(19)
(11)EP 2 772 716 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
06.05.2020 Bulletin 2020/19

(21)Application number: 14156127.4

(22)Date of filing:  21.02.2014
(51)Int. Cl.: 
F28D 9/00  (2006.01)
F28F 3/06  (2006.01)
F28F 9/00  (2006.01)
B23P 15/26  (2006.01)

(54)

Heat exchanger assembly

Wärmetauscheranordnung

Ensemble échangeur thermique


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 28.02.2013 US 201313779869

(43)Date of publication of application:
03.09.2014 Bulletin 2014/36

(73)Proprietor: General Electric Company
Schenectady, NY 12345 (US)

(72)Inventors:
  • Miller, Drew Colin
    Salem, VA Virginia 24153-6422 (US)
  • Moore, Christopher Todd
    Salem, VA Virginia 24153-6422 (US)

(74)Representative: Freigutpartners IP Law Firm 
Hahnrainweg 4
5400 Baden
5400 Baden (CH)


(56)References cited: : 
WO-A1-2008/119816
DE-A1- 10 108 185
US-A- 3 640 340
US-A- 6 059 023
WO-A2-2012/011681
JP-A- 2002 333 295
US-A- 5 036 906
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    TECHNICAL FIELD



    [0001] The present application relates generally to a heat exchanger assembly and more particularly relates to a folded fin air to air heat exchanger assembly having end plates with a number of protrusions thereon.

    BACKGROUND OF THE INVENTION



    [0002] US 6 059 023 A discloses a heat exchanger formed by bending a thin plate in an alternate manner consecutively. End planes are sealed with blocking members having the same width as the width of the bends of the thin plate.

    [0003] DE10108185A1 describes a heat exchanger assembly on which the herein claimed subject matter is based. It discloses a multiple plate radiator with plates stacked so that alternating cavities for two different media are formed between them. The plates are pressed between at least two closing elements so that there is a sufficient seal between the media cavities. The closing elements are in the form of at least two bowl-shaped elements perpendicular to the plate stack.

    [0004] Many different types of heat exchanger designs are known for exchanging heat between two or more mediums. Moreover, certain types of heat exchangers are better suited for certain types of applications. For example, electronic control systems such as power plant control systems and the like may have relatively high operating temperatures given the use of high density electrical components. Air to air heat exchangers have been found to be effective in cooling such controls in an efficient manner.

    [0005] One type of air-to-air heat exchanger is a folded fin heat exchanger. The folded fin heat exchanger may be formed by folding a continuous sheet of thermally conductive material so as to create a repeating "U-shaped" profile. Although such folded fin heat exchangers may provide efficient heat exchange, there may be issues in the assembly, joining, and handling of the various components within such a heat exchanger. Specifically, an outside fixture may be required for dip brazing or other types of flow based metal joining. The use of such fixtures may add cost and complexity to the manufacturing and assembly processes.

    [0006] There is thus a desire for an improved heat exchanger assembly and a method of constructing the same. Specifically, there is a desire for an improved folded fin air to air heat exchanger with a simplified method of assembly and improved structural rigidity.

    SUMMARY OF THE INVENTION



    [0007] The present invention is defined in the accompanying claims.

    [0008] These and other features and improvements of the present application and the resultant patent will become apparent to one of ordinary skill in the art upon review of the following detailed description when taken in conjunction with the several drawings and the appended claims.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0009] 

    Fig. 1 is a perspective view of a heat exchanger assembly as may be described herein.

    Fig. 2 is a further perspective view of the heat exchanger assembly of Fig. 1.

    Fig. 3 is a side plan view of a folded fin core for use with the heat exchanger assembly of Fig. 1.

    Fig. 4 is a top plan view of an end plate that may be used with the exchanger assembly of Fig. 1.

    Fig. 5 is a side plan view of the end plate of Fig. 4.

    Fig. 6 is a side plan view of a protrusion on the end plate of Fig. 4

    Fig. 7 is a side view of a second to last protrusion and a last protrusion on the end plate of Fig. 4.

    Fig. 8 is a perspective view of a ridge end of the heat exchanger assembly of Fig. 1.

    Fig. 9 is a perspective view of a trough end of the heat exchanger assembly of Fig. 1.

    Fig. 10 is a perspective view of the ridge end of the heat exchanger assembly of Fig. 1 with a side plate.

    Fig. 11 is an exploded view of the heat exchanger assembly of Fig. 1 with a pair of fan plenums.


