(19)
(11)EP 2 747 260 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
14.08.2019 Bulletin 2019/33

(21)Application number: 13197671.4

(22)Date of filing:  17.12.2013
(51)Int. Cl.: 
H02M 1/08  (2006.01)
H02M 1/32  (2007.01)
H02M 7/5387  (2007.01)
H02M 7/219  (2006.01)
H02M 7/797  (2006.01)

(54)

Method for operating an electrical power rectifier, and an electrical power rectifier

Verfahren zum Betreiben eines elektrischen Leistungsgleichrichters, und elektrischer Leistungsgleichrichter

Procédé pour faire fonctionner un redresseur de puissance électrique et redresseur de puissance électrique


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 21.12.2012 DE 102012224336

(43)Date of publication of application:
25.06.2014 Bulletin 2014/26

(73)Proprietor: GE Energy Power Conversion GmbH
12277 Berlin (DE)

(72)Inventors:
  • Jakob, Roland
    12277 Berlin (DE)
  • Brueckner, Thomas
    80804 Munich (DE)
  • Sadowski, Piotr
    12277 Berlin (DE)
  • Basler, Thomas
    09126 Chemnitz (DE)

(74)Representative: Serjeants LLP 
Dock 75 Exploration Drive
Leicester, LE4 5NU
Leicester, LE4 5NU (GB)


(56)References cited: : 
EP-A2- 2 363 945
US-A- 5 737 200
US-B2- 6 809 561
WO-A2-2012/118701
US-A1- 2005 281 065
  
  • BIN LU ET AL: "A Literature Review of IGBT Fault Diagnostic and Protection Methods for Power Inverters", IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, IEEE SERVICE CENTER, PISCATAWAY, NJ, US, vol. 45, no. 5, 1 September 2009 (2009-09-01), pages 1770-1777, XP011270485, ISSN: 0093-9994, DOI: 10.1109/TIA.2009.2027535
  
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description

Technical Field



[0001] The invention relates to a method for operating an electrical power rectifier, and an electrical power rectifier.

Background to the Invention



[0002] Three-phase power rectifiers (or inverters) with which a direct current (dc) voltage can be transformed into an alternating current (ac) voltage and vice versa are known. Considering a three -phase embodiment of the power rectifier, three branches are connected parallel to each other with the use of respectively two power semiconductor elements. For example, the power semiconductor elements may be so-called IGBTs (IGBT = insulated gate bipolar transistor), each of which can be connected in parallel to an oppositely poled diode. An intermediate circuit may be connected in parallel to the three branches, i.e., in particular in the form of a capacitor. The three connecting points of the respectively two serially connected power semiconductor elements of the three branches can be connected to the phases of a three-phase electric motor or generator, for example.

[0003] If one of the two power semiconductor elements and/or the associated diode in one of the branches of the power rectifier is defective, a branch short circuit occurs in a downstream limit switch arrangement of the other power semiconductor element of the branch. This means that the parallel-connected capacitor is short-circuited via the defective element and the conductively switched other power semiconductor element of the branch is short-circuited.

[0004] Methods wherein such a branch short circuit can be detected are known. For example, it is known to monitor the gate-emitter voltage or the collector current when IGBTs are used. If such a branch short circuit is detected, it is known to again switch at least the other - conductively connected - power semiconductor element of the branch non-conductive, namely to switch it off. In addition, it is known to also switch off all the other power semiconductor elements or to prevent them from being switched on. In this way, it is possible to avoid the destruction of additional power semiconductor elements.

[0005] However, a short circuit current continues to flow via the defective power semiconductor element and/or its associated diode of the one branch of the power rectifier, i.e., via the connected electric motor or the generator and via the diodes in the two other branches. In doing so, this short circuit current via the electric motor or the generator may follow an asymmetric course, wherein specifically the ac current component may be superimposed by a dc current. This may lead to critical torque changes in the electric motor or the generator and specifically result in oscillating torques.

[0006] It is the object of the invention to avoid the above-explained disadvantages of known power rectifiers.

[0007] US 2005/0281065 discloses a fault handling system for short circuit recovery in three-phase multiple-level inverter bridges, which waits for either desaturation of switches, or the expiration of a delay period based on an amount of time before saturated switches are damaged, before commanding off switches that are saturated. This artificially creates a dead-short across the three-phase output to force switches conducting a fault current to desaturate.

[0008] US 5737200 discloses a protection device which monitors voltage between main terminals of a semiconductor device and controls the drive signal for the semiconductor device to prevent an excessive current therethrough.

[0009] US 2011/0188162 discloses a device for diverting surge currents or transient overvoltages with a switching stage that is designed to switch a switching element when an overvoltage or surge current is identified.

[0010] WO 2012/118701 discloses an inverter circuit in which an out-of-saturation condition of an IGBT can be identified based on measurement of the collector-to-emitter voltage of the IGBT. In one potential response to an out-of-saturation condition, the gate to emitter voltage is temporarily increased.

Summary of the Invention



[0011] The invention achieves this object with a method in accordance with claim 1, as well as with an electrical power rectifier in accordance with claim 7.

[0012] In accordance with the invention, an electrical power rectifier (or inverter) is provided, said rectifier comprising at least two parallel-connected branches with at least two serially connected power semiconductor elements in each branch. Referring to the method in accordance with the invention, the collector-emitter voltage VCE(t) and/or the collector current IC(t) is/are detected for at least one of the power semiconductor elements. Furthermore, it is determined whether at least one of the following conditions is met: dVCE(t)/dt < (dVCE/dt)crit and/or dIC(t)/dt < (dIC/dt)crit and/or IC(t_ent + delta t) < ICcrit. If at least one of the aforementioned conditions has been met, the gate-emitter voltage of at least one of the power semiconductor elements is increased.

