(19)
(11)EP 2 773 492 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
28.06.2017 Bulletin 2017/26

(21)Application number: 12795587.0

(22)Date of filing:  31.10.2012
(51)Int. Cl.: 
B28B 1/00  (2006.01)
B28B 3/26  (2006.01)
B28B 3/20  (2006.01)
B28B 17/00  (2006.01)
(86)International application number:
PCT/GB2012/052717
(87)International publication number:
WO 2013/064826 (10.05.2013 Gazette  2013/19)

(54)

METHOD AND APPARATUS FOR DELIVERY OF CEMENTITIOUS MATERIAL

VERFAHREN UND VORRICHTUNG ZUR ABGABE EINES ZEMENTMATERIALS

PROCÉDÉ ET APPAREIL POUR LA DISTRIBUTION D'UN MATÉRIAU À BASE DE CIMENT


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 01.11.2011 GB 201118807

(43)Date of publication of application:
10.09.2014 Bulletin 2014/37

(60)Divisional application:
15150702.7 / 2886277

(73)Proprietor: Loughborough University
Loughborough, Leicestershire LE11 3TU (GB)

(72)Inventors:
  • AUSTIN, Simon
    Quorn Leicestershire LE11 8BS (GB)
  • BUSWELL, Richard Andrew
    Loughborough Leicestershire LE11 2EB (GB)
  • LIM, Sungwoo
    Uxbridge Middlesex UB8 3WS (GB)
  • WEBSTER, John
    Melton Mowbray LE14 3BJ (GB)

(74)Representative: Potter Clarkson LLP 
The Belgrave Centre Talbot Street
Nottingham NG1 5GG
Nottingham NG1 5GG (GB)


(56)References cited: : 
EP-A2- 0 426 363
AT-B- 385 550
WO-A1-2005/070657
US-A1- 2009 134 539
  
  • SUNGWOO LIM ET AL: "FABRICATING CONSTRUCTION COMPONENTS USING LAYERED MANUFACTURING TECHNOLOGY", GLOBAL INNOVATION IN CONSTRUCTION CONFERENCE, 16 September 2009 (2009-09-16), pages 512-520, XP055058731, Loughborough (United Kingdom)
  
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description


[0001] The present invention relates to a novel construction technique, and apparatus for performing said technique, for deposition of cementitious material, optionally with the controlled application of "accelerators". The present invention also relates to an apparatus and technique for deposition of multiple layers of cementitious material, said cementitious material preferably being further dosed with one or more accelerator compounds at the point at which it is deposited, thereby allowing application of further layers onto the partly cured cementitious material without said material deforming unduly under the weight of the additional layer(s).

[0002] Rapid prototyping has grown in use enormously over the last decade in various fields of industrial design moving from being a niche technique into the mainstream with various techniques offering a choice of materials, resolution and assorted other factors. Amongst the more common techniques are stereolithography, selective laser sintering (SLS) and fused deposition modelling (FDM), with the latter two both being additive manufacturing techniques mostly used with plastics materials, with FDM in particular also being used for rapid manufacture of short run, or small batch size, plastics components.

[0003] Sungwoo Lim et al: Fabricating Construction Components Using Layered Manufacturing Technology; Global Innovation in Construction Conference, January 2009, pp 512-520 describes a concrete printing process in which a cement-based material is used for a build while a gypsum-based material is used as a support. A retarder admixture is added to the material to secure the required open time for a constant workability. In the printing process, the fresh materials are extruded out of a nozzle with sufficient load capacity to carry the weight of layer layers seated above and to have a suitable plastic state to bond with surrounding beads and layers.

[0004] The present invention seeks to take the advantages offered by rapid prototyping techniques to the fields of product design and manufacture and introduce them to the field of construction, in effect providing a 3D printer capable of "printing" large complex, irregular objects and structures formed from cementitious materials.

[0005] Several attempts have been made to deliver some of the advantages offered by the present invention, however, all have their shortcomings and are generally extremely limited in terms of either or both of the size of object / structure which can be produced and also the complexity of said object / structure. AT 385550B describes a computer-controlled device for the production of buildings in which building materials such as plaster, concrete or mortar are taken from storage containers, fed via pipelines to mixers and to positioning nozzles via flexible hoses in plastic state. The building materials are applied layer by layer by guiding the nozzle head.

