(19)
(11)EP 2 744 111 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
02.10.2019 Bulletin 2019/40

(21)Application number: 13197282.0

(22)Date of filing:  13.12.2013
(51)Int. Cl.: 
H03K 17/96  (2006.01)

(54)

Control device for an electrical circuit integrated on a substrate made of polymeric material

Steuerungsvorrichtung für eine in ein Substrat aus Polymermaterial integrierte elektrische Schaltung

Dispositif de commande pour un circuit électrique intégré sur un substrat en matériau polymère


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 14.12.2012 IT TO20121084

(43)Date of publication of application:
18.06.2014 Bulletin 2014/25

(73)Proprietor: Plastic Components and Modules Automotive S.p.A.
10137 Torino (TO) (IT)

(72)Inventors:
  • Parola, Enrico
    10071 Borgaro Torinese (TO) (IT)
  • Iacobone, Pasquale
    85025 Melfi (Potenza) (IT)
  • Valentin, Etienne
    10129 Torino (IT)

(74)Representative: Deambrogi, Edgardo et al
Jacobacci & Partners S.p.A. Corso Emilia 8
10152 Torino
10152 Torino (IT)


(56)References cited: : 
WO-A1-2012/055934
GB-A- 2 141 548
US-A1- 2012 001 870
WO-A1-2012/101374
US-A1- 2010 140 723
  
  • SIMON J. LEIGH ET AL: "A Simple, Low-Cost Conductive Composite Material for 3D Printing of Electronic Sensors", PLOS ONE, vol. 7, no. 11, 21 November 2012 (2012-11-21), page e49365, XP055088994, DOI: 10.1371/journal.pone.0049365
  • ALAMUSI ET AL: "Piezoresistive Strain Sensors Made from Carbon Nanotubes Based Polymer Nanocomposites", SENSORS, vol. 11, no. 12, 11 December 2011 (2011-12-11), pages 10691-10723, XP055088999, ISSN: 1424-8220, DOI: 10.3390/s111110691
  • HAIBO ZHAO ET AL: "Carbon nanotube yarn strain sensors", NANOTECHNOLOGY, IOP, BRISTOL, GB, vol. 21, no. 30, 30 July 2010 (2010-07-30) , page 305502, XP020175140, ISSN: 0957-4484
  • LI ET AL: "Sensors and actuators based on carbon nanotubes and their composites: A review", COMPOSITES SCIENCE AND TECHNOLOGY, ELSEVIER, UK, vol. 68, no. 6, 26 January 2008 (2008-01-26), pages 1227-1249, XP022527239, ISSN: 0266-3538, DOI: 10.1016/J.COMPSCITECH.2008.01.006
  • EUN-SOO HWANG ET AL: "A Polymer-Based Flexible Tactile Sensor for Both Normal and Shear Load Detections and Its Application for Robotics", JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, IEEE SERVICE CENTER, US, vol. 16, no. 3, 1 June 2007 (2007-06-01), pages 556-563, XP011187750, ISSN: 1057-7157, DOI: 10.1109/JMEMS.2007.896716
  • WARIS OBITAYO ET AL: "A Review: Carbon Nanotube-Based Piezoresistive Strain Sensors", JOURNAL OF SENSORS, vol. 283, no. 6, 1 January 2012 (2012-01-01), pages 62-15, XP055089013, ISSN: 1687-725X, DOI: 10.1166/jnn.2004.109
  
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description


[0001] The present invention relates to the integration of electrical devices and connections in plastics, and in particular in components or structural parts which are made of polymeric material.

[0002] More specifically, the invention relates to a control device for an electrical circuit, such as, for example, a control device adapted to provide switching functions, according to the preamble of Claim 1.

[0003] In the automotive field it is known to use non-conductive polymeric materials, for example polyolefinic thermoplastic polymers which are commercially available as polypropylene (PP) or high-density polyethylene (HDPE) for the realization of on-board components, including purely by way of example the fuel systems (tanks and other structural parts), the internal finishing of the passenger compartment (dashboard, door panels) and the external finishing of the vehicle body (bumpers, mouldings).

[0004] The on-board electrical or electronic devices which are installed in combination with these components, including sensors, devices for operating on-board systems, devices for controlling the management of the functions in the passenger compartment, are typically made as discrete elements, which are housed in seats obtained by moulding in the shape of the component and are connected to remote power supply sources and to remote signal processing components by means of wiring laid along the chassis of the vehicle.

[0005] In order to avoid laying extensive lengths of wiring, different technological solutions for integrating the electrical connection lines in a plastic matrix which forms a lining in the passenger compartment of a vehicle or a structural component of the vehicle have been developed. A further development consists in the integration of the on-board electronic devices, for example the devices for controlling the passenger compartment and bodywork functions, in the plastic components inside the passenger compartment, such as the dashboard and the door panels, where the devices may be embedded and touch-operated.

[0006] WO 2007/096016 describes a lining for a vehicle in which regions including switching, sensor or electrical or electronic signal transmission functions are formed.

[0007] The on-board functional devices, such as the sensor or control devices, are formed as discrete elements which are arranged in a mould for forming the lining prior to injection of the plastic, so as to surface at the side of the lining facing the passenger compartment, once moulding has been performed, and provide a touch-operation function. Flexible conductor strips are embedded in the plastic matrix during moulding for connecting the devices outside of the lining formed.

