de l'alimentation électrique (100) par l'intermédiaire du commutateur (M1), et commandant le circuit d'étage de sortie (320A) pour délivrer en sortie la tension prédéterminée au dispositif électronique.


     
    9. Système d'alimentation électrique tel que revendiqué dans la revendication 7, dans lequel le convertisseur de tension (300B) comprend en outre :

    un circuit d'étage de sortie (320B) couplé à la deuxième borne du commutateur (M1) et au dispositif électronique, recevant la tension d'alimentation de l'alimentation électrique (100) par l'intermédiaire du commutateur (M1) ; et

    une unité de commande (310B) couplée à l'alimentation électrique (100) et au circuit d'étage de sortie (320B), recevant une tension de fonctionnement délivrée en sortie à partir de l'alimentation électrique (100), et commandant le circuit d'étage de sortie (320B) pour délivrer en sortie la tension prédéterminée au dispositif électronique.


     




    Drawing

















    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description