(19)
(11)EP 2 761 173 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
14.08.2019 Bulletin 2019/33

(21)Application number: 12768771.3

(22)Date of filing:  26.09.2012
(51)International Patent Classification (IPC): 
F03D 11/00(2006.01)
H02K 7/18(2006.01)
F03D 9/00(2016.01)
H02K 9/06(2006.01)
(86)International application number:
PCT/EP2012/068925
(87)International publication number:
WO 2013/045473 (04.04.2013 Gazette  2013/14)

(54)

AIR COOLING OF WIND TURBINE GENERATOR

LUFTKÜHLUNG EINES WINDTURBINENGENERATORS

REFROIDISSEMENT À AIR POUR GÉNÉRATEUR D'ÉOLIENNE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 26.09.2011 GB 201116546

(43)Date of publication of application:
06.08.2014 Bulletin 2014/32

(73)Proprietor: Innolith Assets AG
4052 Basel (CH)

(72)Inventor:
  • BORGEN, Eystein
    N-5239 Rådal (NO)

(74)Representative: Durm Patentanwälte PartG mbB 
Patentanwälte Moltkestrasse 45
76133 Karlsruhe
76133 Karlsruhe (DE)


(56)References cited: : 
CN-A- 101 814 793
US-A1- 2011 193 349
US-A- 5 315 159
US-A1- 2011 221 289
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    Field of the Invention



    [0001] The invention relates to wind turbine generators. The invention may include shaping of structural parts of the wind turbine generator stator and rotor for enhancing cooling of the generator. The invention is applicable to both offshore and onshore applications.

    Background of the Invention



    [0002] It is known to position wind turbines both offshore (at sea) and onshore (on land) for the purpose of converting wind energy into other forms of energy, such as electrical energy.

    [0003] US Patent Application Publication US 2011/0193349 A1 discloses a wind turbine comprising a tower provided at the top with a horizontal shaft having an axis. A turbine rotor comprises turbine blades connected by a mounting arrangement to bearing members and to a rotor or a generator. Components of forces acting on the blades parallel to the axis are substantially exclusively communicated to the bearing members, for example by rigid straight members. Torque about the axis produced by the blades is communicated substantially exclusively to the rotor through a member.

    Summary of the Invention



    [0004] The invention provides a wind turbine generator as set out in the accompanying claims.

    [0005] The invention may include shaping of structural parts of the wind turbine generator stator and rotor for enhancing cooling of the generator.

    [0006] The invention is particularly applicable to wind turbine axial flux generators. An axial flux generator is a generator in which lines of magnetic flux between magnets, through the electrical coils, are directed generally in an axial direction, that is generally parallel with the axis of rotation of the generator rotor.

    [0007] Embodiments of the invention will now be described, by way of example only, with reference to the accompanying drawings.

    Brief Description of the Figures



    [0008] 

    Figure 1 shows a wind turbine rotor which forms part of a wind turbine;

    Figure 2 shows the central part of the wind turbine rotor, and shows three blade supports straddling a generator;

    Figure 3 is a cross-sectional view showing how the stator and generator rotor of the wind turbine are modified in an embodiment of the invention; and

    Figure 4 shows an alternative embodiment of the invention.


    Description of Preferred Embodiments



    [0009] Figure 1 shows a wind turbine rotor 1 which is suitable for mounting on a wind turbine tower (not shown). The embodiment described is suitable for large wind turbines which may generate for example 5 to 10 megawatts of electricity, and where the weight of the rotor 1 may for example be in the range of 30 to 400 tonnes (ie. 30,000 to 400,000 Kg).

    [0010] The main components of the wind turbine rotor 1 are a blade rotor 2, and a generator comprising a generator rotor 4 and a stator 8. The blade rotor 2 comprises three blades 5 which are each supported by a blade support 12 as will be described below.

    [0011] Figure 2 shows the central part of the wind turbine rotor 1. The blade rotor 2 and the generator rotor 4 are both rotatably mounted on a shaft 6. A stator 8 is supported by spokes 10, and does not rotate about the shaft 6. The generator rotor 4 and the stator 8 together form a generator which generates electricity.

