(19)
(11)EP 2 726 142 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
10.05.2017 Bulletin 2017/19

(21)Application number: 12733357.3

(22)Date of filing:  25.06.2012
(51)International Patent Classification (IPC): 
A61N 1/05(2006.01)
(86)International application number:
PCT/US2012/044020
(87)International publication number:
WO 2013/003278 (03.01.2013 Gazette  2013/01)

(54)

STRAIN RELIEF FEATURE FOR AN IMPLANTABLE MEDICAL DEVICE LEAD

ZUGENTLASTUNG FÜR DIE ELEKTRODE EINER IMPLANTIERBAREN MEDIZINISCHEN VORRICHTUNG

CARACTÉRISTIQUE DE SOULAGEMENT DE CONTRAINTE POUR UNE SONDE DE DISPOSITIF MÉDICAL IMPLANTABLE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 28.06.2011 US 201161502072 P

(43)Date of publication of application:
07.05.2014 Bulletin 2014/19

(73)Proprietor: Cardiac Pacemakers, Inc.
St. Paul, Minnesota 55112 (US)

(72)Inventors:
  • SOLTIS, Brian D.
    St. Paul, Minnesota 55117 (US)
  • TOCKMAN, Bruce A.
    Scandia, Minnesota 55073 (US)

(74)Representative: Pfenning, Meinig & Partner mbB 
Patent- und Rechtsanwälte Joachimsthaler Straße 12
10719 Berlin
10719 Berlin (DE)


(56)References cited: : 
WO-A1-2006/093685
WO-A1-2011/053766
US-B1- 6 249 708
WO-A1-2007/024164
US-A1- 2011 004 281
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    TECHNICAL FIELD



    [0001] The present invention relates to medical devices. More specifically, the invention relates to a strain relief feature for a medical device lead body.

    BACKGROUND



    [0002] A significant amount of research has been directed both to the direct and indirect stimulation and sensing of the left and right vagus nerves, the phrenic nerve, the sacral nerve, the cavernous nerve, and portions of the anatomy with baroreceptors (e.g., the carotid artery) to treat a wide variety of medical, psychiatric, and neurological disorders or conditions. For example, stimulation of the vagus nerve has been proposed as a method for treating various heart conditions, including heart failure. The nerves stimulated and/or sensed may be sympathetic or parasympathetic in character.

    [0003] In a nerve stimulation and sensing system, one or more electrodes are formed on a lead that are electrically connected to an implanted electronic package, such as a pulse generator. Electrical energy is delivered to the electrodes by conductors that extend from the pulse generator at a proximal end of the lead to the electrodes at a distal end of the lead. For direct stimulation of a nerve, the electrodes may be configured to be secured directly to, wrapped around, or laid next to the nerve. The lead should be configured so that the electrodes remain in contact with the nerve to be stimulated. A device according to the preamble of claim 1 is known from WO2011/053766.

    SUMMARY



    [0004] The invention is defined in claim 1. Discussed herein are strain relief features that are configured to reduce strain or loading on the distal end of an implantable medical device lead, as well as medical device leads including strain relief features.

    [0005] In Example 1, a lead assembly for an implantable medical device includes a lead body having a proximal end, a distal end, and a longitudinal axis that extends between the proximal end and distal end. The lead assembly also includes a strain relief tube that surrounds a portion of the lead body. The strain relief tube includes a flexible material configured to include contours such that the portion of the lead body surrounded by the strain relief tube maintains a formed shape that varies from the longitudinal axis of the lead body. The contours vary in response to forces on the lead body to prevent strain at the distal end of the lead body.

    [0006] In Example 2, the lead assembly according to Example 1, wherein the strain relief tube further comprises one or more suture elements coupled to an exterior of the strain relief tube and configured to secure the strain relief tube to adjacent tissue after shaping the strain relief tube.

    [0007] In Example 3, the lead assembly according to either Example 1 or 2, wherein the strain relief tube includes preformed contours.

    [0008] In Example 4, the lead assembly according to any of Examples 1-3, wherein the strain relief tube moves with respect to the lead body.

    [0009] In Example 5, the lead assembly according to any of Examples 1-4, wherein the strain relief tube is securable to the lead body.

    [0010] In Example 6, the lead assembly according to any of Examples 1-5, wherein the strain relief tube comprises an embedded mesh material or compression resistant material that facilitates mechanical coupling of the strain relief tube to tissue.

    [0011] In Example 7, the lead assembly according to any of Examples 1-6, wherein the portion of the lead body surrounded by the strain relief tube is proximate the distal end.

    [0012] In Example 8, a lead assembly for an implantable medical device includes a lead body having a proximal end, a distal end, and a longitudinal axis that extends between the proximal end and distal end. The lead assembly also includes one or more connectors at the proximal end of the lead body that are each adapted for connection to a pulse generator. The lead assembly further includes one or more electrodes at the distal end of the lead body electrically coupled to the one or more connectors. A strain relief tube surrounds a portion of the lead body. The strain relief tube comprises a flexible material configured to include contours such that the portion of the lead body surrounded by the strain relief tube maintains a shape that varies from the longitudinal axis of the lead body.