[0013] By increasing the gate-emitter voltage it is possible for a higher collector current to flow across the affected power semiconductor element, without this leading to a desaturation and the subsequent destruction of said element. Consequently, this opens up the possibility of controlling the power rectifier in a state in which those connections of the power rectifier to which the load has been connected are short-circuited. The resultant short circuit currents flowing across the load can thus develop symmetrically as opposed to asymmetrically. If the load is an electric motor or a generator, the state of symmetry of the power rectifier has the effect that smaller torque changes occur on the load.

[0014] Therefore, with the aid of the invention, the power rectifier can be moved into the position of detecting a branch short circuit and of switching off the appropriate power semiconductor element(s), on the one hand, as well as - in case of a load short circuit - of increasing the gate-emitter voltage of one of the power semiconductor elements, on the other hand, and of thus being able to achieve a symmetrization of the short circuit currents.

[0015] Therefore, by increasing the gate-emitter voltage, it is possible to prevent a desaturation and the subsequent destruction of power semiconductor elements due to high load-driven currents.

Drawings



[0016] Additional features, possibilities of application and advantages of the invention can be inferred from the description of the exemplary embodiments of the invention hereinafter, said embodiments being represented in the associated figures of the drawings. In doing so, each of the described and presented features, individually or in any combination, represent the object of the invention, irrespective of their summarization in the patent claims or their reference, as well as irrespective of their formulation or representation in the description or in the figures, wherein:

Figure 1 is a schematic circuit diagram of an exemplary embodiment of an electrical power rectifier in accordance with the invention;

Figure 2 is a schematic time-dependency diagram of the behavior of currents and voltages on a power semiconductor element of the power rectifier as in Figure 1; and

Figures 3a to 3c are schematic circuit diagrams of the electric wiring of a power semiconductor element of the power rectifier as in Figure 1.



[0017] Figure 1 shows as an example a three-phase, two-stage power rectifier 10. The power rectifier 10 comprises three parallel-connected branches 11, 12, 13, each comprising two serially connected IGBTs 14 (IGBT = insulated gate bipolar transistor). Each of the IGBTs is parallel-connected with an oppositely poled diode 15. The three branches 11, 12, 13 of the power rectifier 10 are connected in parallel to a capacitor 16. The connecting points of the two IGBTs 14 in each of the three branches 11, 12, 13 of the power rectifier 10 are connected to one phase of a three-phase load 17, wherein the load 17 may be an electric motor provided in a delta or star circuit, or a generator.

[0018] Each of the IGBTs 14 comprises a gate, a collector and an emitter. Each of the IGBTs 14 can assume a conductive and a non-conductive state. The gates of the IGBTs 14 are connected to a control device (not shown) by means of which said IGBTs can be switched into a conductive or non-conductive state, i.e., switched on or off. The IGBTs 14 have the property that, firstly, they can be switched from their conductive into their non-conductive state even in the case of a short circuit, and that, secondly, if activated with an increased gate voltage, they can - at least for several milliseconds - carry a load short circuit current at the level of a multiple of their rated current, without being desaturated and/or destroyed.

[0019] Reference is made to the fact that, instead of the IGBTs 14, it is also possible to use other power semiconductor elements that can be switched off, in which case a power semiconductor element that can be switched off is understood to mean such an element that can also be made non-conductive and thus switched off in case of a short circuit.

[0020] Furthermore, it is pointed out that also more or fewer branches, and thus more or fewer phases, may be provided in the power rectifier 10. Likewise, it is possible for the power rectifier 10 to be configured so as to comprise not only two stages but three or more stages. Furthermore, each of the IGBTs 14 can be configured as a series and/or parallel circuit of several IGBTs and/or the capacitor 16 may be configured as a series and/or parallel circuit of several capacitors.

[0021] In normal operating mode of the power rectifier 10 the IGBTs 14 are activated by the control device in such a manner that - in the case an electric motor is provided - the dc voltage applied to the capacitor 16 is transformed into an ac voltage applied to the three phases of the electric motor 17 or that - in the case of a generator - the ac voltage applied to the three phases of the generator 17 is transformed into a dc voltage applied to the capacitor 16.

[0022] It will now be assumed that in the aforementioned normal operating mode of the power rectifier 10, one of the IGBTs 14 and/or its associated diode 15 suffers a defect resulting in a short circuit of the corresponding element. Such a defect may, for example, be a shorting of the collector-emitter line of the IGBT 14 and/or the anode-cathode line of the associate diode 15. In Figure 1 the aforementioned defect is indicated by a double arrow in the upper IGBT 14' or its associated diode 15' of the left branch 11. Therefore, a short circuit 18 in the power rectifier 10 exists at this point.

[0023] As soon as the additional lower IGBT 14" is switched conductive in the same branch 11, a branch short circuit is created across the entire left branch 11. By means of a short circuit detection that is not specifically described in the present case, this branch short circuit is detected and the lower IGBT 14" present in the same branch 11 of the short circuit 18 is switched off within a few microseconds.

[0024] Additionally, it is pointed out that the additional IGBTs 14 in the two other branches 12, 13 remain largely unaffected by the aforementioned measures.