    DETAILED DESCRIPTION



    [0010] Referring now to the drawings, in which like numerals refer to like elements throughout the several views, Figs. 1 and 2 show a heat exchanger assembly 100 as may be described herein. In this example, the heat exchanger assembly 100 may be an air-to-air exchanger 110, and more specifically, a folded fin air to air heat exchanger 120. Other types of heat exchanger assemblies 100 may be used herein. The heat exchanger assembly 100 may have any size, shape, or configuration.

    [0011] The heat exchanger assembly 100 may include a folded fin core 130. The folded fin core 130 may be enclosed in part by a first end plate 140, a second end plate 150, a first side plate 160, and a second side plate 170. The combination of the elements herein may provide a fluid-tight barrier between the opposite sides of the exposed area of the folded fin core 130. The individual components of the heat exchanger assembly 100 may have any size, shape, or configuration. Other types of components also may be used herein.

    [0012] Fig. 3 shows an exaggerated view of the folded fin core 130. The folded fin core 130 may be made from a continuous sheet 180 of a thermally conductive material 190. The thermally conductive material 190 may be aluminum, an aluminum based alloy, or other types of materials with good heat transfer and structural characteristics. The continuous sheet 180 may be folded so as to form any number of substantially parallel fin walls 200. The fin walls 200 may be spaced apart from one another by alternating flat ridges 210 and troughs 220. Each pair of fin walls 200 may be spaced apart by the flat ridges 210 to form each trough 220 for a repeating "U-shape". The folded fin core 130 may have any size, shape, or configuration. As will be explained in more detail below, the folded fin core 130 may extend from a first end or a ridge end 230 to a second end or a trough end 240.

    [0013] Figs. 4 and 5 show an example of one of the end plates 140, 150. The first end plate 140 and the second end plate 150 may be substantially identical and need not be described separately. Each end plate 140, 150 may include a flat surface 250 with a number of protrusions 260 extending therefrom. The protrusions 260 may conform to the shape and the fin pitch of the fin walls 200 of the folded fin core 130. An example of one of the protrusions 260 is shown in Fig. 6. Any number of the protrusions 260 may be used herein. A second to last protrusion 270 on both ends of the end plates 140, 150 may be sized to accommodate an outer one-half folded fin 280 of the folded fin core 130. A last protrusion 290 on both sides of the end plate 140, 150 may be sized to accommodate the side plates 160, 170 therein. Fig. 7 shows an example of the second to last protrusion 270 and the last protrusion 290. Other components and other configurations may be used herein.

    [0014] Fig. 8 shows the ridge end 230 of the folded fin core 130 positioned about the first end plate 140. Fig. 9 shows the trough end 240 of the folded fin core 130 positioned about the second end plate 150. As is shown in this example, the troughs 220 and the fin walls 200 are sized to envelope the protrusions 260 in the ridge end 230. Likewise, the troughs 220 expose the protrusions 260 in the trough end 240 while the ridges 210 fill the spaces between the protrusions 260. Fig. 10 shows the addition of the side plates 160, 170 in the last protrusions 290 of the end plates 140, 150. The side plates 160, 170 add further mechanical support to the heat exchanger assembly 100 as a whole. Other components and other configurations may be used herein.

    [0015] In use, the end plates 140, 150 may be positioned about the folded fin core 130. Specifically, the ridge end 230 and the trough end 240 may be positioned within and adjacent to the protrusions 260 on the end plates 140. Likewise, the side plates 160, 170 may be positioned within the last protrusions 290 of the end plates 140, 150. This configuration provides structural rigidity to the heat exchanger assembly 100 for handling before the components are joined. Moreover, a separate fixture or jigging may not be required for the bonding process. Specifically, the fin walls 200 and the protrusions 260 may be spaced with sufficient clearance for adequate metal bonding flux flow and bonding filler material for dip brazing or other types of flow based metal joining while providing physical rigidity before and during the bonding process. Other types of metal joining means may be used herein.

    [0016] Overall structural rigidity during assembly is further improved by the size of the second to last protrusions 270 for use with the outer one half folded fins 280. Likewise, the sidewalls 160, 170 provide further mechanical support and sealing without being directly joined to the folded fin core 130. Moreover, the bonding process provides a good mechanical seal so as to provide a physical, airtight barrier for efficient overall operation.

    [0017] The heat exchanger assembly 100 thus provides self-fixturing or self-jigging prior to the metal joining process and provides structural rigidity after the bonding process. The heat exchanger assembly 100 also provides means of sealing the end plates for a physical, airtight barrier for sealed heat exchanger operations. Moreover, the bonding process causes higher yield production quality parts. The heat exchanger assembly 100 thus provides efficient heat exchange with an overall simplified manufacturing process.