[0006] In the present specification, the term "accelerating agent" should be taken to include any material that is capable of accelerating, via catalytic or other processes, the curing / setting of cementitious material.

[0007] The term "retarder" should be taken to refer to any material which retards or slows the curing / setting of cementitious material. This may lengthen the open time for workability and / or improve the rheological properties for workability, extrudability, printability and buildability.

[0008] The term "cementitious material" or "cemented material" should be taken to include any agglomeration of filler(s) and binder(s) that can be conveyed in a fluid state and then harden after deposition.

[0009] The term "stabilised cementitious material" refers to a cementitious material which has a retarder added thereto.

[0010] The term "support material" refers to a material which is temporarily deposited to act as a support for subsequent layers of construction, said support material being removed and optionally recovered / recycled for subsequent reuse upon completion of said construction.

[0011] The terms "cartilage material" and "cartilage layer" refer to a material or layer imposed in between the support and cementitious layers, or over the finished surfaces, or around any internal or external feature that improves the ease of separation of these layers, separates the surface of the built component from another fluid e.g. to minimise evaporation of water or loss of other compound from the cementitious material during curing, to improve the surface finish of the cementitious material and / or to enable the creation of a textured finish to said cementitious material. This layer may be temporary, semi-permanent or may form a permanent feature of the completed component.

[0012] The term "work surface" refers not only to the virgin surface upon which construction is commenced, but also to the uppermost exposed layer of any or all of the cementitious material, the support material and the cartilage material.

[0013] The term "substantially simultaneously" specifically with reference to the description of the interrelation of the deposition of the cementitious and support materials should be construed broadly, in as much as it is unlikely to be the case that any given layer will require identical amounts and even distributions of both cementitious and support materials, therefore there will inevitably be instances where support material is being deposited whilst cementitious material is not and vice versa, hence this terminology should be taken to infer that said deposition of the cementitious and support materials may be synchronous, although precise synchronicity is not required.

[0014] The term "activation agent" should be taken to include any material that is capable of accelerating, via catalytic or other processes, the curing / setting of the support material.

[0015] Where the term "nozzle" is used, it should be taken to indicate either a single nozzle or a plurality of nozzles located proximal one another, hence the singular should be construed as to also include the plural and vice versa.

[0016] A first aspect of the present invention provides a multi-layer construction method according to claim 1. More generally described herein is a multi-layer construction method with construction of each layer comprising the steps of:

providing a cementitious material;

delivering said cementitious material to a nozzle;

indexing said nozzle along a pre-determined path; and

applying said cementitious material to a work surface by extrusion through said nozzle; and

these steps being repeated for each additional layer of construction required.



[0017] Preferably the cementitious material is a stabilised cementitious material. Preferably the cementitious material is stabilised prior to delivery of the cementitious material to the nozzle and prior to applying the cementitious material to the work surface. Preferably said cementitious material is a concrete material.

[0018] Preferably said method features the additional step of applying an accelerating agent to said cementitious material, said application of said accelerating agent may be before, during or after said extrusion of said cementitious material. Said stabilised cementitious material may be agitated, through vibration, stirring, mixing or any other commonly known method, thereby reducing friction between said cementitious material and the internal surfaces of an apparatus being used to deliver it. Said indexing of said nozzle along said predetermined path is preferably computer controlled.

[0019] The method according to the invention further comprises, substantially simultaneously with said application of said cementitious material, applying a support material in a contiguous layer with said cementitious material in areas where cementitious material is not desired, such that said support material, along with said cementitious material, provides the work surface for the next layer of construction.

[0020] Preferably said method further comprises exposing said support layer to an activation agent.

[0021] Said method further comprises the application of a cartilage layer to the upper surface of the support layer in areas where the subsequent layer is to be one of cementitious material, or vice versa. The addition of said cartilage layer serves to improve the surface finish of the cementitious material whilst simultaneously improving the structural integrity of the finished construction through minimising the amount of moisture lost from the cementitious material whilst it is curing.

[0022] The method may further comprise the use of one or more cameras to capture real-time information relating to surface texture and / or deformation of the work surface, said information being used to determine application conditions necessary for the current layer being applied, said application conditions being selected from number of nozzles, nozzle size, nozzle orientation, flow rate of cementitious material, velocity of nozzle indexing and rate or timing of application of accelerating agent.