[0025] Referring to the aforementioned short circuit detection, it is possible, for example, to monitor the desaturation of the lower IGBTs 14". To accomplish this, at least one of the following operating parameters on the IGBT 14" can be determined over time t: the collector-emitter voltage VCE(t) and/or the collector current IC(t). The determination of these operating parameters can be accomplished in any desired manner, for example, by performing measurements with the aid of a sensor. It is understood that the same applies to the other IGBTs as regards the detection of a short circuit. If, after switching off the lower IGBTs 14" of the left branch 11, for example the upper IGBT 14' in the center branch 12 is switched so as to be conductive, now an at least one-phase load short circuit does exist. In this case, two phases of the load 17 are short-circuited with each other across the short circuit 18, on the one hand, and the conductively switched upper IGBT 14' of the center branch 12, on the other hand. In the case of this load short circuit a short circuit current flows through the upper IGBT 14' of the center branch 12. The same may also apply to the third phase of the load 17.

[0026] It is now determined whether one or more of the three following conditions is met on this upper IGBT 14' of the center branch 12:

and/or

and/or

wherein t_ent is the time of the start of the desaturation of the affected IGBT and delta t represents a time delay that can be prespecified.

[0027] Considering the first condition, it is checked whether the rate of the increase of the collector-emitter voltage dVCE(t)/dt of the upper IGBT 14' of the center branch 12 through which the short circuit current flows is potentially lower at the time of desaturation t_ent of this IGBT than the prespecifiable critical value (dVCE/dt)crit. Considering the second condition, it is checked whether the rate of the increase of the collector-emitter current dIC (t)/dt of the upper IGBT 14' of the center branch 12 through which the short circuit current flows is potentially lower than a prespecifiable critical value (dIC/dt)crit. And, considering the third condition, it is checked whether the collector-current IC(t_ent + delta t) at the time after expiration of the time delay delta t upon the start of the desaturation of the IGBT 14' of the center branch 12 through which the short circuit current flows is smaller than a prespecifiable critical value ICcrit. These conditions can be checked, for example, with the assistance of the control device.

[0028] It is understood that the corresponding conditions also apply to the other IGBTs 14', 14" of the center and right branches 12, 13, provided that they, upon switching off the short circuit in the left branch 11, are switched so as to be conductive or have already been switched so as to be conductive.

[0029] The critical values (dVCE/dt)crit, (dIC/dt)crit and ICcrit are selected in such a manner that a distinction is possible between a branch short circuit of the power rectifier 10 caused by a defective IGBT 14, on the one hand, and a load short circuit of the load 17 connected to the power rectifier 10 caused by the defective power rectifier 10, on the other hand.

[0030] In particular, at least one of the aforementioned critical values is not reached when - within a branch 11, 12, 13 of a power rectifier 10 - a branch short circuit, for example short circuit 18, has been switched off and, subsequently, the short circuit current of the load short circuit continues to reach high values.

[0031] One of the conditions or a combination of two conditions or of all three conditions may be used for the aforementioned distinction. The mentioned distinction will be explained in detail further below with reference to Figure 2.

[0032] In that case, the aforementioned branch short circuit should be switched off, as has already been explained, whereas the load short circuit should be handled differently, as will be explained hereinafter.

[0033] If a verification of the aforementioned conditions shows that at least one of the conditions has been met, then - in the present case - the upper IGBT 14' of the center branch 12 is continued to be switched conductive, and the gate-emitter voltage of the upper IGBT 14' of the center branch 12 is increased. In addition, the lower IGBT 14" of the center branch 12 is optionally switched non-conductive or its conductive end switch is blocked.

[0034] In addition, it is pointed out that - if at least one of the conditions has been met - the aforementioned switching-off of the short circuit may be omitted. This is also done, correspondingly, with the right branch 13. Thereafter, the power rectifier 10 is in a state in which, on the one hand, the short circuit 18 exists in the left branch 11, and, in which, on the other hand, the two upper IGBTs 14' of the center and right branches 12, 13 are switched so as to be conductive at an elevated gate-emitter voltage. This represents a state of symmetry, because the positive pole of the capacitor 16 is connected in the second branch 11 - via the upper IGBT 14' of the center branch 12 and via the upper IGBT 14' of the right branch - to one different phase of the load 17, respectively.

[0035] In view of the increase of the gate-emitter voltage VGE of the two upper IGBTs 14' of the center and right branches 12, 13, the following needs to be added:
In normal operating mode of one IGBT, its gate-emitter voltage VGE is adjusted, for example, to a value of approximately 15 Volts. If, in this case, the collector-emitter voltage VCE of the conductively switched IGBT exceeds a value of 12 Volts, for example, a desaturation of the IGBT occurs. This state can result in destruction of the IGBT. With the already mentioned short circuit detection it is possible to detect this state, and the IGBT can be switched off within a few microseconds as has already been mentioned.

[0036] Referring to the aforementioned increase of the gate-emitter voltage VGE, there is provided a value - different from the aforementioned approximate 15 Volts - which is at least high enough to prevent a desaturation of the IGBT. This means that, with the increased gate-emitter voltage, there is no desaturation of the IGBT, and thus it is possible for a considerably higher collector current to flow freely across the IGBT than is possible in the case with the gate-emitter voltage of 15 Volts.

[0037] For example, the increased gate-emitter voltage may have a value within the range of approximately 30 Volts to approximately 70 Volts. Thus, as a result of the increased gate-emitter voltage, it is possible in the aforementioned exemplary embodiment for the two conductively switched upper IGBTs 14' of the center and the right branches 12, 13 to also result in higher collector currents without being destroyed.

