(19)
(11)EP 2 747 525 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
23.01.2019 Bulletin 2019/04

(21)Application number: 13194527.1

(22)Date of filing:  26.11.2013
(51)International Patent Classification (IPC): 
H05B 37/02(2006.01)
H04L 1/18(2006.01)
H04L 12/701(2013.01)
H04N 21/40(2011.01)
H04L 29/08(2006.01)
H04L 12/28(2006.01)
H04W 72/04(2009.01)

(54)

System and method for synchronizing multi-level output devices in an unreliable network

System und Verfahren zur Synchronisierung mehrstufiger Ausgabevorrichtungen in einem unzuverlässigen Netzwerk

Système et procédé de synchronisation de dispositifs de sortie multi niveau dans un réseau non fiable


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 19.12.2012 US 201213720388

(43)Date of publication of application:
25.06.2014 Bulletin 2014/26

(73)Proprietor: Google LLC
Mountain View, CA 94043 (US)

(72)Inventors:
  • Folkmanis, Girts
    Mountain View, CA California 94043 (US)
  • Heninwolf, Paul
    Mountain View, CA California 94043 (US)

(74)Representative: Boult Wade Tennant LLP 
Verulam Gardens 70 Gray's Inn Road
London WC1X 8BT
London WC1X 8BT (GB)


(56)References cited: : 
WO-A1-2010/150155
WO-A1-2011/024106
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND



    [0001] Home automation networks may be subject to a variety of sources of interference and/or shielding that prevents the successful delivery of control signals to controllable devices in the network. There are many types of appliances or devices that may be controlled as a single unit, such as lights, window shades, water pressure in fountains, music volume to speakers, and the like. A problem may occur when less than all of the multiple output devices or appliances receive the control signals.

    [0002] Home automation networks may operate at frequencies, such as 900 MHz, and 802.11 frequencies (Wi-Fi), that are commonly interfered with by other devices, such as microwave ovens, baby monitors and the like. As a result, communications over home automation networks may be unreliable, and some of the appliances or devices may not receive control signals. Missed control signals may cause synchronization problems when less than all of the multiple output devices or appliances receive the control signals.

    [0003] For example, a command for a group lights to adjust to a specific lighting level may be sent over an unreliable wireless network in which data communication can be lost. As a result, if one light in a group of lights operating together fails to receive the command then uneven lighting may occur and the results may not be aesthetically pleasing. To make sure all devices received the message, various schemes have to be used to confirm successful receipt of the message, for example, requiring each target device to "acknowledge" the reception of the command. If any of the target devices fail to acknowledge the message, the message may be resent. The acknowledgement requirement adds further latency to the network, which further delays the response of the lagging light.

    [0004] Often times a centralized command and processing model is used in which a central controller calculates the performance parameters of all of the devices that are being controlled as a single unit, and sends commands to a plurality of devices to perform an action. For example, an initial command may include a first set of initial device parameters based on an expected state of the respective devices. The central controller may issue intermediary commands with updated device parameters for each of the respective plurality of devices so the performance of the action by the respective devices may remain synchronized. This leads to an additional level of complexity at the central controller. In addition, the centralized command model does not account for errors in the expected states of the respective device. As a result, there may be abrupt changes to the operation of the device when an intermediary command is received.

    [0005] WO 2010/150155 A1 discloses "a home automation system and a method for controlling the same. In order to stably control a continuing concerted adjustment action of a continuously variable parameter by means of few and low-sized commands in order to avoid overloading of a low-data rate network while providing means for fast and unobtrusive correction of failures due to missed commands, it is provided a method for controlling a wireless home automation system, the home automation system being arranged as a network comprising at least one controller and a plurality of devices, wherein the method comprises the steps of sending a start command from the controller to a group of devices comprising an action type and a transaction ID and sending a stop command from the controller to the devices comprising the transaction ID and a controller counter."

    BRIEF SUMMARY



    [0006] The present invention provides a method as set out in claim 1 and a system as set out in claim 9.

    [0007] According to an implementation of the disclosed subject matter, the performance of an action by a plurality of devices operating as a single unit may be synchronized. A controllable device processor may determine that a received data packet is a retransmission of an initial control command data packet. The retransmitted data packet may include operation commands that may cause the controllable device to perform an operation that was requested to be performed by a plurality of controllable devices. The processor may obtain a start value and a time indicator related to performance of the operation from the retransmitted data packet. The start value may be equal to an expected initial value setting of the device. A time when the original command was given may be determined and a ramp rate related to the operation to be performed may also be obtained. Using the time indicator, an adjusted ramp rate may be calculated. An output value for the device may be set based on the adjusted ramp rate. The adjusted ramp rate may result in completing the operation at substantially the same time as though the device received the original command.

    [0008] According to an implementation of the disclosed subject matter, a controllable device processor may determine that a received data packet is a retransmission of an initial control command data packet. The retransmitted data packet may include operation commands that
    may cause a device to perform an operation requested by a control device. An expected start value and a duration of the operation may be obtained from the retransmitted data packet. The expected start value may be equal to an expected output value setting of the device at the time the retransmitted performance request is received and the duration may be an elapsed time from receipt of an original performance request until completion of the performance. The processor may determine a time when the original command was given and may compare the duration of the operation to the determined time delay. The controllable device processor may signal a controllable device output value based on the results of the comparison. The ramp rate may be a value representing a rate at which the operation is to complete.

    [0009] According to an implementation of the disclosed subject matter, a system for synchronizing performance of an operation by a plurality of devices operating as a single unit is provided. The system may include a plurality of controllable devices, a controller device, and a communication network. The plurality of output devices may include operating in coordination with one another to perform an operation. The controller device may be configured to control the plurality of output devices. The communication network may be communicatively coupled to the controller device and the plurality of output devices. The controller may be configured to retransmit a control command to the plurality of output devices. The control command may include a start value equal to an expected initial value setting of the device and an operation time value representing the time between the transmission of an earlier transmitted, initial control command until completion of the performance by the plurality of controllable devices. The controllable device may be configured to identify a received command as a retransmission of an earlier transmitted, initial control command, and obtain the start value and the elapsed time for performance of the operation from the reissued control command in response to not receiving the initial control command. The output device may determine a time when the initial control command was given. The duration of the operation may compare to the time delay. Based on the results of the comparison, the controllable device may set an output value for the device based on the start value, a ramp rate, and the time delay duration.