    [0012] The blade rotor 2 comprises three blades 5 (shown in Figure 1) which are supported by three blade supports 12. Each blade support 12 has two legs 14 which straddle the generator rotor 4 and the stator 8, and which are rotatably mounted on the shaft 6 at spaced positions.

    [0013] Each blade support 12 is provided with a pitch bearing 16 which allows a blade 5 attached to the blade support 12 to be rotated by a pitch motor 18. This allows the pitch of each blade 5 to be adjusted to suit the current wind speed and power requirements. In alternative embodiments the pitch bearing 16 can be omitted, and the blades 5 could for example be integrally formed with the blade supports 12.

    [0014] The generator rotor 4 is supported by a number of supporting members 20, which are arranged as a number of A-frames, and which are rotatably mounted on said shaft 6. The generator rotor 4 carries permanent magnets around its circumference. The stator 8 is provided with electrical windings which are positioned within the magnets of the generator rotor 4. Relative movement between the magnets of the generator rotor 4 and the electrical coils of the stator 8 generates electricity. The electrical coils may or may not have an iron core.

    [0015] Figure 3 is a cross-sectional view showing how the stator 8 and generator rotor 4 are modified in an embodiment of the invention.

    [0016] We first consider the components which make up the stator 8. The stator 8 comprises the stator spokes 10 which support a stator support rim 30, which in turn supports a windings housing 32 which contains the electrical windings 34 of the stator 8. The windings housing 32 has a cross-sectional shape, as shown in Figure 3, which has a flat middle section 36 with a thicker outer rim section 38 and a thicker inner rim section 40. The outer and inner rim sections 38 and 40 are made thicker than the flat middle section 36 so that they can properly accommodate turns of the electrical windings 34 as shown in Figure 3. The windings housing 32 is connected to the stator rim support 30 by a series of spaced supports 42 with gaps 44 therebetween. In Figure 3 the spaced supports 42 and gaps 44 are shown by a shaded area 42/44, and in Figure 2 the spaced supports 42 and gaps 44 are individually visible and are individually labelled.

    [0017] Figure 3 also shows details of the generator rotor 4. The generator rotor 4 comprises two magnet support structures 46, which may be formed from plates, and which extend around the circumference of the generator rotor 4, to the inside of which are fixed permanent magnets 48. The magnet support structures 46 and magnets 48 are positioned on either side of the flat middle section 36 of the windings housing 32, and the outer and inner rim sections 38 and 40 of the windings housing 32 project beyond the magnet support structures 46 and magnets 48. The magnet support structures 46 are supported by the supporting members 20 described above, and shown in Figure 2. However the supporting members 20 are omitted from Figure 3 for clarity.

    [0018] We next describe features of Figure 3 which relate to air cooling of the generator. These features are omitted from Figures 1 and 2 for clarity. Figure 3 shows the addition of three wind guides which redirect air flow through the generator and cause cooling of the generator windings 34. These wind guides are described below.

    [0019] On the up-wind (wind-facing) side of the generator an inner wind guide 50 is fixed to the inner edge of the magnets 48, or alternatively to the magnet support structure 46, adjacent the inner rim section 40 of the windings housing 32. Also on the wind-facing side of the generator, an outer wind guide 52 is fixed to the outer edge of the magnets 48, or alternatively to the magnet support structure 46, adjacent the outer rim section 38 of the windings housing 32. During operation the inner wind guide 50 directs a fast flow of air into the air gap between the magnets 48 and the windings housing 32 on the wind-facing side of the generator. The outer wind guide 52 protects the outer rim section 38 of the windings housing from the oncoming wind, and thus creates a lower pressure, ie. suction, which allows the flow of air through the air gap and out of the air gap around the outer rim section 38 of the windings housing 32, as shown by the air flow arrows in Figure 3.

    [0020] On the down-wind side of the generator, a downstream wind guide 54 is fixed to the stator support rim 30 and curves out around the inner rim section 40 of the windings housing 32, so as to direct air which has flowed through the gaps 44 into the air gap between the windings housing 32 and the magnets 48 on the downstream side of the generator, as shown by the air flow arrows in Figure 3. As shown in Figure 3, the downstream wind guide 54 is provided with a brush 56 which rests against the inner edge of either the magnets 48 or the magnet support structure 46, or both, on the downstream side of the generator, to help prevent air loss. In an alternative embodiment the downstream wind guide 54 may instead be fixed to the magnets 48 and/or the magnet support structure 46, and the brush 56 may instead rest against the stator support rim 30.