[0008] EP 1,663,720 describes a touch-operated device which can be used on-board a vehicle and which includes a capacitive sensor arranged underneath a surface of an internal lining of the vehicle and which can be touch-operated by a person present inside the passenger compartment. Such a device may be integrated in the covering surface of an air-bag, inside a steering wheel, on a dashboard, within an armrest, in a control panel or in any other surface of a vehicle which is suitable for interaction with on-board electronic devices.

[0009] The German utility model DE 299 07 054 relates to an instrument dashboard, in particular for a motor vehicle, with a support made at least partially of plastic, which includes display instruments and operating components which are powered by means of conductive tracks, in which the conductive tracks are made in electrically conductive plastic, for example ULTRAFORM® produced by Basf or DURETHAN® and POCAN® produced by Bayer. The conductive tracks are preferably made in a flat form and combined with the support by mechanical or chemical means, for example by means of an injection-moulding process.

[0010] WO 2010/026000 describes a single-layer or multiple-layer lining for a vehicle, which has regions formed by a mixture of plastic and conductive material. The lining may be used as a part of the interior upholstery of a vehicle, for example for dashboards or insides of doors. Predetermined areas are provided with conductive tracks for performing electrical conduction functions and more complex switching, sensor or generally signal transmission functions, which tracks are made of a mixture of plastic materials forming the lining and a conductive material, for example carbon nanotubes.

[0011] A method for producing electrically conductive and/or piezo-resistive tracks on a non-conductive, composite, polymeric substrate comprising a matrix of commercially available polyolefinic thermoplastic polymers, with a dispersed-phase filler of carbonization promoters such as carbon nanofibres or carbon nanotubes is known from the international patent application WO 2012/055934, which teaches how to realize the conductive tracks by means of laser ablation and consequent localized pyrolysis of the substrate which results in the formation of carbonaceous conductive structures favoured by the promoters which are able to participate in the conduction by means of concentration in the tracks.

[0012] However, although the aforementioned document suggests, in theory and in the light of laboratory tests, using such a technology for the formation of electrical connections and simple electrical devices (such as pushbuttons, sensors, antennas, etc.) incorporated in polymeric substrates widely used in motor vehicles, such as polypropylene and polyethylene, it does not deal with the practical aspect of industrial application of this technology to the manufacture of the aforementioned elements in actual on-board components, nor the integration of the technology with the already established techniques for production of these components.

[0013] The components in the automotive field which mostly benefit from integration with electrical devices, such as the dashboard or door panels, in fact, have particular forms which are determined by the ergonomic requirements associated with their use or simply by their position in the passenger compartment. In such cases, their shaped forms are determined exclusively by the aesthetic appearance which the designer wishes to give to the passenger compartment of a vehicle, such that it may be distinguished from the design solutions of competitors.

[0014] Moreover, the industrial technology of injection-moulding in the automotive field is nowadays optimized for the processing of polymeric compounds which are commonly used for the production of these components, but is not adapted to the processing of compounds with a dispersed-phase filler, the distribution of the filler affecting the electrical properties of the entire component and even more specifically the high electrical conductivity values which can be obtained by means of selective laser ablation of (bidimensional or tridimensional) regions of the component intended to integrate the designed electrical functions.

[0015] It is therefore desirable that the technology for the manufacturing of electrical devices and connections incorporated in non-conductive polymeric substrates should be improved for practical application thereof to specific on-board components of a vehicle and, vice versa, that the current technologies for moulding these components in the automotive field should be adapted to the new materials.

[0016] The main factors to be considered during the design of a motor-vehicle component using a polymeric material with a dispersed-phase filler having conductive properties which can be locally activated in a selective manner are strictly dependent on the suitability of the component to form conductive tracks with electrical conductivity properties which can be controlled depending on the desired design configurations. For this purpose, during the design of a component, the following parameters must be adjusted:
  • the minimum distance between parallel conductive tracks, in order to prevent interference and short-circuits;
  • the curvatures and plane variations of the conductive tracks, in order to avoid the formation of discontinuities therein;
  • the geometrical configuration of the conductive tracks (length and cross-section) depending on the electrical characteristics of the signal, the polymeric material used and the foreseen electrical load;
  • the geometrical configuration of the component made of polymeric material in the regions designed for an electrical device, in order to define controlled-deformation zones and realize control devices which can be activated by external deformation and pressure stimuli, i.e. based on the piezo-resistive effect of the conductive tracks;
  • the geometrical configuration of the conductive tracks in the regions designed for an electrical device, in order to define capacitive proximity sensor zones and form control devices which can be operated by external touching actions, i.e. based on the capacitive effect of the conductive tracks;
  • the technical solutions for connecting the component containing the conductive tracks to the on-board power supply and/or signal processing systems.


[0017] The object of the present invention is therefore to provide a component or a shaped structural part made of non-conductive, composite, polymeric material, in particular for installation on-board a vehicle, and integrating electrical devices and connections.

[0018] A further object of the invention is to produce an electrical device integrated in a component or structural part made of non-conductive composite polymeric material, in particular for installation on-board a vehicle, and adapted to provide control functions in an on-board electrical circuit.

[0019] The general aims underlying the invention are also considered to be those of:
  • increasing energy saving in latest-generation vehicles;
  • increasing the degree of recyclability of the polymeric components;
  • reducing the costs of acquisition and assembly of accessory components, in particular switches and wiring.