    [0010] Additional features, advantages, and implementations of the disclosed subject matter may be set forth or apparent from consideration of the following detailed description, drawings, and claims. Moreover, it is to be understood that both the foregoing summary and the following detailed description are exemplary and are intended to provide further explanation without limiting the scope of the claims.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0011] The accompanying drawings, which are included to provide a further understanding of the disclosed subject matter, are incorporated in and constitute a part of this specification. The drawings also illustrate implementations of the disclosed subject matter and together with the detailed description serve to explain the principles of implementations of the disclosed subject matter. No attempt is made to show structural features in more detail than may be necessary for a fundamental understanding of the disclosed subject matter and various ways in which it may be practiced.

    FIG. 1 shows a graphic of a possible use scenario according to an implementation of the disclosed subject matter.

    FIG. 2 shows a graphic describing another use scenario according to an implementation of the disclosed subject matter.

    FIG. 3 shows a flowchart according to an implementation of the disclosed subject matter.

    FIG. 4 shows a computer according to an implementation of the disclosed subject matter.

    FIG. 5 shows a network configuration according to an implementation of the disclosed subject matter.


    DETAILED DESCRIPTION



    [0012] Implementations of the disclosed subject matter may be usable with a plurality of devices that are to respond to the same command to perform an action. When at least one of the plurality of devices fails to receive a command due to an unreliable network connection, the described systems and techniques may overcome the failed receipt of a command and synchronize of the operation of the plurality of devices. When multiple devices are operated in unison, such as lighting, draperies, and blinds, the provided system and method allow for more efficient operation and, depending on the operation, an aesthetically pleasing and coordinated presentation.

    [0013] For example, if a room contains multiple individually controllable lights, the user might want to dim them all on and off with a single wall light switch. To achieve a more pleasant effect, the lights may be dimmed gradually (faded in and out), instead of jumping from a starting level (e.g. fully on) to target level (e.g., half off). When using a wall switch, the user may instantly indicate the amount of dimming desired without having to continue to interact with the wall switch. In other words, a user may touch an input device to perform a command and forget it because the user can assume the command will be successfully performed.

    [0014] If a message is missed by one or more devices, but the rest of the devices start executing the command, this can create an inconsistent appearance (e.g., two lights start dimming, while a third remains bright) that is not aesthetically pleasing. One method to overcome this inconsistency is to allow the other devices to "catch up" to the current output level, minimizing the time during which the brightness levels are out of synchronization.

    [0015] In current home automation networks, a retransmitted command packet causes the action to start from the same point as if it was received in when the command packet was initially transmitted. It would be advantageous if a system would compensate the output settings of the controllable device for the time delay from when the original command was supposed to be received and when the retransmitted initial command was received.

    [0016] FIG. 1 shows a graphic of a possible use scenario according to an implementation of the disclosed subject matter. To initiate the operation, a controller, such as a home automation network controller or an intermediary control device, such as a gateway controller, smartphone, wall switch, presence-detection device or the like, may send an initial control command to the respective lights. To enable devices to synchronize to the intended output state, the devices may calculate the instantaneous output value for any time value during the transition from an initial state to the intended output state. FIG. 1 illustrates a scenario in which three lights, Light A, Light B and Light C, are controllable devices acting in coordination or cooperation with one another to dim the light intensity in a room. The Lights A, B and C may be controllable devices that may include memory, processors and transceivers that allow the lights to communication with a control device that may be remote from the lights. The communication path may be either a wired or wireless. The commands may include data that identifies the command as an initial command or a retransmission command, and that identifies the operation/action to be performed. For example, the command(s) may include a bit(s) may indicate that the command is a dim command, a turn ON command, or some other command.

    [0017] The controllable device memory may store preset responses to certain commands. For example, a command to dim the lights for a movie may have preset control parameters, such as preset end points and a preset ramp rate to meet the dim settings. The preset control parameters may be set by a user or at time of manufacture of the controllable device. Assume for the sake of the example, the Lights A, B and C are at their highest intensity at time t=100.

    [0018] As shown in FIG. 1, the controllable devices, Light A, Light B, receive, at time t=200, an initial control command requesting performance of an operation or action. The terms "operation" and "action" may be used interchangeably and refer to some operation or action that is to be performed by the controllable devices. However, for some reason (e.g., interference) Light C does not receive the command or receives only a partial command that cannot be interpreted or error-corrected by the Light C processor. The command may include an expected start value, e.g., 0%, with an instruction to go to an end value, e.g., a 50% output value. The data packet containing the initial performance request command may also include other data. For example, the other data may be data indicating whether the command is an initial command or a retransmission command, the number of retransmissions, the time at which the command was sent, a ramp rate, a bit indicating that the command is an initial performance request command, an end value, a time duration of the action to be performed, and additional information, for example, a source identifier, a destination identifier, routing information, checksums and the like.

    [0019] The ramp rate may indicate to the controllable device how quickly the device may transition from a current value (or expected start value) to the commanded value. The ramp rate may be used by the device to calculate the instantaneous value at different time intervals as the device transitions from the expected start value to the end value. Alternatively, the ramp rate may be used to calculate step values for transitioning to an end value. In general, the ramp rate, start values and end values may be used to calculate any form of output values. The ramp rate for dimming lights may be different from the ramp rate for raising the light's brightness level. Of course, the ramp rate may be either positive or negative. For example, the ramp rate for dimming lights may be negative, while the ramp rate for increasing light brightness may be positive. The ramp rate may be provided in the command, stored in the controllable devices' memory or may be derived by the processor using the controllable device parameters provided with the command.