    [0013] In Example 9, the lead assembly according to Example 8, wherein the strain relief tube further comprises one or more suture elements coupled to an exterior of the strain relief tube and configured to secure the strain relief tube to adjacent tissue after shaping the strain relief tube.

    [0014] In Example 10, the lead assembly according to either Example 8 or 9, wherein the strain relief tube includes preformed contours.

    [0015] In Example 11, the lead assembly according to any of Examples 8-10, wherein the strain relief tube moves with respect to the lead body.

    [0016] In Example 12, the lead assembly according to any of Examples 8-11, wherein the strain relief tube is securable to the lead body.

    [0017] In Example 13, the lead assembly according to any of Examples 8-12, wherein the strain relief tube comprises an embedded mesh material or compression resistant material that facilitates mechanical coupling of the strain relief tube to tissue.

    [0018] In Example 14, the lead assembly according to any of Examples 8-13, wherein the portion of the lead body surrounded by the strain relief tube is proximate the distal end.

    [0019] In Example 15, a strain relief element for an implantable medical device lead includes a flexible tube including a lumen configured to receive a portion of a lead body of the implantable medical device lead such that the flexible tube surrounds the portion of the lead body. The flexible tube shapeable to include contours such that the portion of the lead body surrounded by the flexible tube maintains a shape that varies from the longitudinal axis of the lead body.

    [0020] In Example 16, the strain relief element according to Example 15, and further comprising one or more suture elements coupled to an exterior of the flexible tube and configured to secure the strain relief element to adjacent tissue after shaping the flexible tube.

    [0021] In Example 17, the strain relief element according to either Example 15 or 16, wherein the flexible tube includes preformed contours.

    [0022] In Example 18, the strain relief element according to any of Examples 15-17, wherein the strain relief element is securable to the lead body.

    [0023] In Example 19, the strain relief element according to any of Examples 15-18, and further comprising an embedded mesh material or compression resistant material that facilitates mechanical coupling of the strain relief tube to tissue.

    [0024] In Example 20, the strain relief element according to any of Examples 15-19, wherein the flexible tube is comprised of a material selected from the group consisting of silicone, polyurethane, polytetrafluoroethylene (PTFE), and polyester.

    [0025] While multiple embodiments are disclosed, still other embodiments of the present invention will become apparent to those skilled in the art from the following detailed description, which shows and describes illustrative embodiments of the invention. Accordingly, the drawings and detailed description are to be regarded as illustrative in nature and not restrictive.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0026] 

    FIG. 1 is an embodiment of a neurostimulation system according to the present invention and portions of an environment in which the neurostimulation system is used.

    FIG. 2 is a cross-section view of an embodiment of a strain relief tube including suture elements and configured for shaping at implantation.

    FIG. 3 is a cross-section view of an embodiment of a preformed strain relief tube.

    FIG. 4 is a cross-section view of an embodiment of a preformed strain relief tube including suture elements.

    FIG. 5 is a perspective view of an embodiment of a portion of a preformed strain relief tube including a stylet lumen formed in a wall of the strain relief tube.

    FIG. 6 is a perspective view of an embodiment of a portion of a preformed strain relief tube including a stylet lumen formed on an exterior of the strain relief tube.



    [0027] While the invention is amenable to various modifications and alternative forms, specific embodiments have been shown by way of example in the drawings and are described in detail below. The intention, however, is not to limit the invention to the particular embodiments described. On the contrary, the invention is intended to cover all modifications, equivalents, and alternatives falling within the scope of the invention as defined by the appended claims.

    DETAILED DESCRIPTION



    [0028] FIG. 1 shows an embodiment of a neurostimulation system 10 according to the present invention implanted in a patient P. The neurostimulation system 10 includes an implantable medical device (IMD) 12 with a lead 14 including a lead body 15 and having a proximal end 16 and a distal end 18. In one embodiment, the IMD 12 includes a pulse generator. The IMD 12 can be implanted subcutaneously within the body, typically at a location such as in a patient's chest or abdomen, although other implantation locations are possible. The proximal end 16 of the lead 14 can be coupled to the IMD 12 via one or more connectors 19. Alternatively, the lead 14 may be formed integrally with the IMD 12. The distal end 18 of the lead 14, in turn, can be implanted at a desired location in the patient's body to stimulate excitable tissue.

    [0029] The distal end 18 of the lead 14 includes a plurality of electrode cuffs 20 including one or more rings or spirals containing electrodes. The electrode cuffs 20 are electrically connected to the IMD 12 via one or more conductors (not shown in FIG. 1) extending through the lead 14. The electrode cuffs 20 are formed into a helical shape suitable for coupling to a nerve N, such as a vagus nerve. In some embodiments, at least one of the electrode cuffs 20 may alternatively be configured as an anchor tether or strain relief cuff that secures the electrode assembly to the nerve N.