[0020] According to the present invention these objects are achieved by means of a control device for an electrical circuit having the characteristic features mentioned in Claim 1.

[0021] The invention also relates to a component or structural part made of composite polymeric material, particularly for installation on-board a vehicle, integrating a control device for an electrical circuit, as claimed.

[0022] Particular embodiments form the subject of the dependent claims, the contents of which are to be understood as forming an integral part of the present description.

[0023] In short, the present invention is based on the technology of manufacturing components or structural parts of a vehicle using non-conductive composite polymeric material, comprising a polymeric matrix with a nano-structured dispersed-phase filler including filamentary nano-structures, promoters of carbonization for the formation of carbonaceous conductive structures, according to the teachings of WO 2012/055934.

[0024] The invention proposes using laser ablation technology for defining, in components or structural parts of a vehicle, conductive circuits which are entirely carbon-based in order to provide conductive tracks which are integrated in the polymeric material and form electrical connections or piezo-resistive electrical devices (for example, signal switches which are integrated in the component) obtained by means of deformation of predetermined areas of polymeric surfaces containing conductive tracks.

[0025] The invention is based on the principle of extending the disturbance region of a conductive track integrated in a component or a structural part made of non-conductive polymeric material, and forming a corresponding area of said component or said part with a pressure-deformable structure to produce an electrical control device.

[0026] Further characteristic features and advantages of the invention will be explained more clearly in the following detailed description of an embodiment thereof, provided by way of a non-limiting example, with reference to the accompanying drawings in which:

Figure 1 is a schematic flow diagram illustrating an innovative method for the production of a vehicle component or a structural part made using non-conductive polymeric material and integrating electrical devices or connections;

Figure 2 is a diagram illustrating the characteristic parameters of a step of the innovative method relating to the moulding of a non-conductive polymeric composite material which includes a dispersed phase of filamentary nano-structures, promoters of conductivity, and to which reinforcing fibres have been added;

Figure 3 is a schematic illustration of a step of the innovative method relating to the moulding of a polymeric composite material including a dispersed phase of filamentary nano-structures, promoters of conductivity, to which reinforcing fibres have been added;

Figure 4 is a cross-sectional illustration of a process for laser writing a volume of composite polymeric material;

Figures 5 and 6 are schematic illustrations, in a plan view and cross-sectioned perspective view, respectively, of a piezo-electric operating device integrated in a substrate of non-conductive polymeric material; and

Figure 7 is an exemplary schematic illustration of the areas of conductivity (conductive tracks) in a composite polymeric material and of corresponding external connection terminals.



[0027] Figure 1 shows in schematic form the steps of an innovative method for the production of a component or a structural part for a vehicle, made using non-conductive polymeric material and integrating electrical devices or connections.

[0028] In step 100 the composite polymeric material is provided, said material comprising a non-conductive polymeric matrix and a dispersed phase of filamentary nano-structures which are promoters of conductivity. At the same time, in step 200 the design of the component or the structural part of the vehicle and the associated mould for injection-moulding forming of the material produced in step 100 is performed.

[0029] The step for forming the component or the structural part is denoted by 300 and, in the following, at step 400, definition of the conductive areas or tracks is carried out on the moulded part using the laser ablation writing technique described in WO 2012/055934.

[0030] Finally, in step 500, the component or part thus produced, which has predetermined conductive areas forming the electrical devices and connections, is assembled together with other supply components, such as the external connectors.

[0031] The provision of the composite polymeric material comprises mixing, in a polyolefinic polymeric substrate, for example commercially available polypropylene (PP) or high-density polyethylene (HDPE), of a phase of filamentary nano-structures, promoters of conductivity, in particular carbon-based nano-structures, such as carbon nanotubes or nanofibres enriched with substances which favour compatibility, namely coupling agents for the reinforcing fibres (for example alkaline hydroxides in aqueous solutions of polymer grafted with maleic anhydride) and a phase of reinforcing fillers, such as glass fibres or fillers of mineral origin.

[0032] The inventors have noted that the increase in conductivity in the components made using this polymeric material is greater than the conductivity in the components made of composite polymeric material without reinforcing fibres.

[0033] The reinforcing fibres, especially those with short glass fibres, have the effect of increasing the degree of dispersion of the carbon nano-structures which otherwise tend to reaccumulate in the melted mass, creating "islands" which overall prevent the transit of electric charges in the manufactured article, owing to the Van der Waals forces which are generated between the chains of nano-structures. This distribution effect also reduces the so-called skin effect, i.e. the formation of a surface film of non-conductive polymeric material, allowing the nanotubes to migrate towards the surface, directed by the reinforcing fibres.

[0034] The reinforcing fibres, in particular the glass fibres, are a reinforcing agent which is widely used in the polymer sector. In the tests carried out for optimization of the raw materials to be used in the process described above it has emerged that in a polyolefin (PP, HDPE) based polymeric matrix, to which carbon nanotubes have been added, the presence of glass fibres, preferably in filaments with a length of the order of 5 mm and diameter of the order of 10 µm, increases the electrical conductivity thereof, even without further carbonization treatment, and facilitates the dispersion of the carbon nanotubes.