    [0020] Returning to the example of FIG. 1, according to the initial performance request command data and the ramp rate, Lights A and B may begin the transition to a output value 10% less than the expected start value (100%) upon receipt of the performance request command, and transition by 10% at each of the following intervals until the commanded end value that may be included the data packet. For example, at time t=500, all lights are expected to be at value 40%, and at time t=600 and beyond, 50%. FIG. 1 shows discrete time units to simplify the example, but the output level changes could be of a much finer granularity, nearly continuous or continuous. To be able to calculate the output value for any given time T, the devices may use the start time, duration, start value and ramp rate: <output value> = { <start value> + <ramp rate> * <duration> if T >= duration { <start value> + <ramp rate> * T otherwise

    [0021] Some of the values can also be omitted or replaced, e.g., end time could be provided instead of duration. The end value may replace the ramp rate, or the ramp rate may be preconfigured. If it can be assumed that the state of the network is synchronized, the start value may be omitted. Alternatively, the start time may be omitted if the transmission is instantaneous, e.g., if messages are for local broadcast only and not propagated through a network.

    [0022] Continuing with the example of Fig. 1, the crossed out command below Light C at time 200 illustrates that Light C did not receive the initial performance request command. As a result, Light C does not change its output value at times 200, 300 or 400. However, a performance request command repeating the same command as the initial command that was transmitted at time 200 may be retransmitted at time 500. Light C receives the retransmitted command, and using data in the retransmitted command message, the Light C may synchronize itself to the right level after receiving the retransmitted command message. One or more data packets in the retransmitted command message may include the start level and end level, so Light C can match the levels of Light A and B after receiving the retransmitted packet at time 500. Light C may determine that the received command message is a retransmitted command message. Using the data included in the data packet, Light C may calculate an output value that matches, or that is in synchronization, with the expected output values of Lights A and B at the time the command is received. For example, Light C may take the data in the data packet of the retransmitted command message and calculate a 40% output value that synchronizes its output value with that of Lights A and B. By time 600, Lights A, B and C are synchronized and reach the end value, 50% output, at the same time.

    [0023] Depending on the control application, the retransmitted command message may include only the data provided in the initial performance request command, or it may include more or less information. For example, the other data may include data indicating the time the command was sent, the ramp rate, and the like. No matter whether the retransmitted command message includes more or less data, in an implementation it should include sufficient data that the controllable device is able to calculate its own output values synchronizing its output with the other devices that it is working in coordination with to provide the expected performance. In addition, if the network does not have an absolute shared time, the devices may synchronize to one another using a relative time.

    [0024] An advantage of the presently disclosed subject matter is that the individual controllable devices are capable of determining an output value based on minimal data provided by a controller. This is beneficial in a situation where, for example, a controller may store in memory an expected state of a controllable device that is different from the actual state of the controllable device. Implementations of the presently disclosed subject matter are able to compensate for the controller error, and determine a corrected response.

    [0025] FIG. 2 illustrates a scenario for compensating for controller errors to synchronize operation of cooperating devices according to implementations of the disclosed subject matter. The graph of FIG. 2 has a time axis and a level value axis. The level value axis represents the output value for a controllable device. The level value may represent a voltage or other parameter related to the respective controllable device. In response to a user input, a controller may transmit an initial command to a plurality of controllable devices that are operating in coordination with one another to perform an action. For example, the controllable devices may be water pumps in a landscape water feature or motors for blinds. The controller may transmit at time T1 an initial performance request command to devices D1 and D2 (not shown). The initial performance request command may include an expected start value of the device. However, the device may have an actual initial start value that is greater than the expected start value. If this is left uncorrected, the device will not be synchronized with the operation of the other cooperating devices.

    [0026] For example, as illustrated in FIG. 2, an initial performance request command may be transmitted, at time T1, by a controller to a plurality of cooperating devices including device D1. The initial performance request command may include, or may omit the expected start value. The expected start value may be a present output level that the controller expects from the controllable device. However, the actual initial start value of Device D1 may be different, either higher or lower. The actual initial start value may be the present output value of the device D1. For example, vertical window blinds may scroll back and forth on a track. If a user were to accidentally obstruct the movement of the blinds by placing a chair close to the window, a blind may catch on the chair and may not be able to fully open or close, so the device location or start value may not be the same as the controller expects. However, the controller may not receive a notification from each of the blind operating devices that the operation has been or has not been fully completed. Nor may the controller receive notification of the actual state of the devices. The controller may assume that the device has reached the commanded state without requiring the device to acknowledge completion of the operation or to even acknowledge receipt of the initial command. As a result, the controller may be sending commands that are based on an incorrect state of a device. To address this problem, device D1 may have a processor and memory to store the operating state of the device D1. Upon receipt of the initial control command, or performance request, command, the device D1 processor can compare the expected start value in the initial control command with the stored actual state and determine whether the expected start value is correct or incorrect. The start value may represent a controllable devices location state or output intensity. For example, it may represent a light brightness, a gas fireplaces burner intensity, a position of a blind along a track or a water pump output pressure. Using parameters from the initial control command, the processor may determine transition values that will synchronize the response of device D1 to the transition path of the other cooperating devices. For example, the processor may determine a plurality of transition values at respective periodic points along the expected ramp rate line, or determine a plurality of transition values that change value in specific increments (e.g., 25% increase). Using the plurality of transition values at the respective periodic point, the processor may calculate a plurality of device output values that may be stored in a buffer for output at a time corresponding to the calculated output value. Alternatively, the processor may calculate updated output values predetermined times. For example, FIG. 2 shows device D1's adjusted ramp rate from which updated output values may be calculated for a period of time between time T1 and Td, and after the adjusted ramp rate intersects the expected ramp rate, the processor may use the expected ramp rate to calculate the updated output values. The processor may calculate an output value nearly continuously to synchronize the performance of device D1 with other devices that are also performing the operation. The controllable devices may complete the performance in coordination in the duration time DURATION at end time Te.

    [0027] FIG. 3 also illustrates a process for synchronizing the performance of a controllable device that fails to receive, or only receives a portion of, an initial control command. With reference to the time line of FIG. 2, at time Td, a processor in the device, for example device D2, may perform the process steps shown in FIG. 3. The processor of device D2 may determine that a received data packet that includes the initial control command is a retransmission of an initial control command data packet (310). The retransmitted data packet may include operation commands that may cause a controllable device to perform an operation that was requested to be performed by a plurality of controllable devices. For example, the retransmitted data package may include an indicator bit indicating that the data package is a retransmission of an earlier data package. The retransmitted data packet may also include data in addition to the device parameters provided in the initial control command. For example, it may include an indicator of the time when the command was sent, a ramp rate for performance of the operation, a duration of the operation, an end time of the operation, a memory address location for the processor to check in the controllable device's memory which may store data related to the requested operation to be performed, or other data related to the initial performance request command.