    [0030] During operation, the lead 14 delivers electrical signals between the IMD 12 and the electrode cuffs 20. The electrode cuffs 20 may be separately controlled by IMD 12, such that energy having different magnitude, phase, and/or timing characteristics may be delivered to or from each of the electrode cuffs 20. While the lead 14 shown includes three electrode cuffs 20, any number of electrode cuffs having any arrangement on the lead 14 can alternatively be employed in the system 10. In addition, one or more of the electrode cuffs 20 may alternatively be configured as a strain relief cuff that does not carry electrical signals, but secures the distal end 18 relative to the nerve N to minimize movement of the electrode cuffs 20 relative to the excitable tissue due to voluntary or involuntary movements of the patient. Furthermore, the IMD 12 shown is merely by way of illustration, and the IMD 12 may have any configuration suitable for use in conjunction with the lead 14 and may be implanted in any suitable location in the patient's body. For example, the electrode cuffs 20 may alternatively be configured as band electrodes on a straight lead that are placed adjacent to the nerve N to deliver stimulation energy.

    [0031] The electrode cuffs 20 are configured for stimulation or sensing of a nerve or nerve bundle. In the embodiment shown, the distal end 18 is secured to the vagus nerve N. The electrode cuffs 20 may be arranged around the nerve, with the IMD 12 configured to deliver energy to the electrode cuffs 20 to stimulate the nerve. Stimulating the sympathetic and parasympathetic nervous systems can have effects on physiological parameters associated with the heart H, such as heart rate and blood pressure.

    [0032] The vagus nerve N has afferent properties, such that the neural stimulation is transmitted to the central nervous system (CNS). Vagal stimulation simultaneously increases parasympathetic and decreases sympathetic activity, and is believed to prevent further remodeling or predisposition to fatal arrhythmias in post-MI patients, to help restore autonomic balance and increase heart rate variability (HRV), to increase parasympathetic and reduce sympathetic tone in hypertrophic cardiac myopathy (HCM), neurogenic hypertension, and arrhythmia protection, to reduce anginal symptoms, to increase coronary blood flow (CBF), and to prevent development or worsening of congestive heart failure (CHF) following MI. The electrode cuffs 20 may be configured and arranged to stimulate the vagus nerve N to provide any of the physiological responses described. While the electrode cuffs 20 are shown arranged around the right vagus nerve N in FIG. 1, the electrode cuffs 20 can be configured and arranged to stimulate the left vagus nerve N to treat other physiological and psychological conditions, such as epilepsy and depression.

    [0033] After implantation, the lead 14 may become encapsulated with tissue, causing the lead 14 to move in concert with the tissue to which it is attached. For example, when the electrodes 20 are coupled to a vagus nerve, head or torso movement by the patient P may result radial and/or axial force along the lead 14. To reduce strain on the distal end 18 when the patient P moves, the lead body 15 may be formed into or secured in a configuration that allows the lead 14 to extend, flex, or otherwise move while minimizing movement and strain at the distal end 18. For example, the lead body 15 may include one or more bends proximate the distal end 18, which provides additional lead length (i.e., slack) to allow for axial and/or radial movement of the lead 14 when the patient P moves without pulling on the electrode cuffs 20. As another example, the lead body 15 may be arranged to include one or more sinusoidal or waved sections that also reduce movement at the distal end 18 when the patient P moves. As a further example, the lead body 15 may be arranged to include one or more three-dimensional spiral sections. The strain relief assemblies as described herein facilitate forming strain relief shapes or features at any section along the lead body 15 to reduce loading on the distal end 18 of the lead 14.

    [0034] FIG. 2 is a cross-sectional view of an embodiment of a strain relief tube 50 disposed around the lead body 15 and configured to maintain the lead body 15 in a shape that allows the lead 14 to move with adjacent tissue to minimize load at the distal end 18. The strain relief tube 50 introduces contours in the lead body 15 that vary from the longitudinal axis of the lead 14. The strain relief tube may be include contours that vary in two or three dimensions. The strain relief tube 50 is configured such that, when engaged with the lead 14, surrounds or wraps around the lead body 15. In some embodiments, the strain relief tube 50 may be slid into position over the lead body 15 from the proximal end 16 or distal end 18 of the lead 14. In other embodiments, the strain relief tube 50 includes an opening (e.g., a slit) between its ends to allow strain relief tube 50 to be opened and positioned over the lead body 15 at the desired location.

    [0035] In some embodiments, the strain relief tube 50 includes one or more suture elements 52 that facilitate securing of the strain relief tube 50 to adjacent tissue. After the strain relief tube 50 is positioned over the lead body 15, the clinician may configure the lead body 15 and strain relief tube 50 into any shape that reduces the load on the distal end 18 during movement of the patient P. This may occur prior to or during implantation of the lead 14. For example, the clinician may secure the electrodes 20 to the nerve N, and subsequently shape the portion of the lead body 15 surrounded by the strain relief tube 50 into the selected configuration. When the lead 14 is positioned and the strain relief tube 50 is shaped, the clinician may secure the strain relief tube 50 to adjacent tissue via the suture elements 52. The strain relief tube 50 may then become encapsulated by the surrounding tissue, allowing the strain relief tube 50 and shaped portion of the lead body 15 to move in concert with surrounding tissue to minimize loading at the distal end 18.