[0035] The results obtained show that a partially conductive interphase is formed between the glass fibre and the polymeric matrix owing to the carbon nanotubes which tend to line the glass fibre: the local concentration of the carbon nanotubes inside the glass fibre / polymer matrix interphase provides the material with multi-functional properties, including an increase in the mechanical characteristics due to the presence of the glass fibres and an increase in the electrical characteristics due to the presence of the carbon nanotubes.

[0036] The coupling agents used to improve the adhesion of the glass fibres in the polymeric matrix improve the distribution of the fibres in the matrix itself, making it practically isotropic: the nanotubes which line the fibres are consequently also uniformly distributed in the polymeric matrix, thereby ensuring the homogeneity of the electrical conductivity in the article.

[0037] It has been noted in tests that a component made from polyolefinic materials to which carbon nanotubes have been added, owing to the correct dispersion exerted by the glass fibres, has a conductivity at least 100 times greater than an analogous component without a dispersed glass-fibre phase.

[0038] These results have been obtained with polyolefin-based polymers characterized by carbon nanotube fillers (multiwall CNT) in an amount from 1.5% to 10% by weight and glass fibre fillers in an amount from 10% to 20% by weight, said values being referred to the weight of the composite material.

[0039] During the moulding of materials of this type, the flow of the material filling a mould, the dynamic behaviour of which is comparable to that of a high-viscosity fluid, produces complex interactions which result in:
  • a fragmentation, so that the lengths of the fibres are distributed in a manner typical of a Weibull distribution, shown in Figure 2, and
  • a strong influence of the dynamic behaviour of the flow on the arrangement of the fibres which arrange with preferential orientations.


[0040] In particular, the velocity profile of the flow has a high gradient zone in the vicinity of the mould walls and a zone with a tendentially uniform profile in the central part of the thickness of the mould cavity. Consequently, in the volumes of material which in the centre are subject mainly to transverse deformation, the fibres tend to be arranged in a direction perpendicular to the injection flow, while in the vicinity of the walls the fibres tend to be arranged parallel to the flow, as a result of the shearing stresses. This condition is shown in Figure 3 for a generic mould with a tapered shape provided with an injection nozzle where G indicates the injection nozzle, A indicates the advancing front edge of the injected flow, F indicates the arrangement of the fibres and S indicates the volume of solidified composite material.

[0041] The fluid-dynamic conditions which are created during the process of injection of the composite material thus mixed therefore define the orientations of the fibres which in turn determine the mechanical and electrical properties of the component.

[0042] Therefore, in view of the foregoing, in order to avoid localized stress of the material during the injection step with an associated loss of the conductive capacities (breakage of nanotubes, deterioration of the matrix, skin effect), during design of the actual mould particular attention must be paid to the following parameters:
  • injection layout, if necessary sequential;
  • mould conditioning layout;
  • design of the movements of the carriages which are not temperature-regulated.


[0043] The component moulding step 300 is therefore dependent on a suitable design of the mould in step 200 which is dependent in turn on the design of the component, not only as regards the form and volume dimensions, but also the arrangement of the conductive regions where the integrated electrical connections or devices are to be formed.

[0044] The component is obtained by means of injection-moulding of the polymeric compound defined above. Advantageously, the component or the structural part which is to be made must not have small-radius curvatures and the forming mould must have an optimized spatial distribution of the injection nozzles, which are spatially more concentrated (compact) in the electrically functional areas of the part and spatially more spread out elsewhere.

[0045] The moulding conditions (including, for example, temperature profiles, velocity profiles, temperature-regulation mode of the mould, injection times, pressure profiles) determine in a fundamental manner the electrical conductivity characteristics which the manufactured article will have after moulding and also following definition of the conductive areas or tracks by means of writing or laser ablation.

[0046] The correct setting of these moulding-related parameters is of fundamental importance in order to produce a component which has sufficient levels of internal conductivity, for example of the order of 100 ohm/cm, also before laser activation of the actual conductive areas. Incorrect moulding parameters may cause, on the other hand, a partially isolating skin effect which would hinder the subsequent laser writing activation step.

[0047] The optimum definition of the moulding parameters is generally dependent on the geometrical configuration of the component and the layout of the mould, so that for each new component to be moulded, and associated polymeric material, as well as press type and mould layout, it is necessary to follow a specific procedure of fine-tuning the initial parameters and defining the optimum operational parameters.

[0048] For example, in the case of production of a fuel filler nozzle of a HDPE-based composite material comprising carbon nanotubes and glass fibres in the percentage amounts indicated above, the tests carried out have revealed the following general setting of the parameters necessary for obtaining a good initial conductivity level:
  • mould temperature-regulated to an average temperature of 60°C;
  • high injection speed;
  • low holding pressure;
  • high holding time;


[0049] In particular, from the tests carried out it emerges that the distribution of the glass fibres, and therefore the distribution of the carbon nanotubes (namely the nano-structures which promote conductivity), and consequently the homogeneity of the electrical characteristics of the moulded article, are affected by the following transformation parameters: melting temperature, mould temperature, cooling time, injection speed and time, injection pressure, plasticization speed, holding time and pressure.

[0050] The tests carried out for components with a volume of about 300cm3, such as the fuel filler nozzle, show how it is in any case advantageous to operate using the following moulding parameters:
  • Temperature of the material between 190°C and 260°C;
  • Temperature-regulation of the mould between 50°C and 70°C;
  • Injection speed of between about 60 and 150cm3/s (or an injection time of between 3s and 5s for a volume of 300cm3);
  • Injection pressure of between 60 bar and 80 bar;
  • Holding/cooling time in the mould of between 30s and 60s;
  • Holding pressure of between 35 bar and 60 bar.