    [0028] From the retransmitted data packet, the controllable devices may obtain information, for example, a start value and a time indicator, related to performance of the operation (Step 320). The start value may be equal to an expected initial value setting of the device. The controllable device processor may determine a time when the original command was given using, for example, the time indicator (Step 330). Alternatively, the retransmitted initial performance request commands may be periodically transmitted so that any controllable devices that did not receive the initial command will be able to synchronize themselves to cooperating devices.

    [0029] At step 340, a ramp rate related to the operation to be performed may be obtained from, for example, the retransmitted initial performance request command or from the controllable device's memory. Any one of, or combination of, the time indicator, obtained ramp rate, and/or duration may be used to calculate an adjusted ramp rate. The adjusted ramp rate, as shown in FIG. 2, is calculated so the controllable device that did not react to the initial performance request command may synchronize itself with the other cooperating devices. The controllable device that did not react to the initial performance request command may also be called the delayed device. This adjusted ramp rate may be calculated, at 350, so the delayed device sets its output values at points that allow the output of the delayed device to gracefully (e.g., without abrupt changes in output level) meet the expected ramp rate of the initial command.

    [0030] Using the adjusted ramp rate calculated by the controllable device processor, the processor at step 360 may set an output value using the adjusted ramp rate that may result in completing the operation for the controllable device at substantially the same time as though the device received the original command, and/or at substantially at the same time as other devices that did receive and execute the original command.

    [0031] Implementations of the presently disclosed subject matter may be implemented in and used with a variety of component and network architectures. A controllable device may be a computing device. For example, FIG. 4 illustrates an example computer 20 suitable for implementations of the presently disclosed subject matter, such as the controllable device. The computer 20 may include a bus 21 which interconnects major components of the computer 20, such as a central processor 24, a memory 27 (typically RAM, but which may also include ROM, flash RAM, or the like), an input/output controller 28, a user display 22, such as indicator lights or a small display to indicate, for example, state information, a user input interface 26, which may include one or more controllers and associated user input devices such as mini or micro USB, and the like, and may be closely coupled to the I/O controller 28.

    [0032] The bus 21 allows data communication between the central processor 24 and the memory 27, which may include read-only memory (ROM) or flash memory (neither shown), and random access memory (RAM) (not shown), as previously noted. The RAM is generally the main memory into which the operating system and application programs are loaded. The ROM or flash memory can contain, among other code, the Basic Input-Output system (BIOS) which controls basic hardware operation such as the interaction with peripheral components. Applications resident with the computer 20 are generally stored on and accessed via a computer readable medium, such as memory 27 or other storage medium 25, for example, a micro SD card. The memory may also store preset responses to certain commands. For example, a command to open the blinds received by a controllable blind device may be performed using an end value and a ramp rate that have been preset by a user or at time of manufacture of the controllable device.

    [0033] A network interface 29 may provide a direct connection to a remote server via a telephone link, to the Internet via an internet service provider (ISP), or a direct connection to a remote controller device, such as a home automation network controller or a home automation network gateway control device via a direct network link to the Internet through a Wi-Fi access point or other network via known techniques. The network interface 29 may provide such connection using wireless techniques, including digital cellular telephone connection, Z-wave, Bluetooth, Zigbee, 802.11 protocols, Cellular Digital Packet Data (CDPD) connection, digital satellite data connection or the like. For example, the network interface 29 may allow the computer to communicate with other computers via one or more local, wide-area, or other networks, as shown in FIG. 5.

    [0034] Many other devices or components (not shown) may be connected in a similar manner (e.g., document scanners, digital cameras and so on). Conversely, all of the components shown in FIG. 4 need not be present to practice the present disclosure. The components can be interconnected in different ways from that shown. The operation of a computer such as that shown in FIG. 4 is readily known in the art and is not discussed in detail in this application. Code to implement the present disclosure can be stored in computer-readable storage media such as one or more of the memory 27, removable media 25, or on a remote storage location.

    [0035] FIG. 5 shows an example network arrangement according to an implementation of the disclosed subject matter. One or more controllable devices 10, 11, 12, such as light bulbs, light fixtures may connect to other devices via one or more device communication networks 7. The communication network 7 may use a suitable communication protocol such as Zigbee, Z-wave, Bluetooth, Wi-Fi or other network communication protocols and operating frequency, such as 900 MHz, 2.4 GHz, 3.6 GHz or 5 GHz. A user device 14 may be a smart phone, tablet computing devices, a personal computer, a wall switch, a user presence detection device and the like that may communicate either directly or indirectly via network 7 with the controllable devices 10-12, the network controller 17, gateway controller 13 or database 15. A user presence detection device 14 may be a camera that allows a processor to recognize a user, a radio frequency (RF) device operating in combination with a RF device associated with a user, a cellphone detection device or other user presence detection system known for determining the presence of a user. The network 7 may be a local network, wide-area network, the Internet, or any other suitable communication network or networks, and may be implemented on any suitable platform including wired and/or wireless networks. The controllable devices 10-12 may communicate with one or more gateway controllers 13, network controller 17 and/or databases 15. The controllable devices 10, 11, 12 also may access remote platforms 19 or services provided by remote platforms 19 such as cloud computing arrangements and services via external network 9. The remote platform 19 may include one or more servers and/or databases in addition to or other than database 15.

    [0036] A system 500 may include a plurality of controllable devices 10-12, a controller device, such network controller 17, gateway controller 15 or user device 14, and a communication network, such as network 7. The controllable output devices 10-12 may operate in coordination with one another to perform an operation, such as dimming/turning up light levels, lawn irrigation system, window blind operations or window opening operations and the like. A controller device, such as network controller 17, gateway controller 15 or user device 14 may be configured to control the plurality of controllable output devices 10-12. The communication network 7 may communicatively couple the controller device 13, 14 and/or 17with the plurality of output devices 10-12. The controller devices may be configured to reissue a control command to the plurality of controllable devices. The control command may include a start value equal to an expected initial value setting of the device and an elapsed time from receipt of an original performance request until completion of the performance. The elapsed time may be used to determine an adjusted ramp rate that may allow the controllable device to catch up or synchronize its operation to that of the other controllable devices. The controllable devices 10-12 may be configured to obtain the start value and the elapsed time for performance of the operation from the reissued control command in response to a determination that the received command is a retransmission of the initial control command. The controllable devices 10-12 may determine a time when the initial control command was given and may compare a duration for the operation to the time delay indicated by the elapsed time. Based on the results of the comparison, the controllable devices 10-12 may set an output value for the device based on the start value, a ramp rate, and the duration.