[0038] In doing so, it is possible that, in the mentioned state of symmetry of the power rectifier 10, optionally existing current can flow via the short circuit 18 as well as via the two upper IGBTs 14' of the center and right rectifiers 12, 13, without this leading to a destruction of the IGBTs 14'. Due to the state of symmetry of the power rectifier 10, these currents lead to lower torque changes on load 17, namely the electric motor or the generator.

[0039] It is pointed out that the short circuit 18 may exist not only in the region of the upper IGBTs 14' as shown by Figure 1, but may also exist in the region of the lower IGBTs 14". Likewise, a short circuit of each of the two IGBTs 14' and/or 14" in each of the phases may exist. In these cases, the explained method is performed in an appropriately adapted manner.

[0040] A corresponding adaptation also takes place when the power rectifier 10 is configured as a three-phase or multiple-phase device. In these cases it is possible that - in each branch in which the short circuit 18 exists - one or more IGBTs connected in series thereto must be switched conductive with a higher gate-emitter voltage.

[0041] It is also pointed out that the short circuit or short circuits in branch 11 may also exist in one of the two other branches 12, 13.

[0042] Hereinafter, the already mentioned distinction between a branch short circuit of the power rectifier 10 caused by a defective IGBT, on the one hand, and a load short circuit of the load 17 connected to the power rectifier 10 caused by a load short circuit, on the other hand, will be explained in detail with reference to Figure 2.

[0043] Figure 2 shows a graph of the collector current IC(t) and the collector-emitter voltage VCE(t) for an IGBT, in each case over time t, for two cases. The first case is shown in dashed lines and provided with the additional reference sign IC1 and relates to a branch short circuit. The second case is shown in solid lines and provided with the additional reference sign IC2 and relates to a load short circuit.

[0044] In the first case, i.e., in the case of a branch short circuit as can occur in connection with the short circuit 18 as in Figure 1, the collector current IC1 increases very steeply up to a multiple of the rated current, for example, up to five to ten times the rated current. At the time t_ent1 the IGBT desaturates very rapidly after the start of the branch short circuit which has the same meaning as the very rapid increase of the collector-emitter voltage VCE1 to a value in the order of the driving voltage.

[0045] As has been explained, in this first case, the IGBT must be switched off within a few microseconds, for example 10 microseconds, in order to prevent destruction of the IGBT.

[0046] In the second case, i.e., in the case of a load short circuit as can occur following the explained branch circuit as in Figure 1, the current IC2 increases less steeply, which is in particular due to the leakage inductance of the turns of the load 17. The result of this is that a longer period of time passes until the IGBT is desaturated at time t_ent2 and thus the collector-emitter voltage VCE2 increases noticeably.

[0047] The first of the three distinction conditions mentioned in conjunction with Figure 1 is the following: dVCE(t)/dt < (dVCE/dt)crit. This condition relates essentially to the time t_ent of desaturation of the respective IGBT.

[0048] As has been explained hereinabove, the collector-emitter voltage VCE increases considerably more rapidly in a branch short circuit than in a load short circuit. Regarding this, reference is made to the time curve of the collector-emitter voltages VCE1 and VCE2 in Figure 2. The value dVCE(t)/dt is thus greater in a branch short circuit than in a load short circuit: dVCE/dt_1 > dVCE/dt_2. Consequently, if the value (dVCE/dt)crit is set approximately between the expected values dVCE/dt_1 and dVCE/dt_2 for the branch circuit and the load short circuit, respectively, a distinction can be made between a branch short circuit and a load short circuit.

[0049] The second of the three distinction conditions mentioned in conjunction with Figure 1 is the following: dIC(t)/dt < (dIC/dt)crit. This condition essentially relates to the time t_ent of desaturation of the respective IGBT.

[0050] As has been explained hereinabove, the collector current IC increases substantially more rapidly in a branch short circuit than in a load short circuit. Regarding this, reference is made to the time curve of the collector currents IC1 and IC2 shown in Figure 2. The value dIC(t)/dt is thus greater in a branch short circuit than in a load short circuit: dIC/dt_1 > dIC/dt_2. Therefore, if the value (dIC/dt)crit is approximately between the expected values dIC/dt_1 and dIC/dt_2 for the branch short circuit and the load short circuit, respectively, a distinction can be made between a branch short circuit and a load short circuit.

[0051] The third of the three distinction conditions mentioned in conjunction with Figure 1 is the following: IC(t_ent + delta t) < ICcrit, wherein t_ent is the time when the desaturation of the IGBT starts and delta t is a prespecifiable time delay.

[0052] As can be inferred from Figure 2 the collector current IC(t_ent1 + delta t) at the time (t_ent1 + delta t) in a branch short circuit is higher than the collector current IC(t_ent2 + delta t) at the time (t_ent2 + delta t) in a load short circuit. Therefore, if the value ICcrit is set approximately between the expected value IC(t_ent1 + delta t) for the branch short circuit and the expected value IC(t_ent2 + delta t) for the load short circuit, a distinction can be made between a branch short circuit and a load short circuit.

[0053] As has already been explained, it is possible to make a distinction between the case of a branch short circuit and the case of a load short circuit with the application of one, two or all three conditions. As has also been explained, the respective IGBT in a branch short circuit is switched off within a few microseconds, whereas, in a load short circuit, the gate emitter voltage of the respective IGBT is increased and the IGBT is switched so as to be conductive.

[0054] If a load short circuit is detected and the gate-emitter voltage of the respective IGBT is increased, this has the result that, thereafter, the collector-emitter voltage no longer increases, as is shown regarding the collector-emitter voltage VCE2 in Figure 2, but that the collector-emitter voltage essentially remains at the initial value. The latter is indicated in dotted lines in Figure 2 and marked as VCE,sat. This means that a desaturation of the IGBT does not occur.