    [0036] In alternative embodiments, the strain relief tube 50 comprises a pre-shaped or preformed member with the desired shape. The preformed member may be free to move relative to the lead body 14 or may be attached to the lead body 14.

    [0037] The lead body 15 may be allowed to freely slide within the strain relief tube 50. For example, the diameter of the interior lumen 54 of the strain relief tube 50 may be slightly larger than the outer diameter of the lead body 15 to allow the lead body 15 to move relative to the strain relief tube 50. The strain relief tube 50 may additionally or alternatively be made of a material that reduces friction between the lead body 15 and the strain relief tube 50. In alternative embodiments, the strain relief tube 50 is secured to the lead body 15 to prevent relative movement between the strain relief tube 50 and lead body 15. For example, the strain relief tube 50 may be mechanically or chemically coupled to the lead body 15.

    [0038] In the embodiment shown, the strain relief tube 50 is arranged in a serpentine configuration including two bends. In this configuration, the lead 14 in the region of the strain relief tube 50 responds to forces in the radial direction with variation in the distance between turns of the strain relief tube 50. The strain relief tube 50 also allows the lead 14 to respond to forces in the axial direction with elongation of the strain relief tube 50 (i.e., unwinding of the turns). The ability of the lead 14 to flex in the region covered by the strain relief tube 50 reduces the amount of load that is transferred to the distal end 18, thereby preventing patient discomfort or migration or dislodgement of the electrodes 20 from the nerve N. The strain relief tube 50 is configured to return to its implanted shape after radial and/or axial forces are no longer applied to the lead 14.

    [0039] In some embodiments, the strain relief tube 50 is comprised of a flexible biocompatible material. Example materials that are suitable for use in the strain relief tube 50 include, but are not limited to, silicone, polyurethane, polytetrafluoroethylene (PTFE), and polyester. The strain relief tube 50 may also comprise a mesh material to encourage tissue in-growth and secure the strain relief tube 50 to surrounding tissue. In embodiments in which the strain relief tube 50 is secured to the lead body 15, a mesh component or other compression resistant material may also be embedded into the polymer to facilitate mechanical coupling (e.g., suturing) of the strain relief tube 50 to surrounding tissue.

    [0040] FIG. 3 is a cross-sectional view of an embodiment of a strain relief tube 60 having a preformed shape that reduces loading on the distal end 18 of the lead 14. The strain relief tube 60 surrounds or wraps around the lead body 15 and, after becoming encapsulated with surrounding tissue, moves in concert with the encapsulated tissue. In some embodiments, the strain relief tube 60 may be slid into position over the lead body 15 from the proximal end 16 or distal end 18 of the lead 14. In other embodiments, the strain relief tube 60 includes an opening (e.g., a slit) between its ends to allow strain relief tube 60 to be opened and positioned over the lead body 15 at the desired location. The strain relief tube 60 may be comprised of materials similar to those discussed above with regard to strain relief tube 50.

    [0041] In the embodiment shown, the strain relief tube 60 is arranged in a waved configuration including multiple undulations. In this configuration, the strain relief tube 60 allows the lead 14 to respond to forces in the axial and/or radial directions with elongation of the strain relief tube 60 (i.e., straightening of the undulations). The strain relief tube 60 is configured to return to its implanted shape after radial and/or axial forces are no longer applied to the lead 14.

    [0042] The lead body 15 may be allowed to freely slide within the strain relief tube 60. In some embodiments, the diameter of the interior lumen 64 of the strain relief tube 60 may be slightly larger than the outer diameter of the lead body 15 to allow the lead body 15 to move relative to the strain relief tube 60. The strain relief tube 60 may additionally or alternatively be made of a material that reduces friction between the lead body 15 and the strain relief tube 60.

    [0043] In alternative embodiments, the strain relief tube 60 is secured to the lead body 15 to prevent relative movement between the strain relief tube 60 and lead body 15. For example, the strain relief tube 60 may be mechanically or chemically coupled to the lead body 15. In some embodiments, a mesh component is embedded into the material of the strain relief tube 60 to facilitate mechanical coupling (e.g., suturing) of the strain relief tube 60 and adjacent tissue.

    [0044] FIG. 4 is a cross-sectional view of a strain relief tube 70 having a similar shape and configuration as the strain relief tube 60, and including one or more suture elements 72 that facilitate securing of the strain relief tube 70 to adjacent tissue. After the strain relief tube 70 is positioned over the lead body 15, the clinician may configure the lead body 15 and strain relief tube 70 into any shape that reduces the load on the distal end 18 during movement of the patient P. This may occur prior to or during implantation of the lead 14. For example, the clinician may secure the electrodes 20 to the nerve N, and subsequently shape the portion of the lead body 15 surrounded by the strain relief tube 70 into the selected configuration. When the lead 14 is positioned and the strain relief tube 70 is shaped, the clinician may secure the strain relief tube 70 to adjacent tissue via the suture elements 72. The strain relief tube 70 may then become encapsulated by the surrounding tissue, allowing the strain relief tube 70 and shaped portion of the lead body 15 to move in concert with surrounding tissue to minimize loading at the distal end 18.