    [0021] An alternative embodiment is shown in Figure 4, in which the downstream wind guide 54 is replaced by an enlarged downstream wind guide 58, which may be fixed to the stator support rim 30 by a support 60. The enlarged downstream wind guide 58 is able to redirect both air which has passed through the gaps 44 and also air which has passed between the spokes 10 of the stator 8, thus creating an increased air flow through the downstream generator air gap. Apart from the enlarged downstream wind guide 58 and its support 60, the other components of the embodiment of Figure 4 are the same as those of Figure 3.

    [0022] Although the embodiments of Figure 3 and 4 are described as using three wind guides, some cooling of the generator windings 34 is achieved if at least one wind guide is used. For example, in Figure 3 or 4 the inner and outer wind guides 50 and 52 could be removed, and only the downstream wind guide 54, 58 provided. In general, any combination of one or more of the wind guides may be employed.

    [0023] We comment here on the size of the wind guides. Preferably, in a cross-sectional view taken in a plane which contains said axis, any one or more of said wind guides has a length which is at least 15 percent of the radial length of the air gap between the stator and magnets.

    [0024] We comment here on the speed of air flowing through the air gap during use. Preferably, for a wind speed of at least 14 m/s, the wind guide or guides cause air to flow through the air gap(s) at a speed of at least 15 m/s.

    [0025] Various variations are possible. For example, the inner wind guide 50 could be fixed to the stator 8, for example to the stator support rim 30, instead of to the generator rotor 4, so as to direct wind into the upstream air gap.

    [0026] Although the preferred embodiment uses magnets on the generator rotor and electrical windings on the stator, it is possible to reverse these and use electrical windings on the generator rotor and magnets on the stator. This option is generally less preferred as it would require slip rings on the generator rotor to conduct the generated electricity away from the generator rotor. An example of such an alternative embodiment, the embodiment of Figure 3 can be modified so that the stator 8, carrying the electrical windings 34, becomes rotatable about the shaft 6 (so that the stator 8 becomes a rotor), and the generator rotor 4, carrying the magnets 48 can be fixed in position relative to the shaft 5 (so that the generator rotor 4 becomes a stator). In this case the electrical windings 34 are still positioned between the magnets 48, in the same way as in the embodiment of Figure 3, but the electrical windings 34 instead for part of a generator rotor (rather than a stator).

    [0027] The shapes of the wind guides 50, 52, 54, 58 in the embodiments of Figures 3 and 4 are exemplary. It will be appreciated that wind guides of different shapes and sizes may be used in order to create the required air flow. If only one wind guide is used, this may be shaped so that wind is directed through the two air gaps on both sides of the generator windings 34. For example it will be appreciated that the downstream wind guide 58 of Figure 4 will cause wind to be directed through the air gaps on both sides of the generator windings 34, even if this wind guide is used without the inner and outer wind guides 50 and 52 (labelled in Figure 3).


    Claims

    1. A wind turbine axial flux generator for converting wind into electricity, the generator comprising:

    a generator rotor (4) which is rotatable about an axis; and

    a stator (8);

    wherein one of said generator rotor (4) and said stator (8) is provided with magnets (48) and the other is provided with electrical windings (34) in which electricity is induced by relative movement between the generator rotor (4) and the stator (8);

    and wherein said generator further comprises:

    an up-wind air gap on the up-wind side of said electrical windings, between said electrical windings (34) and at least some of said magnets (48) on the up-wind side of said electrical windings (34);

    a down-wind air gap on the down-wind side of said electrical windings (34), between said electrical windings (34) and at least some of said magnets (48) on the down-wind side of said electrical windings (34); and

    characterised in that the generator comprises at least one wind guide (58) for directing said wind so that said wind flows through both said up-wind air gap and said down-wind air gap in order to cool said electrical windings (34) from both said up-wind and down-wind sides of said electrical windings (34).


     
    2. A wind turbine generator as claimed in claim 1, wherein in a cross-sectional view taken in a plane which contains said axis, said at least one wind guide (58) has a length which is at least 15 percent of the radial length of at least one of said air gaps.
     