[0055] Principally, the gate-emitter voltage can be increased with the aid of the mentioned control device.

[0056] Figures 3a to 3c show alternative wiring arrangements of the IGBTs 14 of the power rectifier 10, said arrangements potentially achieving an increase of the gate-emitter voltage.

[0057] Figure 3 shows a general wiring arrangement comprising an IGBT 31 that is to act representatively for the IGBTs 14 of the power rectifier 10. The gate of the IGBT 31 is connected to the collector of the IGBT 31 via a switch 32 and a circuit 33.

[0058] The switch 32 is activated by the aforementioned control device in such a manner that the switch 32 is non-conductive in normal operating mode of the power rectifier 10, that, however, the switch 32 is switched so as to be conductive if one of the three mentioned conditions of distinction are met.

[0059] The circuit 33 of Figure 3a is quite generally intended to provide the gate-emitter voltage of the IGBT 31 with a desired value or a desired progression. In particular, the circuit 33 is intended to increase the gate-emitter voltage of the IGBT 31.

[0060] Figure 3b shows a first exemplary embodiment of the circuit 33, wherein the collector of the IGBT 31 is connected to the gate of the IGBT 31 via a diode 35 switched in passing direction and via the switch 32.

[0061] Considering this wiring, the gate-emitter voltage of the IGBT 31 is always lower by the amount of the voltage dropping on the diode 35 than the collector-emitter voltage of the IGBT 31. By closing the switch 32, the gate-emitter voltage of the IGBT 31 is thus increased approximately to the value of the collector-emitter voltage. As has been explained, this increase of the gate-emitter voltage prevents a desaturation of the IGBT 31.

[0062] Figure 3c shows a second exemplary embodiment of the circuit 33, wherein the collector of the IGBT 31 is connected to the gate of the IGBT 31 via an offset voltage source 37, via the diode 35 and via the switch 31. In doing so, the negative pole of the offset voltage source 37 is connected to the collector of the IGBT 31.

[0063] Considering this wiring, the gate-emitter voltage of the IGBT 31 can be linked to the collector-emitter voltage of the IGBT 31 in the desired manner with the aid of the offset voltage source 37. In particular, the gate-emitter voltage can be adjusted to almost any desired value in view of the collector-emitter voltage of the IGBT 31. By closing the switch 32, the gate-emitter voltage of the IGBT 31 is increased to the desired value of the collector-emitter voltage. As has been explained, this increase of the gate-emitter voltage prevents a desaturation of the IGBT 31.

[0064] Additionally, it is pointed out that the arrangement of the switch 32 and the circuit 33 may also be reversed. Furthermore, it is also possible to make the design of the circuit 33 substantially more comprehensive. For example, elements for limiting the voltage, or connections for a supply voltage, or returns to the control device may be provided.


Claims

1. Method for operating an electrical power rectifier (10), wherein the power rectifier (10) comprises at least two branches (11, 12, 13) that are connected in parallel to each other, each of said branches comprising at least two power semiconductor elements (14', 14") connected in series, and a phase node formed by a connection point between said at least two power semiconductor elements (14', 14"), and wherein the collector-emitter voltage VCE(t) and/or the collector current IC(t) of at least one of the power semiconductor elements (14', 14") is detected,
wherein, in response to a short circuit being detected in one of said branches (11, 12, 13), it is determined in the at least one of the power semiconductor elements (14', 14") through which a short circuit current flows, whether at least one of the following conditions is met:

and/or

and/or

where (dVCE/dt)crit is a critical value of the rate of increase of the collector-emitter voltage of the at least one of the power semiconductor elements (14', 14"), (dIC/dt)crit is a critical value of the rate of increase of the collector current of the at least one of the power semiconductor element (14', 14"), t_ent is the time of the start of the desaturation of the at least one of the power semiconductor elements (14', 14"), delta t represents a time delay, and ICcrit is a critical value of the collector current of the at least one of the power semiconductor elements (14', 14");

wherein the critical values (dVCE/dt)crit, (dIC/dt)crit, and ICcrit are prespecified in such a manner that the corresponding value is not reached when a load short circuit exists on a load (17) connected to the phase nodes of the power rectifier (10), and that a distinction can be made between a branch short circuit and a load short circuit; and

wherein, if at least one of the aforementioned conditions is met, the gate-emitter voltage of at least one of the power semiconductor elements (14', 14") is increased to continue its conduction.


 
2. Method according to claim 1, wherein, in case of a load short circuit, a symmetrization of the short circuit currents is achieved with the aid of the increase of the gate-emitter voltage.
 
3. Method according to claim 1 or claim 2, wherein the increase of the gate-emitter voltage is at least great enough to prevent a desaturation of an affected power semiconductor element (14', 14").
 
4. Method according to any preceding claim, wherein a defective power semiconductor element (14', 14") is detected with the aid of a short circuit detection, and wherein it is determined in which of the branches (11, 12, 13) the defective power semiconductor element (14', 14") exists.
 
5. Method according to claim 4, wherein the gate-emitter voltage is increased on the power semiconductor elements (14', 14") of the other branches of the power rectifier (10).
 
6. Method according to claim 4, wherein it is determined on which of the at least two power semiconductor elements (14', 14") of the affected branch (11, 12, 13) the defect exists, and wherein the gate-emitter voltage is increased on the corresponding power semiconductor elements (14', 14") of the other branches.
 