    [0045] FIG. 5 is a perspective view of an embodiment of a portion of a strain relief tube 80 having a preformed shape. The strain relief tube 80 may also include one or more suture elements 82 that facilitate securing of the strain relief tube 80 to adjacent tissue. As with earlier described embodiments, the strain relief tube 80 surrounds or wraps around the lead body 15 (not shown) such that the lead body 15 is positioned within lumen 84 After becoming encapsulated with surrounding tissue, moves in concert with the encapsulated tissue. In some embodiments, the strain relief tube 80 may be slid into position over the lead body 15 from the proximal end 16 or distal end 18 of the lead 14. In other embodiments, the strain relief tube 80 includes an opening (e.g., a slit) between its ends to allow strain relief tube 80 to be opened and positioned over the lead body 15 at the desired location. The strain relief tube 60 may be comprised of materials and have characteristics similar to those discussed above with regard to strain relief tubes 50, 60 and 70.

    [0046] In the embodiment shown in FIG. 5, the strain relief tube 80 also includes a stylet lumen (or straightening wire lumen) 86 configured to receive a stylet or straightening wire during implantation. The lumen 86 may be formed in a wall of the strain relief tube 80. The stylet or straightening wire straightens the preformed shape of the strain relief tube 80 so that the clinician can more easily deliver the lead 14 and coupled strain relief tube 80 to the implant site. The lumen 86 allows for the insertion of a stylet or straightening wire to straighten only the strain relief tube 80 (and portion of the lead 14 therein) such that the entire lead 14 does not straighten during implantation. After positioned at the implant site, the stylet or straightening wire is removed from the lumen 86, and the strain relief tube 80 returns to its preformed shape.

    [0047] The stylet lumen or straightening wire lumen may alternatively have other configurations. For example, FIG. 6 is a perspective view of a portion of a strain relief tube 90 including one or more suture elements 92 that facilitate securing of the strain relief tube 90 to adjacent tissue and a lumen 94 configured to retain a portion of the lead body 15. In this embodiment, a stylet lumen (or straightening wire lumen) 96 is formed on an exterior of the strain relief tube 90. The positioning of the stylet lumen with respect to the strain relief tube may be based on the length and preformed shape of the strain relief tube.

    [0048] Various modifications and additions can be made to the exemplary embodiments discussed without departing from the scope of the present invention. For example, while the embodiments described above refer to particular features, the scope of this invention also includes embodiments having different combinations of features and embodiments that do not include all of the described features. For example, while the disclosed strain relief assemblies have been described with respect to a neural stimulation system, the disclosed strain relief assemblies may also be employed in association with other types of leads, such as leads in a cardiac stimulation system. Accordingly, the scope of the present invention is intended to embrace all such alternatives, modifications, and variations as fall within the scope of the claims, together with all equivalents thereof.


    Claims

    1. A strain relief element for an implantable medical device lead (14), the strain relief element comprising a flexible strain relief tube (50, 60, 70, 80, 90) including a lumen (54, 64, 84, 94) configured to receive a portion of a lead body (15) of the implantable medical device lead (14) such that the strain relief tube (50, 60, 70, 80, 90) surrounds the portion of the lead body (15), characterised in that the strain relief tube (50, 60, 70, 80, 90) is shaped to include contours such that the portion of the lead body (15) surrounded by the strain relief tube (50, 60, 70, 80, 90) is shaped into a waved configuration including multiple undulations and maintains a shape that varies from the longitudinal axis of the lead body.
     
    2. The strain relief element of any preceding claim, and further comprising:

    one or more suture elements (52, 72, 82, 92) coupled to an exterior of the strain relief tube (50, 60, 70, 80, 90) and configured to secure the strain relief element to adjacent tissue after shaping the strain relief tube (50, 60, 70, 80, 90).


     
    3. The strain relief element of any preceding claim, wherein the strain relief tube (50, 60, 70, 80, 90) includes preformed contours.
     
    4. The strain relief element of any preceding claim, wherein the strain relief element is securable to the lead body (15).
     
    5. The strain relief element of claim 4, and further comprising:

    an embedded mesh material that facilitates mechanical coupling of the strain relief tube (50, 60, 70, 80, 90) to tissue.


     
    6. The strain relief element of any preceding claim, wherein the strain relief tube (50, 60, 70, 80, 90) is comprised of a material selected from the group consisting of silicone, polyurethane, polytetrafluoroethylene (PTFE), and polyester.
     