    3. A wind turbine generator as claimed in claim 1 or 2, wherein for a wind speed of at least 14 m/s, said at least one wind guide causes air to flow through said air gaps at a speed of at least 15 m/s.
     
    4. A wind turbine generator as claimed in any preceding claim, wherein each of said air gaps has an inner opening and an outer opening, said outer opening being positioned radially outwards of said inner opening, and wherein said generator has an outer wind guide (52) which is arranged to at least partially protect said outer openings of said air gaps against said wind so that during use said wind does not force air into said outer openings.
     
    5. A wind turbine generator as claimed in claim 4, wherein said outer wind (52) guide is fixed to said generator rotor (4).
     
    6. A wind turbine generator as claimed in any preceding claim, wherein each of said air gaps has an inner opening and an outer opening, said outer opening being positioned radially outwards of said inner opening, and wherein said generator has an inner wind guide (50) which is arranged to direct air from said wind into at least one of said inner openings.
     
    7. A wind turbine generator as claimed in claim 6, wherein said inner wind guide (50) is fixed to said generator rotor (4).
     
    8. A wind turbine generator as claimed in claim 7, wherein said inner wind guide (50) is fixed to an inner edge of said generator rotor and curves outwardly, away from said stator, in a direction towards the oncoming wind.
     
    9. A wind turbine generator as claimed in claim 6, wherein said inner wind guide (50) is fixed to said stator (8).
     
    10. A wind turbine generator as claimed in any preceding claim, which further comprises a downstream wind guide (54) which directs said wind into said down-wind air gap.
     
    11. A wind turbine generator as claimed in claim 10, wherein said downstream wind guide (54) is fixed to said stator (8).
     
    12. A wind turbine generator as claimed in claim 11, wherein said downstream wind guide (54) is provided with a brush (56) which is in contact with said generator rotor (4).
     
    13. A wind turbine generator as claimed in claim 10, wherein said downstream wind guide (54) is fixed to said generator rotor (4).
     
    14. A wind turbine generator as claimed in claim 13, wherein said downstream wind guide (54) is provided with a brush (56) which is in contact with said stator (8).
     
    15. A wind turbine generator as claimed in any of claims 10 to 14, wherein said stator (8) is provided with gaps which allow at least some of said wind to pass through the stator (8), and wherein said downstream wind guide (54) is positioned at least partially down-wind of said stator (8) so as to direct at least some of the wind which has passed through said stator (8) into said down-wind air gap.
     


    Ansprüche

    1. Windturbinen-Axialflussgenerator zur Umwandlung von Wind in Elektrizität, wobei der Generator Folgendes umfasst:

    einen Generatorrotor (4), welcher um eine Achse drehbar ist; und

    einen Stator (8);

    wobei entweder der Generatorrotor (4) oder der Stator (8) mit Magneten (48) versehen ist und der andere mit elektrischen Wicklungen (34) versehen ist, in welchen durch eine relative Bewegung zwischen dem Generatorrotor (4) und dem Stator (8) Elektrizität induziert wird;

    und wobei der Generator ferner Folgendes umfasst:

    einen Aufwind-Luftspalt auf der Aufwindseite der elektrischen Wicklungen, zwischen den elektrischen Wicklungen (34) und mindestens einigen der Magnete (48) auf der Aufwindseite der elektrischen Wicklungen (34) ;

    einen Fallwind-Luftspalt auf der Fallwindseite der elektrischen Wicklungen (34), zwischen den elektrischen Wicklungen (34) und mindestens einigen der Magnete (48) auf der Fallwindseite der elektrischen Wicklungen (34); und

    dadurch gekennzeichnet, dass der Generator mindestens eine Windführung (58) zum Lenken des Windes umfasst, sodass der Wind sowohl durch den Aufwind-Luftspalt als auch durch den Fallwind-Luftspalt strömt, um die elektrischen Wicklungen (34) sowohl von der Aufwindals auch von der Fallwindseite der elektrischen Wicklungen (34) zu kühlen.


     
    2. Windturbinengenerator nach Anspruch 1, wobei in einer Querschnittansicht in einer Ebene, welche die Achse enthält, die mindestens eine Windführung (58) eine Länge aufweist, welche mindestens 15 Prozent der radialen Länge mindestens eines der Luftspalte beträgt.
     