7. Electrical power rectifier (10) comprising:

at least two branches (11, 12, 13) that are connected in parallel to each other, each of said branches comprising at least two power semiconductor elements (14', 14") connected in series, and a phase node formed by a connection point between said at least two power semiconductor elements (14', 14"),

a control device for activating the power semiconductor elements (14', 14"), and

means for detecting the collector-emitter voltage VCE(t) and/or the collector current IC(t) of at least one of the power semiconductor elements (14', 14"),

wherein the control device is adapted, in response to a short circuit being detected in one of said branches (11, 12, 13), to use the detected collector-emitter voltage VCE(t) and/or the collector current IC(t) of the at least one of the power semiconductor elements (14', 14") through which a short circuit current flows to determine whether at least one of the following conditions is met:

and/or

and/or

where (dVCE/dt)crit is a critical value of the rate of increase of the collector-emitter voltage of the at least one of the power semiconductor elements (14', 14"), (dIC/dt)crit is a critical value of the rate of increase of the collector current of the at least one of the power semiconductor element (14', 14"), t_ent is the time of the start of the desaturation of the at least one of the power semiconductor elements (14', 14"), delta t represents a time delay, and ICcrit is a critical value of the collector current of the at least one of the power semiconductor elements (14', 14");

wherein the critical values (dVCE/dt)crit, (dIC/dt)crit, and ICcrit are prespecified in such a manner that the corresponding value is not reached when a load short circuit exists on a load (17) connected to the phase nodes of the power rectifier (10), and that a distinction can be made between a branch short circuit and a load short circuit; and

wherein the control device is adapted to increase the gate-emitter voltage of at least one of the power semiconductor elements (14', 14") to continue its conduction if it is determined that at least one of the aforementioned conditions is met.


 
8. Electrical power rectifier (10) according to claim 7, wherein power semiconductor elements, in particular IGBTs (14', 14") that can be switched off, are provided.
 
9. Electrical power rectifier (10) according to claim 7 or claim 8, wherein, between the collector and the gate of at least one of the power semiconductor elements (14', 14"), a switch (32) and a circuit (33) are connected, with the aid of which the gate-emitter voltage of the power semiconductor element (14', 14") can be increased.
 
10. Electrical power rectifier (10) according to claim 9, wherein the circuit (33) comprises a diode (35) and, optionally, an offset voltage source (37).
 


Ansprüche

1. Verfahren zum Betreiben eines elektrischen Leistungsgleichrichters (10), wobei der Leistungsgleichrichter (10) wenigstens zwei Zweige (11, 12, 13) aufweist, die parallel zueinander geschaltet sind, wobei jeder der Zweige wenigstens zwei in Reihe geschaltete Leistungshalbleiterelemente (14', 14") und einen Phasenknoten aufweist, der durch einen Verbindungspunkt zwischen den wenigstens zwei Leistungshalbleiterelementen (14', 14") gebildet ist, und wobei die Kollektor-Emitter-Spannung VCE(t) und/oder der Kollektorstrom IC(t) wenigstens eines der Leistungshalbleiterelemente (14', 14") erfasst wird,
wobei als Reaktion darauf, dass ein Kurzschluss in einem der Zweige (11, 12, 13) erfasst wird, in dem wenigstens einen der Leistungshalbleiterelemente (14', 14"), durch das ein Kurzschlussstrom fließt, bestimmt wird, ob wenigstens eine der folgenden Bedingungen erfüllt ist:

und/oder

und/oder

worin (dVCE/dt)crit ein kritischer Wert der Anstiegsrate der Kollektor-Emitter-Spannung des wenigstens einen der Leistungshalbleiterelemente (14', 14") ist, (dIC/dt)crit ein kritischer Wert der Anstiegsrate des Kollektorstroms des wenigstens einen der Leistungshalbleiterelemente (14', 14") ist, t_ent der Zeitpunkt des Beginns der Entsättigung des wenigstens einen der Leistungshalbleiterelemente (14', 14") ist, delta t eine Zeitverzögerung darstellt und ICcrit ein kritischer Wert des Kollektorstroms des wenigstens einen der Leistungshalbleiterelemente (14', 14") ist;

wobei die kritischen Werte (dVCE/dt)crit, (dIC/dt)crit und ICcrit in einer derartigen Weise vorgegeben werden, dass der entsprechende Wert nicht erreicht wird, wenn ein Lastkurzschluss an einer Last (17) vorliegt, die an die Phasenknoten des Leistungsgleichrichters (10) angeschlossen ist, und dass eine Unterscheidung zwischen einem Zweigkurzschluss und einem Lastkurzschluss gemacht werden kann; und

wobei, falls wenigstens eine der vorerwähnten Bedingungen erfüllt ist, die Gate-Emitter-Spannung wenigstens eines der Leistungshalbleiterelemente (14', 14") erhöht wird, um sein Leiten fortzusetzen.


 
2. Verfahren nach Anspruch 1, wobei im Falle eines Lastkurzschlusses eine Symmetrierung der Kurzschlussströme mit Hilfe der Erhöhung der Gate-Emitter-Spannung erreicht wird.
 
3. Verfahren nach Anspruch 1 oder Anspruch 2, wobei die Erhöhung der Gate-Emitter-Spannung wenigstens groß genug ist, um eine Entsättigung eines betroffenen Leistungshalbleiterelementes (14', 14") zu verhindern.
 
4. Verfahren nach einem beliebigen vorhergehenden Anspruch, wobei ein defektes Leistungshalbleiterelement (14', 14") mit Hilfe einer Kurzschlusserfassung detektiert wird und wobei festgestellt wird, in welchem der Zweige (11, 12, 13) das Defekte Leistungshalbleiterelement (14', 14") vorhanden ist.
 