    7. A lead assembly for an implantable medical device (12), the lead assembly comprising:

    a lead body (15) having a proximal end, a distal end, and a longitudinal axis that extends between the proximal end and distal end; and

    the strain relief element of any preceding claim, wherein the strain relief tube (50, 60, 70, 80, 90) of the strain relief element surrounds a portion of the lead body (15), the strain relief tube (50, 60, 70, 80, 90) comprising a flexible material configured to include the contours such that the portion of the lead body (15) surrounded by the strain relief tube (50, 60, 70, 80, 90) is shaped into the waved configuration including multiple undulations and maintains the shape that varies from the longitudinal axis of the lead body (15), wherein the contours vary in response to forces on the lead body (15) to prevent strain at the distal end of the lead body (15).


     
    8. The lead assembly of claim 7, wherein the strain relief tube (50, 60, 70, 80, 90) moves with respect to the lead body (15).
     
    9. The lead assembly of one of claims 7 to 8, wherein the strain relief tube (50, 60, 70, 80, 90) is securable to the lead body (15).
     
    10. The lead assembly of one of claims 7 to 9, wherein the portion of the lead body (15) surrounded by the strain relief tube (50, 60, 70, 80, 90) is proximate the distal end.
     
    11. A lead assembly for an implantable medical device (12), the lead assembly comprising:

    a lead body (15) having a proximal end, a distal end, and a longitudinal axis that extends between the proximal end and distal end;

    one or more connectors (19) at the proximal end of the lead body (15) that are each adapted for connection to a pulse generator;

    one or more electrodes (20) at the distal end of the lead body (15) electrically coupled to the one or more connectors (19); and

    the strain relief element of one of claims 1 to 6, wherein the strain relief tube (50, 60, 70, 80, 90) of the strain relief element surrounds a portion of the lead body (15), the strain relief tube (50, 60, 70, 80, 90) comprising a flexible material configured to include the contours such that the portion of the lead body (15) surrounded by the strain relief tube (50, 60, 70, 80, 90) is shaped into the waved configuration including multiple undulations and maintains the shape that varies from the longitudinal axis of the lead body (15).


     
    12. The lead assembly of claim 11, wherein the strain relief tube (50, 60, 70, 80, 90) moves with respect to the lead body (15).
     
    13. The lead assembly of one of claims 11 to 12, wherein the strain relief tube (50, 60, 70, 80, 90) is securable to the lead body (15).
     
    14. The lead assembly of any one of claims 11 to 13, wherein the portion of the lead body (15) surrounded by the strain relief tube (50, 60, 70, 80, 90) is proximate the distal end.
     


    Ansprüche

    1. Zugentlastungselement für eine Leitung (14) einer implantierbaren medizinischen Vorrichtung, welches Zugentlastungselement einen flexiblen Zugentlastungsschlauch (50, 60, 70, 80, 90), der ein Lumen (54, 64, 84, 94) enthält, das konfiguriert ist zum Aufnehmen eines Teils eines Leitungskörpers (15) der Leitung (14) der implantierbaren medizinischen Vorrichtung derart, dass der Zugentlastungsschlauch (50, 60, 70, 80, 90) den Bereich des Leitungskörpers (15) umgibt, aufweist,

    dadurch gekennzeichnet, dass

    der Zugentlastungsschlauch (50, 60, 70, 80, 90) so geformt ist,

    dass er Konturen derart enthält, dass der Teil des Leitungskörpers (15), der von dem Zugentlastungsschlauch (50, 60, 70, 80, 90) umgeben ist, in eine wellenförmige Konfiguration, die mehrere Schwingungen enthält, geformt ist und eine Form, die von der Längsachse des Leitungskörpers aus variiert, aufrechterhält.
     
    2. Zugentlastungselement nach dem vorhergehenden Anspruch, weiterhin aufweisend:

    ein oder mehrere Nähbefestigungselemente (52, 72, 82, 92), die mit dem Äußeren des Zugentlastungsschlauchs (50, 60, 70, 80, 90) gekoppelt und konfiguriert sind zum Sichern des Zugentlastungselements an benachbartem Gewebe nach dem Formen des Zugentlastungsschlauchs (50, 60, 70, 80, 90).


     
    3. Zugentlastungselement nach einem der vorhergehenden Ansprüche, bei dem der Zugentlastungsschlauch (50, 60, 70, 80, 90) vorgeformte Konturen enthält.
     
    4. Zugentlastungselement nach einem der vorhergehenden Ansprüche, bei dem das Zugentlastungselement an dem Leitungskörper (15) befestigbar ist.
     
    5. Zugentlastungselement nach Anspruch 4, weiterhin aufweisend:

    ein eingebettetes Maschenmaterial, das das mechanische Koppeln des Zugentlastungsschlauchs (50, 60, 70, 80, 90) mit Gewebe erleichtert.


     
    6. Zugentlastungselement nach einem der vorhergehenden Ansprüche, bei dem der Zugentlastungsschlauch (50, 60, 70, 80, 90) aus einem Material besteht, das ausgewählt ist aus der Gruppe bestehend aus Silikon, Polyurethan, Polytetrafluorethylen (PTFE) und Polyester.
     