    [0018] The heat exchanger assembly 100 may have many different applications. For example, Fig. 11 shows the use of the heat exchanger assembly 100 with a pair of fan plenums 100 to force a flow of air there through. The heat exchanger assembly 100 with the fan plenums 300 or other types of devices may be used to cool a component 310, such as an electrical, heat generating component and the like. Many other applications may be used herein.


    Claims

    1. A heat exchanger assembly (100), comprising:

    a first end plate (140), a second end plate (150), a folded fin core (130) comprising a plurality of fin walls (200);

    wherein the folded fin core (130) comprises a ridge end (230) positioned about the first end plate (140), and a trough end (240) positioned about the second end plate (150), and wherein the folded fin core (130) comprises a first one half folded fin at the ridge end (230) and a second one half folded fin at the trough end (240);

    wherein the first end plate (140) is positioned about the ridge end (230) of the folded fin core (130);

    wherein the second end plate (150) is positioned about the trough end (240) of the folded fin core (130); and

    wherein the first end plate (140) and the second end plate (150) comprise a plurality of protrusions (260) thereon wherein the first end plate (140) and the second end plate (150) comprise a first side second to last protrusion (270) sized to accommodate the first one half folded fins and a second side second to last protrusion (270) sized to accommodate the second one half folded fins, the heat exchanger assembly (100) further comprising a first side plate (160) and a second side plate (170) extending from the first end plate (140) to the second end plate (150), wherein the first end plate (140) and the second end plate (150) comprise a first side last protrusion sized to accommodate the first side plate (160) and a second side last protrusion sized to accommodate the second side plate (170), characterized in that the first and second side plates (160,170) are not directly joined to the folded fin core (130) and the fin core (130) is joined to the side plates (160, 170) without a fixturing device, such that the first side second to last protrusion (270) and the second side second to last protrusion (270) provide a distance between the first and second side plate (160, 170) and the folded fin core (130), respectively.


     
    2. The heat exchanger assembly (100) of claim 1, wherein the folded fin core (130) comprises a continuous sheet (180) of a thermally conductive material (190).
     
    3. The heat exchanger assembly (100) of any preceding claim, wherein the first end plate (140) and the second end plate (150) comprise a flat plate with the plurality of protrusions (260) thereon.
     
    4. The heat exchanger assembly (100) of any preceding claim, further comprising a fan plenum positioned about the folded fin core (130).
     
    5. The heat exchanger assembly (100) of any preceding claim, wherein the heat exchanger assembly (100) comprises an air to air heat exchanger.
     


    Ansprüche

    1. Wärmetauscheranordnung (100), umfassend:

    eine erste Endplatte (140), eine zweite Endplatte (150), einen gefalteten Lamellenkern (130) umfassend eine Vielzahl von Lamellenwänden (200);

    wobei der gefaltete Lamellenkern (130) ein Kammende (230) umfasst, das nahe der ersten Endplatte (140) positioniert ist, und ein Wannenende (240), das nahe der zweiten Endplatte (150) positioniert ist, und wobei der gefaltete Lamellenkern (130) eine erste halbe gefaltete Lamelle auf dem Kammende (230) umfasst und eine zweite halbe gefaltete Lamelle an dem Wannenende (240);

    wobei die erste Endplatte (140) nahe des Kammendes (230) des gefalteten Lamellenkerns (130) positioniert ist;

    wobei die zweite Endplatte (150) nahe des Wannenendes (240) des gefalteten Lamellenkerns (130) positioniert ist; und

    wobei die erste Endplatte (140) und die zweite Endplatte (150) eine Vielzahl von Vorsprüngen (260) darauf umfassen, wobei die erste Endplatte (140) und die zweite Endplatte (150) einen erstseitigen vorletzten Vorsprung (270) aufweisen, der so bemessen ist, dass er die ersten halb gefalteten Lamellen aufnimmt, und einen zweitseitigen vorletzten Vorsprung (270), der so bemessen ist, dass er die zweiten halb gefalteten Lamellen aufnimmt, wobei die Wärmetauscheranordnung (100) ferner eine erste Seitenplatte (160) umfasst und eine zweite Seitenplatte (170), die sich von der ersten Endplatte (140) bis zur zweiten Endplatte (150) erstreckt, wobei die erste Endplatte (140) und die zweite Endplatte (150) einen erstseitigen letzten Vorsprung aufweisen, der so bemessen ist, dass er die erste Seitenplatte (160) aufnimmt, und einen zweitseitigen letzten Vorsprung, der so bemessen ist, dass er die zweite Seitenplatte (170) aufnimmt, dadurch gekennzeichnet, dass die erste und zweite Seitenplatte (160, 170) nicht direkt an den gefalteten Lamellenkern (130) angefügt sind und der Lamellenkern (130) an die Seitenplatten (160,17) ohne eine Befestigungsvorrichtung angefügt ist, sodass der erstseitige vorletzte Vorsprung (270) und der zweitseitige vorletzte Vorsprung (270) einen Abstand zwischen der jeweils der ersten und der zweiten Seitenplatte (160, 170) und dem gefalteten Lamellenkern (130) bereitstellen.