    3. Windturbinengenerator nach Anspruch 1 oder 2, wobei für eine Windgeschwindigkeit von mindestens 14 m/s, die mindestens eine Windführung verursacht, dass Luft mit einer Geschwindigkeit von mindestens 15 m/s durch die Luftspalte strömt.
     
    4. Windturbinengenerator nach einem der vorhergehenden Ansprüche, wobei jeder der Luftspalte eine innere Öffnung und eine äußere Öffnung aufweist, wobei die äußere Öffnung von der inneren Öffnung radial nach außen positioniert ist, und wobei der Generator eine äußere Windführung (52) aufweist, welche derart angeordnet ist, dass die äußeren Öffnungen der Luftspalte zumindest teilweise vor dem Wind geschützt werden, sodass, während des Einsatzes, der Wind keine Luft in die äußeren Öffnungen presst.
     
    5. Windturbinengenerator nach Anspruch 4, wobei die äußere Windführung (52) an dem Generatorrotor (4) befestigt ist.
     
    6. Windturbinengenerator nach einem der vorhergehenden Ansprüche, wobei jeder der Luftspalte eine innere Öffnung und eine äußere Öffnung aufweist, wobei die äußere Öffnung von der inneren Öffnung radial nach außen positioniert ist, und wobei der Generator eine innere Windführung (50) aufweist, welche derart angeordnet ist, dass Luft aus dem Wind in mindestens eine der inneren Öffnungen gelenkt wird.
     
    7. Windturbinengenerator nach Anspruch 6, wobei die innere Windführung (50) an dem Generatorrotor (4) befestigt ist.
     
    8. Windturbinengenerator nach Anspruch 7, wobei die innere Windführung (50) an einer Innenkante des Generatorrotors befestigt ist und sich nach außen wölbt, weg von dem Stator, in einer Richtung hin zum entgegenkommenden Wind.
     
    9. Windturbinengenerator nach Anspruch 6, wobei die innere Windführung (50) an dem Stator (8) befestigt ist.
     
    10. Windturbinengenerator nach einem der vorhergehenden Ansprüche, welcher ferner eine stromabwärtige Windführung (54) umfasst, welche den Wind in den Fallwind-Luftspalt lenkt.
     
    11. Windturbinengenerator nach Anspruch 10, wobei die Fallwind-Windführung (54) an dem Stator (8) befestigt ist.
     
    12. Windturbinengenerator nach Anspruch 11, wobei die stromabwärtige Windführung (54) mit einer Bürste (56) versehen ist, welche in Kontakt mit dem Generatorrotor (4) steht.
     
    13. Windturbinengenerator nach Anspruch 10, wobei die stromabwärtige Windführung (54) an dem Generatorrotor (4) befestigt ist.
     
    14. Windturbinengenerator nach Anspruch 13, wobei die stromabwärtige Windführung (54) mit einer Bürste (56) versehen ist, welche in Kontakt mit dem Stator (8) steht.
     
    15. Windturbinengenerator nach einem der Ansprüche 10 bis 14, wobei der Stator (8) mit Spalten versehen ist, welche es gestatten, dass zumindest ein Teil des Windes durch den Stator (8) hindurchgeht, und wobei die stromabwärtige Windführung (54) mindestens teilweise auf der Fallwindseite des Stators (8) positioniert ist, um mindestens einen Teil des Windes, der durch den Stator (8) hindurchgegangen ist, in den Fallwind-Luftspalt zu lenken.
     


    Revendications

    1. Générateur de flux axial d'éolienne pour la conversion du vent en électricité, le générateur comprenant :

    un rotor de générateur (4) qui peut tourner autour d'un axe ; et

    un stator (8) ;

    dans lequel l'un dudit rotor de générateur (4) et dudit stator (8) est doté d'aimants (48) et l'autre est doté d'enroulements électriques (34), dans lesquels de l'électricité est induite par le mouvement relatif entre le rotor de générateur (4) et le stator (8) ;

    et dans lequel ledit générateur comprend en outre :

    une fente d'air de vent ascendant sur le côté de vent ascendant desdits enroulements électriques entre lesdits enroulements électriques (34) et au moins certains desdits aimants (48) sur le côté de vent ascendant desdits enroulements électriques (34) ;

    une fente d'air de vent descendant sur le côté de vent descendant desdits enroulements électriques (34) entre lesdits enroulements électriques (34) et au moins certains desdits aimants (48) sur le côté de vent descendant desdits enroulements électriques (34) ; et

    caractérisé en ce que le générateur comprend au moins un guide de vent (58) pour diriger ledit vent de sorte que ledit vent passe par ladite fente d'air de vent ascendant et ladite fente d'air de vent descendant afin de refroidir lesdits enroulements électriques (34) à la fois desdits côtés de vent ascendant et vent descendant desdits enroulements électriques (34).