    [0037] More generally, various implementations of the presently disclosed subject matter may include or be embodied in the form of computer-implemented processes and apparatuses for practicing those processes. Implementations also may be embodied in the form of a computer program product having computer program code containing instructions embodied in non-transitory and/or tangible media, such as floppy diskettes, CD-ROMs, hard drives, USB (universal serial bus) drives, or any other machine readable storage medium, wherein, when the computer program code is loaded into and executed by a computer, the computer becomes an apparatus for practicing implementations of the disclosed subject matter. Implementations also may be embodied in the form of computer program code, for example, whether stored in a storage medium, loaded into and/or executed by a computer, or transmitted over some transmission medium, such as over electrical wiring or cabling, through fiber optics, or via electromagnetic radiation, wherein when the computer program code is loaded into and executed by a computer, the computer becomes an apparatus for practicing implementations of the disclosed subject matter. When implemented on a general-purpose microprocessor, the computer program code segments configure the microprocessor to create specific logic circuits. In some configurations, a set of computer-readable instructions stored on a computer-readable storage medium may be implemented by a general-purpose processor, which may transform the general-purpose processor or a device containing the general-purpose processor into a special-purpose device configured to implement or carry out the instructions. Implementations may be implemented using hardware that may include a processor, such as a general purpose microprocessor and/or an Application Specific Integrated Circuit (ASIC) that embodies all or part of the techniques according to implementations of the disclosed subject matter in hardware and/or firmware. The processor may be coupled to memory, such as RAM, ROM, flash memory, a hard disk or any other device capable of storing electronic information. The memory may store instructions adapted to be executed by the processor to perform the techniques according to implementations of the disclosed subject matter.


    Claims

    1. A method (300) of synchronizing multi-level output controllable devices (10, 11, 12) in a network (500), the method comprising:

    determining (310), by a processor in a controllable device, that a received data packet is a retransmission of an initial control command data packet, wherein the retransmitted data packet includes an operation command that cause the controllable device to perform an operation that was requested to be performed by a plurality of controllable devices operating in cooperation;

    obtaining (320) from the retransmitted data packet, information related to performance of the operation, the information including a time indicator that indicates the time when the initial command was given, or that indicates a duration of the operation;

    determining (330) a time when the initial command was transmitted;

    obtaining (340) a ramp rate related to the operation to be performed, the ramp rate indicating to the controllable device how quickly to transition from an expected start value to a commanded value;

    calculating (350) an adjusted ramp rate, the adjusted ramp rate for controlling the controllable device to synchronize operation with others of the controllable devices;

    setting (360) an output value for the controllable device based on the adjusted ramp rate; and

    completing the operation using the set output value.


     
    2. The method of claim 1, wherein the adjusted ramp rate results in completing the operation at substantially the same time (Te) as though the device received the original command.
     
    3. The method of claim 1 or claim 2, wherein the setting an output value for the device (10, 11, 12) is further based on at least one of

    an actual start value of the controllable device (10, 11, 12) included in the information obtained from the retransmitted data packet,

    an actual output value of the controllable device (10, 11, 12) at the time the retransmitted performance request is received.


     
    4. The method of claims 1 to 3, further comprising:

    determining that the expected start value is different from the actual start value of the controllable device (10, 11, 12); and

    calculating the adjusted ramp rate using an actual start value.


     
    5. The method of claims 1 to 4, further comprising:

    receiving an operation performance request related to a plurality of controllable devices (10, 11, 12), wherein the operation performance request includes the initial control command data packet.


     
    6. The method of claim 1, further comprising:

    obtaining the expected start value from the retransmitted data packet, wherein the expected start value is equal to an expected output value setting of the device at the time the retransmitted performance request is received and wherein the duration is an elapsed time from transmission of a performance request until completion of the performance;

    identifying a retransmitted time (Td) when the performance request was retransmitted;

    determining a time difference between the initial transmission time (T1) and the retransmitted time (Td);

    comparing a duration of the operation to the time difference; and

    based on the results of the comparison, signalling a controllable device (10, 11, 12) output value.


     
    7. The method of claims 1 to 6, wherein the adjusted ramp rate results in completing the operation especially by the controllable device (10, 11, 12) at substantially the same time (Te) as other controllable devices executing the same action.
     
    8. The method of claims 1 to 7, wherein all of the plurality of controllable devices (10, 11, 12) are operating in cooperation to complete the operation.
     
    9. A system (500) comprising:

    a plurality of controllable devices (10,11, 12) operating in coordination with one another to perform an action;

    a controller device configured to control the plurality of controllable devices; and

    a communication network communicatively coupling the controller device and the plurality of controllable devices,

    wherein the controller device is further configured to:

    retransmit a control command to the plurality of output devices, wherein the control command includes a start value equal to an expected initial value setting of the device and an elapsed time value representing the time between the transmission of an earlier transmitted, initial control command until completion of the performance by the plurality of controllable devices;

    wherein each controllable device (10, 11, 12) is configured to:

    identify (310) a received command as a retransmission of an earlier transmitted, initial control command;

    in response to the identified retransmission command, obtain (320) the start value and the elapsed time value for performing the action from the reissued control command;

    determine (330) a time (T1) when the initial control command was given;

    compare the elapsed time value to the time delay, the time delay being the time (Td) between receiving the retransmitted command and a time (T1) of transmission of the earlier initial command; and

    based on the results of the comparison, generate (360) an output value for the device based on the start value, a ramp rate, and the time delay, wherein the ramp rate indicates to the controllable device how quickly to transition from the start value to a commanded value.