     
    2. Wärmetauscheranordnung (100) nach Anspruch 1, wobei der gefaltete Lamellenkern (130) eine kontinuierliche Bahn (180) aus einem thermisch leitenden Material (190) umfasst.
     
    3. Wärmetauscheranordnung (100) nach einem der vorstehenden Ansprüche, wobei die erste Endplatte (140) und die zweite Endplatte (150) eine flache Platte mit einer Vielzahl von Vorsprüngen (260) darauf umfassen.
     
    4. Wärmetauscheranordnung(100) nach einem der vorstehenden Ansprüche, ferner umfassend eine Lüfterkammer, die nahe des gefalteten Lamellenkerns (130) positioniert ist.
     
    5. Wärmetauscheranordnung (100) nach einem der vorstehenden Ansprüche, wobei die Wärmetauscheranordnung (100) einen Luft-zu-Luft-Wärmetauscher umfasst.
     


    Revendications

    1. Ensemble échangeur thermique (100), comprenant :

    une première plaque d'extrémité (140), une deuxième plaque d'extrémité (150), un noyau d'ailette pliée (130) comprenant une pluralité de parois d'ailette (200) ;

    dans lequel le noyau d'ailette pliée (130) comprend une extrémité de crête (230) positionnée autour de la première plaque d'extrémité (140), et une extrémité de creux (240) positionnée autour de la deuxième plaque d'extrémité (150), et dans lequel le noyau d'ailette pliée (130) comprend une première moitié d'ailette pliée au niveau de l'extrémité de crête (230) et une deuxième moitié d'ailette pliée au niveau de l'extrémité de creux (240) ;

    dans lequel la première plaque d'extrémité (140) est positionnée autour de l'extrémité de crête (230) du noyau d'ailette pliée (130) ;

    dans lequel la deuxième plaque d'extrémité (150) est positionnée autour de l'extrémité de creux (240) du noyau d'ailette pliée (130) ; et

    dans lequel la première plaque d'extrémité (140) et la deuxième plaque d'extrémité (150) comprennent une pluralité de parties saillantes (260) sur celles-ci dans lequel la première plaque d'extrémité (140) et la deuxième plaque d'extrémité (150) comprennent une avant-dernière partie saillante de premier côté (270) dimensionnée pour recevoir les premières moitiés d'ailettes pliées et une avant-dernière partie saillante de deuxième côté (270) dimensionnée pour recevoir les deuxièmes moitiés d'ailettes pliées, l'ensemble échangeur thermique (100) comprenant en outre une première plaque latérale (160) et une deuxième plaque latérale (170) s'étendant de la première plaque d'extrémité (140) à la deuxième plaque d'extrémité (150), dans lequel la première plaque d'extrémité (140) et la deuxième plaque d'extrémité (150) comprennent une dernière partie saillante de premier côté dimensionnée pour recevoir la première plaque latérale (160) et une dernière partie saillante de deuxième côté dimensionnée pour recevoir la deuxième plaque latérale (170), caractérisé en ce que les première et deuxième plaques latérales (160, 170) ne sont pas directement jointes au noyau d'ailette pliée (130) et le noyau d'ailette (130) est joint aux plaques latérales (160, 170) sans un dispositif de fixation, de telle sorte que l'avant-dernière partie saillante de premier côté (270) et l'avant-dernière partie saillante de deuxième côté (270) fournissent une distance entre la première et la deuxième plaque latérale (160, 170) et le noyau d'ailette pliée (130), respectivement.


     
    2. Ensemble échangeur thermique (100) selon la revendication 1, dans lequel le noyau d'ailette pliée (130) comprend une feuille continue (180) d'un matériau thermoconducteur (190).
     
    3. Ensemble échangeur thermique (100) selon une quelconque revendication précédente, dans lequel la première plaque d'extrémité (140) et la deuxième plaque d'extrémité (150) comprennent une plaque plate avec la pluralité de parties saillantes (260) sur celle-ci.
     
    4. Ensemble échangeur thermique (100) selon une quelconque revendication précédente, comprenant en outre un plénum de ventilateur positionné autour du noyau d'ailette pliée (130).
     
    5. Ensemble échangeur thermique (100) selon une quelconque revendication précédente, dans lequel l'ensemble échangeur thermique (100) comprend un échangeur thermique air-air.
     




    Drawing


















    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description