[0023] The application / delivery of any of the cementitious material, the support material, the cartilage layer or material, or the accelerator can be performed via a vibratable nozzle or by a variable diameter nozzle or both.

[0024] A second aspect of the present invention provides an apparatus as set out in claim 12. More generally described herein is an apparatus for performing a multi-layer construction method as described above, said apparatus comprising a reservoir of a cementitious material, said reservoir being functionally connected to a nozzle, means for indexing said nozzle along a pre-determined path, means for controlling the flow of said cementitious material from said reservoir to said nozzle and extruding said material out of said nozzle.

[0025] Preferably, the reservoir of cementitious material comprises a reservoir of stabilised cementitious material. The reservoir may be of any size that allows for buffering of discontinuous, but pressure-controlled, flow from the nozzle. Preferably, said apparatus further comprises means for applying an accelerating agent to said cementitious material.

[0026] Said apparatus may further comprise agitation means in functional communication with said reservoir and / or said functional connection between said reservoir and said nozzle.

[0027] The apparatus preferably further comprises computer control means, said control means controlling the indexing of said nozzle, the flow rate of said cementitious material and the timing and rate of application of said accelerating agent.

[0028] Said indexing means preferably comprise a robotic arm, said robotic arm preferably being capable of both indexing along three independent axes and also capable of multi axis rotation of said nozzle.

[0029] The apparatus according to the invention further comprises a reservoir of support material, said reservoir being functionally connected to a support material application nozzle, means for indexing said nozzle along a pre-determined path, means for controlling the flow of said support material from said reservoir to said nozzle and extruding said material out of said nozzle.

[0030] Said apparatus preferably also comprises means for applying an activation agent to said support material.

[0031] Said apparatus further comprises a reservoir of cartilage material, said reservoir being functionally connected to a cartilage material application nozzle, means for indexing said nozzle along a pre-determined path, means for controlling the flow of said cartilage material from said reservoir to said nozzle and extruding said material out of said nozzle.

[0032] In a particularly preferred embodiment, said apparatus further comprises one or more cameras, said one or more cameras being either static, mounted to said robotic arm or independently indexable to track said extrusion nozzle, said cameras being capable of capturing information relating to texture, shape or form, said one or more cameras being capable of transferring said information to said computer control unit, said computer control unit being capable of interpreting said information and subsequently using said information to inform control of said one or more extrusion nozzles and the flow of said one or more materials from said one or more reservoirs to said one or more nozzles.

[0033] Any one or more of the nozzles for applying / delivering / extruding cementitious material, support material, cartilage material or accelerator may be a vibratable nozzle or a variable diameter nozzle or both.

[0034] Embodiments of the present invention will now be described by way of example and with reference to the accompanying drawings in which:

Figure 1 is a schematic diagram of a delivery apparatus for performing multi-layer delivery of a cementitious material;

Figure 2 is a schematic diagram of a print head incorporating two deposition heads, for use with the delivery apparatus of figure 1;

Figures 2a and 2b are schematic diagrams illustrating dispositions of the deposition heads of the print head of figure 2 during deposition;

Figure 3 is a schematic partial cross-sectional diagram of the cementitious material deposition head which forms part of the print head of figure 2 together with supporting delivery mechanism for delivery of cementitious material;

Figure 3a is a schematic side view of the print head;

Figure 4 is a schematic diagram of a delivery mechanism for accelerator and cartilage material, an optical measurement system and a robotic control mechanism suitable for use with the apparatus of figure 1;

Figure 5 is a schematic cross-sectional view of a sand and binder deposition head suitable for use with the apparatus of figure 1;

Figure 6 is a schematic diagram of a sand delivery mechanism suitable for use with the deposition head of figure 5;

Figure 7 is a schematic cross-sectional diagram of a cementitious material stirrer suitable for use with the apparatus of figure 1;

Figure 8 is a schematic diagram of a vibrating nozzle suitable for use with the print head of figure 2; and

Figure 9 is a schematic diagram of a variable nozzle suitable for use with the print head of figure 2.