     
    10. The system of claim 9, wherein the controller device is further configured to:

    generate an operation performance request that includes an initial control command data packet in response to an input signal.


     
    11. The system of claims 9 or 10, wherein the retransmitted command is transmitted at a preset time after a transmission of an initial command or at periodic times after the issuance of the initial performance request command.
     
    12. The system of any of claims 9 to 11, wherein the step of generating the output value for the device comprises:

    calculating (350) an adjusted ramp rate, the adjusted ramp rate for controlling the controllable device to synchronize operation with others of the controllable devices; and

    setting (360) the output value for the controllable device based on the adjusted ramp rate.


     
    13. The system of claim 12, wherein the adjusted ramp rate results in completing the action at substantially the same time (Te) as though the device received the initial control command.
     
    14. The system of claim 12 or 13, wherein the step of calculating an adjusted ramp rate comprises:

    determining that an expected start value is different from an actual start value of the controllable device (10, 11, 12); and

    calculating the adjusted ramp rate using the actual start value.


     
    15. The system of any of claims 9 to 14, wherein the controller device is configured to control the plurality of controllable devices such that all of the plurality of controllable devices (10, 11, 12) operate in cooperation to complete the action.
     


    Ansprüche

    1. Verfahren (300) zum Synchronisieren von steuerbaren Vorrichtungen (10, 11, 12) mit mehrstufiger Ausgabe in einem Netzwerk (500), wobei das Verfahren Folgendes umfasst:

    Bestimmen (310), durch einen Prozessor in einer steuerbaren Vorrichtung, dass ein empfangenes Datenpaket eine erneute Übertragung eines anfänglichen Steuerbefehlsdatenpakets ist, wobei das erneut übertragene Datenpaket einen Operationsbefehl enthält, der die steuerbare Vorrichtung dazu veranlasst, eine Operation durchzuführen, deren Durchführung durch eine Mehrzahl von steuerbaren Vorrichtungen angefordert wurde, die in Kooperation operieren;

    Erhalten (320), von dem erneut übertragenen Datenpaket, von Information bezüglich einer Durchführung der Operation, wobei die Information eine Zeitangabe enthält, die die Zeit angibt, wann der anfängliche Befehl gegeben wurde, oder die eine Dauer der Operation angibt;

    Bestimmen (330) einer Zeit, wann der anfängliche Befehl übertragen wurde;

    Erhalten (340) einer Rampenrate bezüglich der durchzuführenden Operation, wobei die Rampenrate der steuerbaren Vorrichtung angibt, wie schnell von einem erwarteten Startwert zu einem befohlenen Wert übergegangen werden soll;

    Berechnen (350) einer angepassten Rampenrate, wobei die angepasste Rampenrate zur Steuerung der steuerbaren Vorrichtung dient, um die Operation mit anderen von den steuerbaren Vorrichtungen zu synchronisieren;

    Einstellen (360) eines Ausgabewerts für die steuerbare Vorrichtung basierend auf der angepassten Rampenrate; und

    Komplettieren der Operation unter Verwendung des eingestellten Ausgabewerts.


     
    2. Verfahren nach Anspruch 1, wobei die angepasste Rampenrate dazu führt, dass die Operation im Wesentlichen zu der gleichen Zeit (Te) komplettiert wird, wie wenn die Vorrichtung den ursprünglichen Befehl empfangen würde.
     
    3. Verfahren nach Anspruch 1 oder Anspruch 2, wobei das Einstellen eines Ausgabewerts für die Vorrichtung (10, 11, 12) ferner auf wenigstens einem von Folgenden basiert:

    einem tatsächlichen Startwert der steuerbaren Vorrichtung (10, 11, 12), der in der Information enthalten ist, die von dem erneut übertragenen Datenpaket erhalten ist,

    einem tatsächlichen Ausgabewert der steuerbaren Vorrichtung (10, 11, 12) zu der Zeit, wenn die erneut übertragene Durchführungsanfrage empfangen wird.


     
    4. Verfahren nach den Ansprüchen 1 bis 3, ferner umfassend:

    Bestimmen, dass der erwartete Startwert von dem tatsächlichen Startwert der steuerbaren Vorrichtung (10, 11, 12) verschieden ist; und

    Berechnen der angepassten Rampenrate unter Verwendung eines tatsächlichen Startwerts.


     
    5. Verfahren nach den Ansprüchen 1 bis 4, ferner umfassend:

    Empfangen einer Operationsdurchführungsanfrage bezüglich einer Mehrzahl von steuerbaren Vorrichtungen (10, 11, 12), wobei die Operationsdurchführungsanfrage das anfängliche Steuerbefehlsdatenpaket enthält.


     
    6. Verfahren nach Anspruch 1, ferner umfassend:

    Erhalten des erwarteten Startwerts von dem erneut übertragenen Datenpaket, wobei der erwartete Startwert gleich einer Einstellung eines erwarteten Ausgabewerts der Vorrichtung zu der Zeit ist, wenn die erneut übertragene Durchführungsanfrage empfangen wird, und wobei die Dauer eine abgelaufene Zeit von einer Übertragung einer Durchführungsanfrage bis zur Komplettierung der Durchführung ist;

    Identifizieren einer erneut übertragenen Zeit (Td), wann die Durchführungsanfrage erneut übertragen wurde;

    Bestimmen einer Zeitdifferenz zwischen der anfänglichen Übertragungszeit (T1) und der erneut übertragenen Zeit (Td);

    Vergleichen einer Dauer der Operation mit der Zeitdifferenz; und

    basierend auf den Ergebnissen des Vergleichs, Melden eines Ausgabewerts der steuerbaren Vorrichtung (10, 11, 12).


     
    7. Verfahren nach den Ansprüchen 1 bis 6, wobei die angepasste Rampenrate zur Komplettierung der Operation, insbesondere durch steuerbare Vorrichtung (10, 11, 12), im Wesentlichen zur gleichen Zeit (Te) wie bei anderen steuerbaren Vorrichtungen führt, die die gleiche Aktion ausführen.
     
    8. Verfahren nach den Ansprüchen 1 bis 7, wobei alle von der Mehrzahl von steuerbaren Vorrichtungen (10, 11, 12) in Kooperation operieren, um die Operation zu komplettieren.
     