[0051] It is noted that, with the polymeric materials to which carbon nanotube and glass fibre fillers have been added, there is a variable dispersion of the said fillers depending on the radial distance from the injection point. In effect, the carbon nanotubes act as a fluidifying agent for the polymer chains: having a smaller size, the hot molecules of polymers "slide" on the nanotubes. This effect results, with regard to the part, in a high concentration of nanotubes close to the injection point and a smaller concentration of nanotubes far from the injection point.

[0052] For this reason, in order to ensure that a functional component is obtained, namely one where it is possible to form conductive tracks able to form electrical connections or devices, it is preferable to arrange the injection zones close to the electrically functional areas of the part, namely the areas of the component or structural part which are to be used for formation of electrical connections or devices.

[0053] For example, in the case where it is required to form areas with piezo-resistive characteristics (adapted to the formation of switching devices such as the control buttons for apparatus on-board a vehicle) it has been established that the arrangement of the injection nozzles must be within a radius of 30 cm from the area assigned to undergo a subsequent laser writing treatment for activation of conductive tracks. Greater distances do not ensure an adequate distribution of the glass fibres and the carbon filamentary nano-structures, irrespective of the moulding parameters envisaged.

[0054] Once the mould has been prepared, following the design of the component or structural part adapted to integrate electrical devices or connections and after implementation of the industrial process for moulding this component or structural part, the step for definition and realization of the conductive areas (tracks) is performed.

[0055] For this purpose the technique of writing by means of laser ablation and consequent localized pyrolysis known from international patent application WO 2012/055934 is applied.

[0056] It has been shown that the localized heating produced by a focused laser beam (which induces selective superficial ablation of the polymer matrix) causes the filamentary nano-structures which are dispersed within the matrix to surface and percolate, thus forming a conductive pattern. Moreover, the interaction of the laser beam with the polymer substrate favours the thermal decomposition thereof and the consequent formation of carbon. The carbon which is formed in this way acts as a bridge between the nano-structures during the process of ablation of the surface layers, further favouring the formation of the electrically conductive areas (tracks).

[0057] A laser beam which is precisely focused on the polymer matrix may be used to obtain by means of ablation deep and stable conductive tracks.

[0058] The parameter for the minimum distance between the conductive tracks must be controlled in order to prevent interference (crosstalk) between adjacent tracks. For this purpose, it has been noted that in a polypropylene matrix with a mineral reinforcing filler (for example talc) in an amount of 10% by weight referred to the weight of the composite material, in order to improve the dimensional stability and the rigidity (including if necessary also rubber for improving the impact elasticity), and carbon nanotube filler in an amount of 2.5% by weight referred to the weight of the composite material, which ensures an electrical conductivity of 1.6 Kohm/cm, in order that there be no interference between the tracks, a minimum distance of 10 mm must be maintained between adjacent tracks.

[0059] The width and depth parameter of the laser beam for ablation of the composite material must be controlled so as to obtain a level of specific electrical resistivity of at least 1.6 Kohm/cm on an injection-moulded component with an average thickness of between 2.5 mm and 3.0 mm.

[0060] Figure 4 shows a cross-sectional view of a laser-cut track. From test results known to the inventors, in order to obtain a level of electrical conductivity of at least 1.6 Kohm/cm, it is necessary to perform a laser incision with a width which is preferably between 1.10 mm and 1.40 mm, even more preferably equal to 1.25 mm, and a depth preferably of between 0.70 mm and 0.90 mm, even more preferably equal to 0.80 mm. The focused laser incision forms a groove B in the surface C of the material with an overall triangular and substantially symmetrical cross-section, but other forms, for example a trapezoidal form, and different orientations may be obtained by controlling focusing and orientation of the laser beam with respect to the surface of the part.

[0061] The inventors have noted that, with a laser beam which has a wavelength of 10.6 µm, the optimum speed of laser ablation is 5 mm/min with an effective focal length of 135 mm and an operating power of about 30 W. In order to avoid localized combustion which results in deterioration of the nanotubes, the laser ablation process is carried out in an inert nitrogen atmosphere.

[0062] It should be noted that a thermally modified zone Z (with transverse dimensions of about 0.2 mm), where an electrical conductivity effect may be detected, is created in the neighbourhood of the groove.

[0063] In order to form electrical connections and devices, the geometrical configuration of the conductive tracks, namely the layout of the conductive region, its width and depth, must also be controlled. This is of fundamental importance in the realization of electrical devices such as switching devices in the form of control buttons integrated in the component, for example in order to usefully employ the piezo-resistive effect of a conductive track, namely the variation in resistance caused by a suitable mechanical deformation, or the capacitive effect of a conductive track, namely the variation in capacity caused by an external body (finger) touching a conductive electrode area.

[0064] The thermally modified zone Z, which represents the active carbonization area, is conveniently situated entirely on the same side with respect to the neutral plane of the substrate of the device subjected to mechanical deformation (neutral axis N in Figure 4 showing a cross section of the device), preferably without crossing it, in such a manner that the active carbonization area is subjected entirely to the same type of deformation (compression or tension). In the part in which the thermally modified zone Z is formed, the material conveniently has to allow for percentage deformations of the filamentary nano-structures (under compression or tension) of between 1.0% and 3.0%.