[0035] Figure 1 shows a delivery apparatus 100 for delivery of a cementitious material to a nozzle 13, the spatial position and orientation of which nozzle can be controlled robotically. The delivery apparatus 100 performs what may be described as a "printing" process using a delivery pump 2 to deliver the cementitious material to a nozzle 13. A worm pump 2 in combination with a hopper 102 is coupled to a deposition head 6 by way of a delivery pipe 3. The deposition head 6 is mounted on a robotic arm assembly 1 which is configured to provide automated freedom of movement to the deposition head 6. The robotic arm assembly 1 is controlled by a main controller 110. Preferably, the robotic arm assembly 1 enables the deposition head 6 to be moved, i.e. indexed along all three orthogonal axes together or independently and also allows the nozzle 13 to be rotated about all three orthogonal axes allowing a full six degrees of freedom. Thus, in a general aspect, the robotic arm assembly 1 provides a means for indexing the nozzle along a predetermined path.

[0036] The deposition head 6 forms part of a multi-function print head 101 which is mounted on a distal arm 103 of the robotic arm assembly 1. The distal arm 103 also supports a piston 5 and a reservoir 4 for delivery of the cementitious material to the nozzle 13. In use, the worm pump 2 delivers cementitious material from the hopper 102 to the reservoir 4 through the delivery pipe 3.

[0037] The cementitious material may be continuously agitated to maintain a suitable rheological state. The reservoir 4 may eliminate unwanted high pressure built up by the worm pump 2 during delivery of the material to the deposition head 6 in order to have a precise control of extrusion of the cementitious material. The cementitious material is preferably delivered from the reservoir 4 by the piston 5 to the deposition head 6, and to the nozzle 13 with adjustable flow-rate, and extruded along a pre-defined path controlled by the main controller 110 driving the robotic arm assembly 1. A retarder is preferably added to the cementitious material before it is loaded into the hopper 102, or when it is already in the hopper 102, so as to provide a reservoir of stabilised cementitious material. Alternatively, a retarder could be added downstream as discussed later.

[0038] Figure 2 shows in greater detail the print head 101 and the multi-axis rotation of the nozzle 13 and the print head 101. The print head 101 consists of a motor 7, a gearbox 8, a one way bearing 9, the deposition head 6 for cementitious material (also described herein as the "first" deposition head)and its nozzle 13, and a second deposition head 11 for support material and its nozzle 12. The print head 101 is rotatable about an axis orthogonal to the plane of the drawing of figure 2 as shown in figures 2a and 2b. The rotational freedom of the robotic arm assembly 1 allows the first and second deposition heads 6, 11 to be positioned for deposition of material relative to a surface 104 or 105a or 105b and to remain orientated normal to the surface 104, 105a, 105b being built within the confines of each axis. This allows for the creation of concave or convex curved surfaces 105a, 105b while minimising the risk of collision between the nozzles 12, 13 and the printed surface (e.g. particularly concave surface 105a), as well as allowing a fixed vertical orientation for building horizontal layers 104.

[0039] Figure 3 shows further details of the print head 101 and the cementitious material delivery mechanism. Piston 5 has a piston cylinder 16 driven by air from an air inlet 17. The piston cylinder 16 is configured to drive a piston head 106 within the reservoir 4 via piston rod 107. Piston head 106 includes a sealing ring 20 and one or more magnets 19 which are configured to actuate magnetic switches 22A, 22B by proximity thereto, to indicate first and second positions of the piston head 106. A switch logic circuit 21 is configured to monitor the state of the magnetic switches 22A, 22B and to provide feedback to the main controller 110.

[0040] The delivery pipe 3 is coupled to the end of the reservoir 4 for delivery of cementitious material. The cementitious material deposition head 6 on the print head 101 is coupled to the reservoir 4 by a transfer hose 18 which is clamped to the deposition head 6 by clamps 25, 27. A pump roller plate 23 carries a plurality of rollers 24 and is configured to rotate about an axis 108 such that each roller 24 can successively compress the transfer hose against a curved pressure shoe 28, similar to the design of a peristaltic pump.

[0041] In use, stabilised cementitious material is delivered by driving the piston cylinder 16 by injecting air through the air inlet 17, to drive piston head 106 towards switch 22B thereby expelling stabilised cementitious material from the reservoir 4, through the transfer hose 18, and to the deposition head 6. The cementitious material in the transfer hose 18 is extruded by the rollers 24 on the pump roller plate 23 rotating clockwise as viewed in figure 3, causing the cementitious material to be extruded through the nozzle 13. When the piston head magnets 19 trigger the lower switch 22B, the switch logic circuit 21 sends a signal to the main controller 110 to stop injecting air through the air inlet 17 and pump material through the delivery pipe 3. Cementitious material is thereby pumped into the reservoir 4 to refill the reservoir. This could be assisted by injecting air into a second air inlet 17A to drive piston cylinder 16 and piston head 106 upwards. The main controller 110 may also, during the refilling of reservoir 4, stop rotation of the pump roller plate 23 and movement of the robotic arm assembly to allow time for the refilling, before resuming operation after the reservoir refilling is complete. A retarder could be added to the cementitious material when charging the reservoir 4.