    7. Leitungsanordnung für eine implantierbare medizinische Vorrichtung (12), welche Leitungsanordnung aufweist:

    einen Leitungskörper (15) mit einem proximalen Ende, einem distalen Ende und einer Längsachse, die sich zwischen dem proximalen Ende und dem distalen Ende erstreckt; und

    das Zugentlastungselement nach einem der vorhergehenden Ansprüche, wobei der Zugentlastungsschlauch (50, 60, 70, 80, 90) des Zugentlastungselements einen Teil des Leitungskörpers (15) umgibt, der Zugentlastungsschlauch (50, 60, 70, 80, 90), der ein flexibles Material aufweist, konfiguriert ist zum Enthalten der Konturen in der Weise, dass der Teil des Leitungskörpers (15), der von dem Zugentlastungsschlauch (50, 60, 70, 80, 90) umgeben ist, in die wellenförmige Konfiguration, die mehrere Schwingungen enthält, geformt ist und die Form, die von der Längsachse des Leitungskörpers (15) aus variiert, aufrechterhält, wobei die Konturen in Abhängigkeit von Kräften auf den Leitungskörper (15) variieren, um eine Zugbeanspruchung an dem distalen Ende des Leitungskörpers (15) zu verhindern.


     
    8. Leitungsanordnung nach Anspruch 7, bei der der Zugentlastungsschlauch (50, 60, 70, 80, 90) sich mit Bezug auf den Leitungskörper (15) bewegt.
     
    9. Leitungsanordnung nach einem der Ansprüche 7 bis 8, bei der der Zugentlastungsschlauch (50, 60, 70, 80, 90) an dem Leitungskörper (15) befestigbar ist.
     
    10. Leitungsanordnung nach einem der Ansprüche 7 bis 9, bei der der Teil des Leitungskörpers (15), der von dem Zugentlastungsschlauch (50, 60, 70, 80, 90) umgeben wird, nahe dem distalen Ende ist.
     
    11. Leitungsanordnung für eine implantierbare medizinische Vorrichtung (12), welche Leitungsanordnung aufweist:

    einen Leitungskörper (16) mit einem proximalen Ende, einem distalen Ende und einer Längsachse, die sich zwischen dem proximalen Ende und dem distalen Ende erstreckt;

    einen oder mehrere Verbinder (19) an dem proximalen Ende des Leitungskörpers (15), die jeweils ausgestaltet sind für eine Verbindung mit einem Impulsgenerator;

    eine oder mehrere Elektroden (20) an dem distalen Ende des Leitungskörpers (15), die elektrisch mit dem einen oder den mehreren Verbindern (19) gekoppelt sind; und

    das Zugentlastungselement nach einem der Ansprüche 1 bis 6, wobei der Zugentlastungsschlauch (50, 60, 70, 80, 90) des Zugentlastungselements einen Teil des Leitungskörpers (15) umgibt, der Zugentlastungsschlauch (50, 60, 70, 80, 90), der ein flexibles Material aufweist, konfiguriert ist zum Enthalten der Konturen in der Weise, dass der Bereich des Leitungskörpers (15), der von dem Zugentlastungsschlauch (50, 60, 70, 80, 90) umgeben ist, in eine wellenförmige Konfiguration, die mehrere Schwingungen enthält, geformt ist und die Form, die von der Längsachse des Leitungskörpers (15) aus variiert, aufrechterhält.


     
    12. Leitungsanordnung nach Anspruch 11, bei der der Zugentlastungsschlauch (50, 60, 70, 80, 90) sich mit Bezug auf den Leitungskörper (15) bewegt.
     
    13. Leitungsanordnung nach einem der Ansprüche 11 bis 12, bei der der Zugentlastungsschlauch (50, 60, 70, 80, 90) an dem Leitungskörper (15) befestigbar ist.
     
    14. Leitungsanordnung nach einem der Ansprüche 11 bis 13, bei der der Bereich des Leitungskörpers (15), der von dem Zugentlastungsschlauch (50, 60, 70, 80, 90) umgeben ist, nahe dem distalen Ende ist.
     


    Revendications

    1. Elément de soulagement des contraintes pour une connexion de dispositif médical implantable (14), l'élément de soulagement des contraintes comprenant un tube de soulagement des contraintes flexible (50, 60, 70, 80, 90) incluant une lumière (54, 64, 84, 94) configurée de manière à recevoir une partie d'un corps de connexion (15) de la connexion de dispositif médical implantable (14) de telle sorte que le tube de soulagement des contraintes (50, 60, 70, 80, 90) entoure la partie du corps de connexion (15), caractérisé en ce que le tube de soulagement des contraintes (50, 60, 70, 80, 90) est conformé de manière à inclure des contours de telle sorte que la partie du corps de connexion (15) entourée par le tube de soulagement des contraintes (50, 60, 70, 80, 90) soit conformée selon une configuration ondulée incluant de multiples ondulations et conserve une forme qui varie par rapport à l'axe longitudinal du corps de connexion.
     