[0065] Figures 5 and 6 show two schematic illustrations of a control device (button) integrated in a component using the technology described in this patent application, respectively in a plan view from above, showing the forms and dimensions thereof, and a partial view simulating the movement of the device in an operating condition.

[0066] Figure 5 shows a segment 10 of a conductive track embedded in a matrix of polymeric material 12 or substrate, in which an operating area 14 able to be acted on by a user is defined. The embodiment illustrated and currently preferred shows an operating area with a circular form, the diameter of which is between 20 mm and 30 mm and preferably 25 mm, defined along a winding section 10' of the conductive track 10, having a loop-like or meander form, the width of which is between 1.0 mm and 2.0 mm and is preferably equal to 1.5 mm. It must be understood that the illustration of a substantially bell-shaped loop is purely indicative and that other winding trajectories may also be provided in the operating area 14. Advantageously, the greater the overall length of the conductive track subject to stressing and subsequent deformation of the filamentary nano-structures in the operating area, in this case following a pressure exerted on the area by a user, the greater the effect of variation of the electrical resistivity parameter indicating the action of a user performed on the operating device.

[0067] A cut or weakening line 20, for example a thinner zone of the material, is conveniently provided on the polymer substrate around the operating area in order to facilitate the mechanical displacement (oscillation) of at least one portion of the operating area of the device with respect to the surrounding surface of the component in which it is integrated and amplify as far as possible the effect of varying the electrical parameter of the circuit.

[0068] Figure 5 shows an open cut line 20 substantially in the form of cardioid. This cut line defines a base of the operating area 14 (area comprised between the end segments E of the cut line and the circumferential arc F without the cut line) having a substantially trapezoidal form, which allows the device to operate in the elastic range without undergoing permanent deformation.

[0069] Figure 6 shows a partial, simulated, three-dimensional view of the device obtained by sectioning the device area along the diametral cross-sectional line VI-VI shown in Figure 5. It is possible to identify a top surface portion 22a, which is subject to a tractional force in the operating condition where pressure is exerted on the area of the device, and a bottom surface portion 22b, which is subject to compression in the operating condition where pressure is exerted on the area of the device.

[0070] During tests, the piezo-resistive effect occurred when a force of 25 N was applied with an elastic deformation of about 3 mm. A corresponding variation in the electrical resistivity between the ends of the winding segment 10' of the conductive track equivalent to 10% was recorded for a resistance, where no force is applied, equal to R = 30 Kohm, and a resistance, where a force of F = 25 N is applied, equal to R = 33 Kohm.

[0071] The minimum variation in electrical resistivity which can be detected over a background noise resulting from variations in the environmental conditions (for example, temperature or humidity, which also produce dimensional variations in the component) is in the region of 3%.

[0072] In general it was shown that, in order for the operating device thus formed to be able to work in the elastic range, the maximum permissible deformation must be equal to about 3 mm. Moreover, in order to obtain the piezo-resistive effect, with the aforementioned characteristics, the operating area 14 should have a thickness greater than 2 mm and preferably a thickness of 3 mm.

[0073] In the particular case of a "bell-like" winding section, shown in Figure 5, this includes - within the perimeter of the operating area 14 - for the most part sections of trajectory which have a predominant component oriented in the plane of deformation (bending) of the structure (conveniently at least 70% of the total length of the winding section), and are thus subjected to a greater stressing differential, for which reason the filamentary nano-structures experience the maximum deformation, and only minimally (at the top of the bell) a substantially equitensional section of trajectory. This type of curve has the greater variation in resistivity with respect to the length of the winding section.

[0074] Finally, the component or structural part realized by applying the process steps described above and integrating electrical devices or connections is assembled together with other components forming part of a supply set, for example by means of successive mechanical processing operations such as welding, gluing, etc., able to integrate the selectively conductive component in a supply assembly for subsequent installation on the vehicle.

[0075] To this end, advantageously the component or the structural part has, co-moulded on the polymeric matrix, a plurality of metal connection terminals which allow the connection of the conductive tracks and the control devices to electrical circuits or systems outside the component, in order to receive or distribute information or power supply current signals.

[0076] Figure 7 shows a panel of polymeric material, denoted overall by 50, containing conductive tracks 52 which are for example parallel to each other and spaced so as not to cause crosstalk or interference between adjacent connections, said tracks having, coupled to their ends, along the edge of the panel, metal (for example gold) connection terminals 54 for connection to external electrical (signal or power supply) distribution circuits, for example wiring of on-board equipment for receiving operating commands by means of the control devices (buttons) - not shown - integrated in the polymeric matrix.

[0077] It should be noted that the embodiment proposed for the present invention in the above description is intended to be a purely non-limiting example of the present invention. A person skilled in the art may easily implement the present invention in different embodiments which do not depart from the principles illustrated here and are therefore included in the present patent, as defined in the appended claims.