     
    2. Générateur d'éolienne selon la revendication 1, dans lequel dans une vue de section transversale prise dans un plan qui contient ledit axe, ledit au moins un guide de vent (58) présente une longueur qui constitue au moins 15 pour cent de la longueur radiale d'au moins une desdites fentes d'air.
     
    3. Générateur d'éolienne selon la revendication 1 ou 2, dans lequel pour une vitesse du vent d'au moins 14 m/s, ledit au moins un guide de vent amène l'air à s'écouler par lesdites fentes d'air à une vitesse d'au moins 15 m/s.
     
    4. Générateur d'éolienne selon l'une quelconque des revendications précédentes, dans lequel chacune desdites fentes d'air présente une ouverture intérieure et une ouverture extérieure, ladite ouverture extérieure étant positionnée radialement à l'extérieur de ladite ouverture intérieure et dans lequel ledit générateur présente un guide de vent extérieur (52) qui est agencé pour protéger au moins en partie lesdites ouvertures extérieures desdites fentes d'air contre ledit vent de sorte que pendant l'utilisation, ledit vent ne pousse pas l'air dans lesdites ouvertures extérieures.
     
    5. Générateur d'éolienne selon la revendication 4, dans lequel ledit guide de vent extérieur (52) est fixé audit rotor de générateur (4).
     
    6. Générateur d'éolienne selon l'une quelconque des revendications précédentes, dans lequel chacune desdites fentes d'air présente une ouverture intérieure et une ouverture extérieure, ladite ouverture extérieure étant positionnée radialement à l'extérieur de ladite ouverture intérieure, et dans lequel ledit générateur présente un guide de vent intérieur (50) qui est agencé pour diriger de l'air dudit vent dans au moins l'une desdites ouvertures intérieures.
     
    7. Générateur d'éolienne selon la revendication 6, dans lequel ledit guide de vent intérieur (50) est fixé audit rotor de générateur (4).
     
    8. Générateur d'éolienne selon la revendication 7, dans lequel ledit guide de vent intérieur (50) est fixé sur une arête intérieure dudit rotor de générateur et se courbe vers l'extérieur, loin dudit stator, dans une direction vers le vent venant.
     
    9. Générateur d'éolienne selon la revendication 6, dans lequel ledit guide de vent intérieur (50) est fixé audit stator (8).
     
    10. Générateur d'éolienne selon l'une quelconque des revendications précédentes, qui comprend en outre un guide de vent en aval (54) qui dirige ledit vent dans ladite fente d'air de vent descendant.
     
    11. Générateur d'éolienne selon la revendication 10, dans lequel ledit guide de vent en aval (54) est fixé audit stator (8).
     
    12. Générateur d'éolienne selon la revendication 11, dans lequel ledit guide de vent en aval (54) est doté d'un balai (56) qui est en contact avec ledit rotor de générateur (4).
     
    13. Générateur d'éolienne selon la revendication 10, dans lequel ledit guide de vent en aval (54) est fixé audit rotor de générateur (4).
     
    14. Générateur d'éolienne selon la revendication 13, dans lequel ledit guide de vent en aval (54) est doté d'un balai (56) qui est en contact avec ledit stator (8).
     
    15. Générateur d'éolienne selon l'une quelconque des revendications 10 à 14, dans lequel ledit stator (8) est doté de fentes qui permettent au moins à un peu dudit vent de passer par le stator (8) et dans lequel ledit guide de vent en aval (54) est positionné au moins en partie sous le vent dudit stator (8) de sorte à diriger au moins un peu du vent qui est passé par ledit stator (8) dans ladite fente d'air de vent descendant.
     




    Drawing

















    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description