    2. Elément de soulagement des contraintes selon l'une quelconque des revendications précédentes, et comprenant en outre :

    un ou plusieurs élément(s) de suture (52, 72, 82, 92) couplé(s) à un extérieur du tube de soulagement des contraintes (50, 60, 70, 80, 90) et configuré(s) de manière à fixer l'élément de soulagement des contraintes à un tissu adjacent après conformation du tube de soulagement des contraintes (50, 60, 70, 80, 90).


     
    3. Elément de soulagement des contraintes selon l'une quelconque des revendications précédentes, dans lequel le tube de soulagement des contraintes (50, 60, 70, 80, 90) inclut des contours préformés.
     
    4. Elément de soulagement des contraintes selon l'une quelconque des revendications précédentes, dans lequel l'élément de soulagement des contraintes peut être fixé au corps de connexion (15).
     
    5. Elément de soulagement des contraintes selon la revendication 4, et comprenant en outre :

    un matériau à mailles intégré qui facilite un couplage mécanique du tube de soulagement des contraintes (50, 60, 70, 80, 90) sur un tissu.


     
    6. Elément de soulagement des contraintes selon l'une quelconque des revendications précédentes, dans lequel le tube de soulagement des contraintes (50, 60, 70, 80, 90) est réalisé en un matériau choisi parmi le groupe constitué par le silicone, le polyuréthane, le polytétrafluoroéthylène (PTFE) et le polyester.
     
    7. Assemblage de connexion pour un dispositif médical implantable (12), l'assemblage de connexion comprenant :

    un corps de connexion (15) qui comporte une extrémité proximale,

    une extrémité distale et un axe longitudinal qui s'étend entre l'extrémité proximale et l'extrémité distale ; et

    l'élément de soulagement des contraintes selon l'une quelconque des revendications qui précèdent, dans lequel le tube de soulagement des contraintes (50, 60, 70, 80, 90) de l'élément de soulagement des contraintes entoure une partie du corps de connexion (15), le tube de soulagement des contraintes (50, 60, 70, 80, 90) comprenant un matériau flexible configuré de manière à inclure les contours de telle sorte que la partie du corps de connexion (15) entourée par le tube de soulagement des contraintes (50, 60, 70, 80, 90) soit conformée selon la configuration ondulée incluant de multiples ondulations et conserve la forme qui varie par rapport à l'axe longitudinal du corps de connexion (15), dans lequel les contours varient en réponse à des forces sur le corps de connexion (15) afin d'empêcher des contraintes au niveau de l'extrémité distale du corps de connexion (15).


     
    8. Assemblage de connexion selon la revendication 7, dans lequel le tube de soulagement des contraintes (50, 60, 70, 80, 90) se déplace par rapport au corps de connexion (15).
     
    9. Assemblage de connexion selon l'une des revendications 7 à 8, dans lequel le tube de soulagement des contraintes (50, 60, 70, 80, 90) peut être fixé au corps de connexion (15).
     
    10. Assemblage de connexion selon l'une des revendications 7 à 9, dans lequel la partie du corps de connexion (15) entourée par le tube de soulagement des contraintes (50, 60, 70, 80, 90) est à proximité de l'extrémité distale.
     
    11. Assemblage de connexion pour un dispositif médical implantable (12), l'assemblage de connexion comprenant :

    un corps de connexion (15) comportant une extrémité proximale, une extrémité distale et un axe longitudinal qui s'étend entre l'extrémité proximale et l'extrémité distale ;

    un ou plusieurs connecteur(s) (19) au niveau de l'extrémité proximale du corps de connexion (15) qui est/sont chacun adapté(s) pour une connexion sur un générateur d'impulsions ;

    une ou plusieurs électrode(s) (20) au niveau de l'extrémité distale du corps de connexion (15) couplée(s) électriquement au(x) un ou plusieurs connecteur(s) (19) ; et

    l'élément de soulagement des contraintes selon l'une des revendications 1 à 6, dans lequel le tube de soulagement des contraintes (50, 60, 70, 80, 90) de l'élément de soulagement des contraintes entoure une partie du corps de connexion (15), le tube de soulagement des contraintes (50, 60, 70, 80, 90) comprenant un matériau flexible configuré de manière à inclure les contours de telle sorte que la partie du corps de connexion (15) entourée par le tube de soulagement des contraintes (50, 60, 70, 80, 90) soit conformée selon la configuration ondulée incluant de multiples ondulations et conserve la forme qui varie par rapport à l'axe longitudinal du corps de connexion (15).


     
    12. Assemblage de connexion selon la revendication 11, dans lequel le tube de soulagement des contraintes (50, 60, 70, 80,90) se déplace par rapport au corps de connexion (15).
     
    13. Assemblage de connexion selon l'une des revendications 11 à 12, dans lequel le tube de soulagement des contraintes (50, 60, 70, 80, 90) peut être fixé au corps de connexion (15).
     
    14. Assemblage de connexion selon l'une quelconque des revendications 11 à 13, dans lequel la partie du corps de connexion (15) entourée par le tube de soulagement des contraintes (50, 60, 70, 80, 90) est à proximité de l'extrémité distale.
     




    Drawing














    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description