5. Verfahren nach Anspruch 4, wobei die Gate-Emitter-Spannung an den Leistungshalbleiterelementen (14', 14") der anderen Zweige des Leistungsgleichrichters (10) erhöht wird.
 
6. Verfahren nach Anspruch 4, wobei festgestellt wird, an welchem der wenigstens zwei Leistungshalbleiterelemente (14', 14") des betroffenen Zweiges (11, 12, 13) der Defekt vorliegt, und wobei die Gate-Emitter-Spannung an den entsprechenden Leistungshalbleiterelementen (14', 14") der anderen Zweige erhöht wird.
 
7. Elektrischer Leistungsgleichrichter (10), der aufweist:

wenigstens zwei Zweige (11, 12, 13), die parallel zueinander geschaltet sind, wobei jeder der Zweige wenigstens zwei in Reihe geschaltete Leistungshalbleiterelemente (14', 14") und einen Phasenknoten aufweist, der durch einen Verbindungspunkt zwischen den wenigstens zwei Leistungshalbleiterelementen (14', 14") gebildet ist,

eine Steuervorrichtung zur Aktivierung der Leistungshalbleiterelemente (14', 14") und

Mittel zur Erfassung der Kollektor-Emitter-Spannung VCE(t) und/oder des Kollektorstroms IC(t) wenigstens eines der Leistungshalbleiterelemente (14', 14"),

wobei die Steuervorrichtung eingerichtet ist, um als Reaktion darauf, dass ein Kurzschluss in einem der Zweige (11, 12, 13) erfasst wird, die erfasste Kollektor-Emitter-Spannung VCE(t) und/oder den Kollektorstrom IC(t) des wenigstens einen der Leistungshalbleiterelemente (14', 14"), durch das ein Kurzschlussstrom fließt, zu verwenden, um zu bestimmen, ob wenigstens eine der folgenden Bedingungen erfüllt ist:

und/oder

und/oder

worin (dVCE/dt)crit ein kritischer Wert der Anstiegsrate der Kollektor-Emitter-Spannung des wenigstens einen der Leistungshalbleiterelemente (14', 14") ist, (dIC/dt)crit ein kritischer Wert der Anstiegsrate des Kollektorstroms des wenigstens einen der Leistungshalbleiterelemente (14', 14") ist, t_ent der Zeitpunkt des Beginns der Entsättigung des wenigstens einen der Leistungshalbleiterelemente (14', 14") ist, delta t eine Zeitverzögerung darstellt und ICcrit ein kritischer Wert des Kollektorstroms des wenigstens einen der Leistungshalbleiterelemente (14', 14") ist;

wobei die kritischen Werte (dVCE/dt)crit, (dIC/dt)crit und ICcrit in einer derartigen Weise vorgegeben sind, dass der entsprechende Wert nicht erreicht wird, wenn ein Lastkurzschluss an einer Last (17) vorliegt, die an die Phasenknoten des Leistungsgleichrichters (10) angeschlossen ist, und dass eine Unterscheidung zwischen einem Zweigkurzschluss und einem Lastkurzschluss gemacht werden kann; und

wobei die Steuervorrichtung eingerichtet ist, um die Gate-Emitter-Spannung wenigstens eines der Leistungshalbleiterelemente (14', 14") zu erhöhen, um sein Leiten fortzusetzen, falls festgestellt wird, dass wenigstens eine der vorerwähnten Bedingungen erfüllt ist.


 
8. Elektrischer Leistungsgleichrichter (10) nach Anspruch 7, worin Leistungshalbleiterelemente, insbesondere IGBTs (14', 14"), die abgeschaltet werden können, vorgesehen sind.
 
9. Elektrischer Leistungsgleichrichter (10) nach Anspruch 7 oder Anspruch 8, wobei zwischen dem Kollektor und dem Gate wenigstens eines der Leistungshalbleiterelemente (14', 14") ein Schalter (32) und eine Schaltung (33) angeschlossen sind, mit deren Hilfe die Gate-Emitter-Spannung des Leistungshalbleiterelementes (14', 14") erhöht werden kann.
 
10. Elektrischer Leistungsgleichrichter (10) nach Anspruch 9, wobei die Schaltung (33) eine Diode (35) und optional eine Offset-Spannungsquelle (37) aufweist.
 


Revendications

1. Procédé de mise en oeuvre d'un redresseur de puissance électrique (10), dans lequel le redresseur de puissance (10) comprend au moins deux branches (11, 12, 13) qui sont montées en parallèle entre elles, chacune desdites branches comprenant au moins deux éléments semi-conducteurs de puissance (14', 14") montés en série, et un noeud de phase formé par un point de connexion entre lesdits au moins deux éléments semi-conducteurs de puissance (14', 14"), et dans lequel on détecte la tension collecteur-émetteur VCE(t) et/ou le courant de collecteur IC(t) d'au moins l'un des éléments semi-conducteurs de puissance (14', 14"),
dans lequel, en réponse à la détection d'un court-circuit dans l'une desdites branches (11, 12, 13), on détermine dans ledit au moins un des éléments semi-conducteurs de puissance (14', 14") dans lequel circule un courant de court-circuit, si au moins l'une des conditions suivantes est vérifiée :