    9. System (500), umfassend:

    eine Mehrzahl von steuerbaren Vorrichtungen (10, 11, 12), die in gegenseitiger Koordination operieren, um eine Aktion durchzuführen;

    eine Controllervorrichtung, die dazu ausgelegt ist, die Mehrzahl von steuerbaren Vorrichtungen zu steuern; und

    ein Kommunikationsnetzwerk, das die Controllervorrichtung und die Mehrzahl von steuerbaren Vorrichtungen kommunikativ miteinander koppelt,

    wobei die Controllervorrichtung ferner zu Folgendem ausgelegt ist:

    erneutes Übertragen eines Steuerbefehls an die Mehrzahl von Ausgabevorrichtungen, wobei der Steuerbefehl einen Startwert gleich einer Einstellung eines erwarteten Anfangswerts der Vorrichtung und einen Wert einer abgelaufenen Zeit enthält, der die Zeit zwischen der Übertragung eines früher übertragenen anfänglichen Steuerbefehls bis zur Komplettierung der Durchführung durch die Mehrzahl von steuerbaren Vorrichtungen repräsentiert;

    wobei jede steuerbare Vorrichtung (10, 11, 12) zu Folgendem ausgelegt ist:

    Identifizieren (310) eines empfangenen Befehls als eine erneute Übertragung eines früher übertragenen anfänglichen Steuerbefehls;

    in Antwort auf den identifizierten Befehls erneuter Übertragung, Erhalten (320) des Startwerts und des Werts der abgelaufenen Zeit zum Durchführen der Aktion von dem erneut ausgegebenen Steuerbefehl;

    Bestimmen (330) einer Zeit (T1), wann der anfängliche Steuerbefehl gegeben wurde;

    Vergleichen des Werts der abgelaufenen Zeit mit der Zeitverzögerung, wobei die Zeitverzögerung die Zeit (Td) zwischen dem Empfang des erneut übertragenen Befehls und einer Zeit (T1) einer Übertragung des früheren anfänglichen Befehls ist; und

    basierend auf den Ergebnissen des Vergleichs, Generieren (360) eines Ausgabewerts für die Vorrichtung basierend auf dem Startwert, einer Rampenrate und der Zeitverzögerung, wobei die Rampenrate der steuerbaren Vorrichtung angibt, wie schnell von dem Startwert zu einem Befehlswert übergegangen werden soll.


     
    10. System nach Anspruch 9, wobei die Controllervorrichtung ferner zu Folgendem ausgelegt ist:

    Generieren einer Operationsdurchführungsanfrage, die ein anfängliches Steuerbefehlsdatenpaket enthält, in Antwort auf ein Eingabesignal.


     
    11. System nach Anspruch 9 oder 10, wobei der erneut übertragene Befehl zu einer voreingestellten Zeit nach einer Übertragung eines anfänglichen Befehls übertragen wird, oder zu periodischen Zeiten nach der Ausgabe des anfänglichen Durchführungsanfragebefehls.
     
    12. System nach einem der Ansprüche 9 bis 11, wobei der Schritt des Generierens des Ausgabewerts für die Vorrichtung Folgendes umfasst:

    Berechnen (350) einer angepassten Rampenrate, wobei die angepasste Rampenrate zur Steuerung der steuerbaren Vorrichtung dient, um die Operation mit anderen von den steuerbaren Vorrichtungen zu synchronisieren; und

    Einstellen (360) des Ausgabewerts für die steuerbare Vorrichtung basierend auf der angepassten Rampenrate.


     
    13. System nach Anspruch 12, wobei die angepasste Rampenrate zur Komplettierung der Aktion im Wesentlichen zur gleichen Zeit (Te) führt, wie wenn die Vorrichtung den anfänglichen Steuerbefehl empfangen würde.
     
    14. System nach Anspruch 12 oder 13, wobei der Schritt des Berechnens einer angepassten Rampenrate Folgendes umfasst:

    Bestimmen, dass ein erwarteter Startwert von einem tatsächlichen Startwert der steuerbaren Vorrichtung (10, 11,12) verschieden ist; und

    Berechnen der angepassten Rampenrate unter Verwendung des tatsächlichen Startwerts.


     
    15. System nach einem der Ansprüche 9 bis 14, wobei die Controllervorrichtung dazu ausgelegt ist, die Mehrzahl von steuerbaren Vorrichtungen derart zu steuern, dass alle von der Mehrzahl von steuerbaren Vorrichtungen (10, 11, 12) in Kooperation operieren, um die Aktion zu komplettieren.
     


    Revendications

    1. Procédé (300) de synchronisation de dispositifs contrôlables de sortie multi-niveaux (10, 11, 12) dans un réseau (500), le procédé comprenant :

    la détermination (310), par un processeur dans un dispositif contrôlable, qu'un paquet de données reçu est une retransmission d'un paquet de données de commande de contrôle initial, dans lequel le paquet de données retransmis inclut une commande de fonctionnement qui amène le dispositif contrôlable à exécuter un fonctionnement requis devant être mis en oeuvre par une pluralité de dispositifs contrôlables fonctionnant en coopération ;

    l'obtention (320) à partir du paquet de données retransmis, des informations concernant le rendement du fonctionnement, les informations incluant un indicateur temporel qui indique le moment lors duquel la commande initiale a été fournie ou qui indique la durée de fonctionnement ;

    la détermination (330) d'un moment lorsque la commande initiale a été transmise ;

    l'obtention (340) d'une vitesse de montée concernant le fonctionnement à exécuter, la vitesse de montée indiquant au dispositif contrôlable la vitesse à laquelle se réalise la transition d'une valeur de départ attendue à une valeur commandée ;

    le calcul (350) d'une vitesse de montée réglée, la vitesse de montée réglée pour le contrôle du dispositif contrôlable pour synchroniser le fonctionnement avec les autres dispositifs contrôlables ;

    la mise en place (360) d'une valeur de sortie pour le dispositif contrôlable sur base de la vitesse de montée réglée ; et

    l'achèvement du fonctionnement en utilisant la valeur de sortie établie.