Claims

1. Control device for an electrical circuit on a substrate (12) made of polymeric material, incorporating carbonaceous conductive structures which define at least one integrated conductive track (10) having higher electrical conductivity compared with the substrate, which control device includes an operating area (14) able to be acted on by a user and having a pressure-deformable structure adapted to disturb the electrical properties of said integrated conductive track (10) by a piezo-resistive effect, wherein said integrated conductive track (10) comprises a thermally modified zone (Z) adjacent to a groove (B), on both sides of the groove, wherein an electrical conductivity is established in the thermally modified zone, characterised in that the thermally modified zone is arranged entirely on the same side with respect to the neutral plane (N) of the operating area (14) of the device, and in that said integrated conductive track (10) includes at least one segment (10') which has a winding section at said operating area (14), and which includes sections of trajectory having a predominant component oriented in the plane of deformation of the operating area (14) for more than a half of the total length of the winding section, which are subjected to a stressing differential when the operated area is acted on by the user such that said conductive structures experience deformation which causes a variation in electrical resistivity.
 
2. Control device according to Claim 1, in which, in the part in which the thermally modified zone (Z) is formed, said substrate (12) has filamentary nano-structures adapted to withstand bending percentage deformations of between 1.0% and 3.0%.
 
3. Control device according to Claim 1, in which the length of the sections of trajectory having a predominant component oriented in the plane of deformation of the operating area is at least 70% of the total length of said winding section.
 
4. Control device according to Claim 1, in which said winding section (10') defines at least one loop at said operating area (14), in such a manner that the overall length of the segment (10'), subject to disturbance of the electrical properties at the operating area (14) following a pressure exerted on said area (14), is adapted to bring about a variation in the electrical resistivity electrical parameter of said integrated conductive track (10) between the ends of the winding segment (10') of at least 3%.
 
5. Control device according to any one of the preceding claims, including a cut or weakening line (20) of the substrate (12) around said operating area (14), which is adapted to permit the displacement of at least one portion of the operating area (14) of the device with respect to the surrounding substrate (12).
 
6. Control device according to any one of the preceding claims, in which said conductive track (10; 52) has, at at least one end located at an edge of the substrate, metallic electrical connection terminals (54) co-moulded with said polymeric material for connection to external signal distribution circuits.
 
7. Control device according to any one of the preceding claims, in which said operating area (14) has a circular form, the diameter of which is between 20 mm and 30 mm, and said conductive track (10) has a width of between 1.0 mm and 2.0 mm.
 
8. Component or structural part made of composite polymeric material, particularly for installation on-board a vehicle, integrating a control device for an electrical circuit according to any one of Claims 1 to 7.
 


Ansprüche

1. Steuerungsvorrichtung für einen elektrischen Schaltkreis auf einem Substrat (12), das aus einem Polymermaterial gefertigt ist und kohlenstoffhaltige leitende Strukturen aufweist, die zumindest eine integrierte Leiterbahn (10) mit einer höheren elektrischen Leitfähigkeit im Vergleich zu dem Substrat definieren,
und die Steuerungsvorrichtung einen Betriebsbereich (14) enthält, auf den ein Benutzer einwirken kann und der eine druckverformbare Struktur aufweist, die dazu angepasst ist, um die elektrischen Eigenschaften der integrierten Leiterbahn (10) durch einen piezo-resistiven Effekt zu stören,
wobei die integrierte Leiterbahn (10) eine zu einer Rille (B) benachbarte thermisch modifizierte Zone (Z) auf beiden Seiten der Rille umfasst, und eine elektrische Leitfähigkeit in der thermisch modifizierten Zone erzeugt wird,
dadurch gekennzeichnet, dass die thermisch modifizierte Zone auf der Vorrichtung in Bezug auf die neutrale Ebene (N) des Betriebsbereichs (14) vollständig auf der gleichen Seite angeordnet ist, und
dass die integrierte Leiterbahn (10) zumindest ein Segment (10') enthält, das einen gewundenen Abschnitt an dem Betriebsbereich (14) aufweist, und welche Trajektorienabschnitte enthält, die eine vorherrschende Komponente aufweisen, welche in der Verformungsebene des Betriebsbereichs (14) für mehr als eine Hälfte der Gesamtlänge des gewundenen Abschnitts orientiert ist, und die einem Belastungsdifferential unterzogen werden, wenn auf den Betriebsbereich durch einen Benutzer derart eingewirkt wird, so dass die leitenden Strukturen eine Verformung erfahren, welche eine Änderung des elektrischen spezifischen Widerstands bewirkt.
 
2. Steuerungsvorrichtung nach Anspruch 1, in welcher in dem Teil, in dem die thermisch modifizierten Zone (Z) ausgebildet ist, das Substrat (12) faserartige Nanostrukturen aufweist, die dazu angepasst sind, um Biegeverformungen in einem Prozentanteil zwischen 1,0 % und 3,0 % standzuhalten.
 
3. Steuerungsvorrichtung nach Anspruch 1, in welcher die Länge der Trajektorienabschnitte mit einer vorherrschenden Komponente, die in der Verformungsebene des Betriebsbereichs orientiert ist, zumindest 70 % der Gesamtlänge des gewundenen Abschnitts beträgt.
 
4. Steuerungsvorrichtung nach Anspruch 1, in welcher der gewundene Abschnitt (10') zumindest eine Schleife an dem gewundenen Betriebsbereich (14) auf eine Weise definiert, so dass die Gesamtlänge des Segments (10'), das einer Störung der elektrischen Eigenschaften an dem Betriebsbereich (14) in Folge eines auf den Bereich (14) ausgeübten Druckes unterzogen wird, dazu angepasst ist, um eine Änderung in dem elektrischen Parameter des elektrischen spezifischen Widerstands der integrierten Leiterbahn (10) zwischen den Enden des gewundenen Segments (10') von zumindest 3 % zu bewirken.
 