et/ou

et/ou

où (dVCE/dt)crit est une valeur critique du taux d'accroissement de la tension collecteur-émetteur dudit au moins un des éléments semi-conducteurs de puissance (14', 14"), (dIC/dt)crit est une valeur critique du taux d'accroissement du courant de collecteur dudit au moins un des éléments semi-conducteurs de puissance (14', 14"), t_ent est l'instant du début de la désaturation dudit au moins un des éléments semi-conducteurs de puissance (14', 14"), delta t représente un retard, et ICcrit est une valeur critique du courant de collecteur dudit au moins un des éléments semi-conducteurs de puissance (14', 14") ;

dans lequel les valeurs critiques (dVCE/dt)crit, (dIC/dt)crit et ICcrit sont préspécifiées de telle manière que la valeur correspondante n'est pas atteinte quand un court-circuit de charge existe sur une charge (17) reliée aux noeuds de phase du redresseur de puissance (10), et qu'une distinction peut être faite entre un court-circuit de branche et un court-circuit de charge ; et

dans lequel, si au moins l'une des conditions susmentionnées est vérifiée, la tension grille-émetteur d'au moins l'un des éléments semi-conducteurs de puissance (14', 14") est augmentée pour continuer sa conduction.


 
2. Procédé selon la revendication 1, dans lequel, en cas de court-circuit de charge, une symétrisation des courants de court-circuit est réalisée grâce à l'augmentation de la tension grille-émetteur.
 
3. Procédé selon la revendication 1 ou 2, dans lequel l'augmentation de la tension grille-émetteur est au moins suffisamment grande pour empêcher une désaturation d'un élément semi-conducteur de puissance concerné (14', 14").
 
4. Procédé selon l'une quelconque des revendications précédentes, dans lequel un élément semi-conducteur de puissance défectueux (14', 14") est détecté au moyen d'une détection de court-circuit, et dans lequel on détermine dans quelle branche (11, 12, 13) se trouve l'élément semi-conducteur de puissance défectueux (14', 14").
 
5. Procédé selon la revendication 4, dans lequel on augmente la tension grille-émetteur sur les éléments semi-conducteurs de puissance (14', 14") des autres branches du redresseur de puissance (10).
 
6. Procédé selon la revendication 4, dans lequel on détermine sur lequel desdits au moins deux éléments semi-conducteurs de puissance (14', 14") de la branche concernée (11, 12, 13) le défaut existe, et dans lequel on augmente la tension grille-émetteur sur les éléments semi-conducteurs de puissance correspondants (14', 14") des autres branches.
 
7. Redresseur de puissance électrique (10) comprenant :

au moins deux branches (11, 12, 13) qui sont montées en parallèle entre elles, chacune desdites branches comprenant au moins deux éléments semi-conducteurs de puissance (14', 14") montés en série, et un noeud de phase formé par un point de connexion entre lesdits au moins deux éléments semi-conducteurs de puissance (14', 14"),

un dispositif de commande pour activer les éléments semi-conducteurs de puissance (14', 14"), et

un moyen pour détecter la tension collecteur-émetteur VCE(t) et/ou le courant de collecteur IC(t) d'au moins l'un des éléments semi-conducteurs de puissance (14', 14"),

dans lequel le dispositif de commande est adapté, en réponse à la détection d'un court-circuit dans l'une desdites branches (11, 12, 13), pour utiliser la tension collecteur-émetteur VCE(t) et/ou le courant de collecteur IC(t) dudit au moins un des éléments semi-conducteurs de puissance (14', 14") dans lequel circule un courant de court-circuit pour déterminer si au moins l'une des conditions suivantes est vérifiée :

et/ou

et/ou

où (dVCE/dt)crit est une valeur critique du taux d'accroissement de la tension collecteur-émetteur dudit au moins un des éléments semi-conducteurs de puissance (14', 14"), (dIC/dt)crit est une valeur critique du taux d'accroissement du courant de collecteur dudit au moins un des éléments semi-conducteurs de puissance (14', 14"), t_ent est l'instant du début de la désaturation dudit au moins un des éléments semi-conducteurs de puissance (14', 14"), delta t représente un retard, et ICcrit est une valeur critique du courant de collecteur dudit au moins un des éléments semi-conducteurs de puissance (14', 14") ;

dans lequel les valeurs critiques (dVCE/dt)crit, (dIC/dt)crit et ICcrit sont préspécifiées de telle manière que la valeur correspondante n'est pas atteinte quand un court-circuit de charge existe sur une charge (17) reliée aux noeuds de phase du redresseur de puissance (10), et qu'une distinction peut être faite entre un court-circuit de branche et un court-circuit de charge ; et

dans lequel le dispositif de commande est adapté pour augmenter la tension grille-émetteur d'au moins l'un des éléments semi-conducteurs de puissance (14', 14") pour continuer sa conduction s'il est déterminé qu'au moins l'une des conditions susmentionnées est vérifiée.


 
8. Redresseur de puissance électrique (10) selon la revendication 7, dans lequel sont fournis des éléments semi-conducteurs de puissance, notamment des IGBT (14', 14") qui peuvent être rendus bloqués.
 
9. Redresseur de puissance électrique (10) selon la revendication 7 ou 8, dans lequel, entre le collecteur et la grille d'au moins l'un des éléments semi-conducteurs de puissance (14', 14"), un interrupteur (32) et un circuit (33) sont connectés, grâce auxquels la tension grille-émetteur de l'élément semi-conducteur de puissance (14', 14") peut être augmentée.
 
10. Redresseur de puissance électrique (10) selon la revendication 9, dans lequel le circuit (33) comprend une diode (35) et, en option, une source de tension décalée (37).
 




Drawing









REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description