     
    2. Procédé selon la revendication 1, dans lequel la vitesse de montée réglée aboutit à l'achèvement du fonctionnement sensiblement en même temps (Te) comme si le dispositif a reçu la commande originale.
     
    3. Procédé selon la revendication 1 ou selon la revendication 2, dans lequel la mise en place d'une valeur de sortie pour le dispositif (10, 11, 12) se base en outre sur au moins une parmi
    une valeur de départ actuelle du dispositif contrôlable (10, 11, 12) inclue dans les informations obtenues à partir du paquet de données retransmis,
    une valeur de sortie actuelle du dispositif contrôlable (10, 11, 12) au moment où la demande de performance retransmise est reçue.
     
    4. Procédé selon les revendications 1 à 3, comprenant en outre :

    la détermination que la valeur de départ attendue est différente de la valeur de départ actuelle du dispositif contrôlable (10, 11, 12) ; et

    le calcul de la vitesse de montée réglée en utilisant une valeur de départ actuelle.


     
    5. Procédé selon les revendications 1 à 4, comprenant en outre :

    la réception d'une demande de performance du fonctionnement concernant une pluralité de dispositifs contrôlables (10, 11, 12), dans lequel la demande de performance du fonctionnement inclut le paquet de données de commande de contrôle initial.


     
    6. Procédé selon la revendication 1, comprenant en outre :

    l'obtention de la valeur de départ attendue à partir du paquet de données retransmis, dans lequel la valeur de départ attendue est égale à l'établissement de la valeur attendue de sortie du dispositif au moment où la demande de performance retransmise est reçue et dans lequel la durée est un temps écoulé à partir de la transmission d'une demande de performance jusqu'à la fin de l'exécution ;

    l'identification d'un temps retransmis (Td) lorsque la demande de performance a été retransmise ;

    la détermination d'une différence de temps entre le temps de transmission initiale (T1) et le temps retransmis (Td) ;

    la comparaison de la durée de fonctionnement avec la différence de temps ; et

    sur base des résultats de la comparaison, la signalisation d'une valeur de sortie du dispositif contrôlable (10, 11, 12).


     
    7. Procédé selon les revendications 1 à 6, dans lequel la vitesse de montée réglée aboutit à l'achèvement du fonctionnement spécialement par le dispositif contrôlable (10, 11, 12) sensiblement en même temps (Te) que les autres dispositifs contrôlables réalisant la même action.
     
    8. Procédé selon les revendications 1 à 7, dans lequel tous parmi la pluralité des dispositifs contrôlables (10, 11, 12) fonctionnent en coopération pour achever le fonctionnement.
     
    9. Système (500) comprenant :

    une pluralité de dispositifs contrôlables (10, 11, 12) se coordonnent entre eux pour réaliser une action ;

    un dispositif de contrôle configuré pour commander la pluralité de dispositifs contrôlables ; et

    un réseau de communication couplant de manière communicative le dispositif de contrôle et la pluralité de dispositifs contrôlables,

    dans lequel le dispositif de contrôle est en outre configuré pour :

    la retransmission d'une commande de contrôle à la pluralité de dispositifs de sortie, dans lequel la commande de contrôle inclut une valeur de départ égale à l'établissement d'une valeur initiale attendue du dispositif et une valeur du temps écoulé représentant le moment entre la transmission d'une commande de contrôle initial transmise antérieurement jusqu'à la fin de l'exécution par la pluralité de dispositifs contrôlables ;

    dans lequel chaque dispositif contrôlable (10, 11, 12) est configuré pour :

    l'identification (310) d'une commande reçue comme retransmission d'une commande de contrôle initial transmise antérieurement ;

    en réponse à la commande de retransmission identifiée, l'obtention (320) de la valeur de départ et de la valeur du temps écoulé pour réaliser l'action à partir de la commande de contrôle réémise ;

    la détermination(330) d'un temps (T1) lorsque la commande de contrôle initial a été fournie ;

    la comparaison de la valeur du temps écoulé avec le retard temporel, le retard temporel étant le temps (Td) entre la réception de la commande retransmise et un temps (T1) de la transmission de la commande initiale antérieure ; et

    sur base des résultats de la comparaison, la génération (360) d'une valeur de sortie pour le dispositif sur base de la valeur de départ, d'une vitesse de montée, et du retard temporel, dans lequel la vitesse de montée indique au dispositif contrôlable la vitesse à laquelle la transition se réalise de la valeur de départ à une valeur commandée.


     
    10. Système selon la revendication 9, dans lequel le dispositif de contrôle est configuré en outre pour :

    la génération d'une demande de performance du fonctionnement qui inclut un paquet de données de commande de contrôle initial en réponse à un signal d'entrée.


     
    11. Système selon les revendications 9 ou 10, dans lequel la commande retransmise est transmise à un moment prédéterminé après la transmission d'une commande initiale ou à certains moments après l'émission de la commande de demande de performance initiale.
     
    12. Système selon l'une quelconque des revendications 9 à 11, dans lequel l'étape de génération de la valeur de sortie pour le dispositif comprend :

    le calcul (350) d'une vitesse de montée réglée, la vitesse de montée réglée pour le contrôle du dispositif contrôlable pour synchroniser le fonctionnement avec les autres dispositifs contrôlables ; et

    la mise en place (360) de la valeur de sortie pour le dispositif contrôlable sur base de la vitesse de montée réglée.


     
    13. Système selon la revendication 12, dans lequel la vitesse de montée réglée aboutit à l'achèvement de l'action sensiblement en même temps (Te) comme si le dispositif a reçu la commande de contrôle initial.
     
    14. Système selon la revendication 12 ou 13, dans lequel l'étape du calcul d'une vitesse de montée réglée comprend :

    la détermination qu'une valeur de départ attendue est différente d'une valeur de départ actuelle du dispositif contrôlable (10, 11, 12) ; et

    le calcul de la vitesse de montée réglée en utilisant la valeur de départ actuelle.


     
    15. Système selon l'une quelconque des revendications 9 à 14, dans lequel le dispositif de contrôle est configuré pour commander la pluralité de dispositifs contrôlables de sorte que tous parmi la pluralité de dispositifs contrôlables (10, 11, 12) fonctionnent en coopération pour terminer l'action.
     




    Drawing

















    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description