5. Steuerungsvorrichtung nach einem der vorstehenden Ansprüche, einschließlich einem Schnitt oder einer Schwächungslinie (20) des Substrates (12) um den Betriebsbereich (14) herum, der/die dazu angepasst ist, um die Versetzung des zumindest einen Abschnitts des Betriebsbereichs (14) der Vorrichtung in Bezug auf das umgebende Substrat (12) zu erlauben.
 
6. Steuerungsvorrichtung nach einem der vorstehenden Ansprüche, in welcher die Leiterbahn (10; 52), an zumindest einem an einer Kante des Substrates angeordneten Ende, metallische elektrische Verbindungsanschlüsse (54) aufweist, die mit dem Polymermaterial zur Verbindung mit externen Signalverteilungsschaltkreisen zusammen geformt sind.
 
7. Steuerungsvorrichtung nach einem der vorstehenden Ansprüche, in welcher der Betriebsbereich (14) eine Kreisform aufweist, deren Durchmesser zwischen 20 mm und 30 mm liegt, und die Leiterbahn (10) eine Breite zwischen 1,0 mm und 2,0 mm aufweist.
 
8. Komponente oder Strukturteil, die/das aus einem polymeren Kompositmaterial gefertigt ist, insbesondere zum Einbau an Bord eines Fahrzeugs, welche eine Steuerungsvorrichtung für einen elektrischen Schaltkreis nach einem der Ansprüche 1 bis 7 integriert.
 


Revendications

1. Dispositif de commande pour un circuit électrique sur un substrat (12) constitué d'un matériau polymère, incorporant des structures conductrices carbonées qui définissent au moins une piste conductrice intégrée (10) ayant une conductivité électrique plus élevée comparée au substrat, lequel dispositif de commande inclut une aire d'exploitation (14) sur laquelle un utilisateur peut agir et ayant une structure déformable par la pression adaptée pour perturber les propriétés électriques de ladite piste conductrice intégrée (10) par un effet piézorésistif,
dans lequel ladite piste conductrice intégrée (10) comprend une zone modifiée thermiquement (Z) adjacente à une rainure (B), des deux côtés de la rainure, dans lequel une conductivité électrique est établie dans la zone modifiée thermiquement,
caractérisé en ce que la zone modifiée thermiquement est agencée entièrement du même côté par rapport au plan neutre (N) de l'aire d'exploitation (14) du dispositif, et
en ce que ladite piste conductrice intégrée (10) inclut au moins un segment (10') qui a une section d'enroulement au niveau de ladite aire d'exploitation (14), et qui inclut des sections de trajectoire ayant une composante prédominante orientée dans le plan de déformation de l'aire d'exploitation (14) sur plus d'une moitié de la longueur totale de la section d'enroulement, qui sont soumises à un différentiel de contrainte lorsque l'utilisateur agit sur la zone exploitée de telle sorte que lesdites structures conductrices connaissent une déformation qui provoque une variation de résistivité électrique.
 
2. Dispositif de commande selon la revendication 1, dans lequel, dans la partie dans laquelle la zone modifiée thermiquement (Z) est formée, ledit substrat (12) a des nanostructures filamentaires adaptées pour supporter des déformations par cintrage en pourcentage entre 1,0 % et 3,0 %.
 
3. Dispositif de commande selon la revendication 1, dans lequel la longueur des sections de trajectoire ayant une composante prédominante orientée dans le plan de déformation de l'aire d'exploitation est d'au moins 70 % de la longueur totale de ladite section d'enroulement.
 
4. Dispositif de commande selon la revendication 1, dans lequel ladite section d'enroulement (10') définit au moins une boucle au niveau de ladite aire d'exploitation (14), de telle manière que la longueur globale du segment (10'), sujette à perturbation des propriétés électriques au niveau de l'aire d'exploitation (14) consécutivement à une pression exercée sur ladite aire (14), est adaptée pour occasionner une variation du paramètre électrique résistivité électrique de ladite piste conductrice intégrée (10) entre les extrémités du segment d'enroulement (10') d'au moins 3 %.
 
5. Dispositif de commande selon l'une quelconque des revendications précédentes, incluant une ligne de coupe ou de fragilité (20) du substrat (12) autour de ladite aire d'exploitation (14), qui est adaptée pour permettre le déplacement d'au moins une portion de l'aire d'exploitation (14) du dispositif par rapport au substrat (12) environnant.
 
6. Dispositif de commande selon l'une quelconque des revendications précédentes, dans lequel ladite piste conductrice (10 ; 52) a, au niveau d'au moins une extrémité située au niveau d'un bord du substrat, des bornes métalliques de connexion électrique (54) co-moulées avec ledit matériau polymère pour une connexion à des circuits externes de distribution de signal.
 
7. Dispositif de commande selon l'une quelconque des revendications précédentes, dans lequel ladite aire d'exploitation (14) a une forme circulaire, dont le diamètre est entre 20 mm et 30 mm, et ladite piste conductrice (10) a une largeur entre 1,0 mm et 2,0 mm.
 
8. Composant ou pièce structurelle constitué(e) d'un matériau polymère composite, en particulier pour une installation à bord d'un véhicule, intégrant un dispositif de commande pour un circuit électrique selon l'une quelconque des revendications 1 à 7.
 




Drawing


















REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description