[0042] The piston arrangement preferably provides a constant pressure to the deposition head 6 and / or nozzle 13. This function could alternatively be performed by any suitable mechanism for controlling pressure and flow of material from a reservoir or supply to the deposition head and / or nozzle. For example, a bladder- or diaphragm-based system could be used.

[0043] The main controller 110 generally controls the flow rate of the cementitious material through the nozzle 13 in concert with the motion or indexing of the nozzle.

[0044] Figure 3 also shows in the inset diagram figure 3a, a front view of the print head 101 which is depicted in end cross-section in the main part of the figure.

[0045] The cementitious material to be used in the delivery mechanism just described may be of any suitable type as discussed earlier, but should preferably be developed according to criteria such as: workability, pumpability, extrudability, printability and buildability, optimised for a three-dimensional concrete printing process.

[0046] Figure 4 depicts a real-time feedback system using an optical measuring device 32, and also shows further features of the print head 101 for delivery of accelerator and / or cartilage material.

[0047] The feedback system comprises an optical sensor 32, a measurement processor 33 and an interface 34 with the main controller 110 of the robotic arm assembly 1. The optical sensor may comprise one or more cameras for viewing the layers of material being built up by extrusion from either one of the deposition heads 6 and 11. The optical sensor 32 (or plural sensors) may be static or mounted to a part of the robotic arm assembly 1 or may be mounted to the print head 101. Alternatively, the optical sensor or sensors 32 could be mounted to a separately moveable or indexable structure, e.g. on a separate track or a robotic arm. The optical sensor 32, e.g. camera, is preferably configured to capture information relating to texture, shape or form of the material deposited by either or both of the deposition heads 6, 11.

[0048] In use, the feedback system may measure some or all of the continuity, width, height and reflectance of the extruded bead (e.g. of cementitious material or other material to be described later) during deposition as well as any vertical, horizontal or other deformation of previously built layers. The feedback system may also monitor information relating to the surface finish and texture and three-dimensional location of the extruded bead and / or previously built layers with reference to the instructions generated from the computer model. Such information is processed in real-time in the measurement processor 33, and any variations to the set parameters may instigate changes to the deposition process, pump speed, velocity of travel by controlling the robot interface 34 and system pause, etc. Variations to the set parameters may be made "on the fly" as the material is deposited such that there is real-time feedback to the delivery apparatus to control current parameters being used to deposit the current layer being deposited. Alternatively, variations to the set parameters may be made to control future parameters, e.g. for the next deposited layer so as to "correct" or "repair" deviations from the intended profile of a previous layer or layers. Variations to the set parameters may include any of the operational parameters of the deposition apparatus such as to the pumps or nozzles or robotic arm assembly to control flow rates, height or position of the material being deposited.

[0049] The print head 101 or delivery mechanism may further include a container 29 for an accelerator ("accelerating agent") and a container 30 for cartilage material. Each of these containers 29, 30 is coupled to a nozzle 35 by way of delivery pipes 111, 112 and a solenoid valve 31 which is under the control of the measurement processor 33. The nozzle 35 may be integrated with the cementitious material nozzle 13 in the form of a multi-chamber nozzle. Alternatively, the nozzle 35 could be adjacent to, or concentric with, the cementitious material nozzle 13, e.g. forming a shroud.

[0050] The accelerating agent and / or cartilage material may therefore be delivered through a nozzle 35 that is one or more of coaxial with, adjacent to, or at least partially surrounding the cementitious material nozzle 13. The accelerating agent nozzle and / or cartilage material nozzle 35 may comprise a circumferential shroud around the cementitious material nozzle 13 or may be incorporated within the cementitious material nozzle 13. This enables the cartilage material to be conveniently built up in layers simultaneously with, or interspersed with, the cementitious material, or as a base layer, intermediate layer or cap layer to the or each cementitious layer. Exemplary cartilage materials can include latex, gelatin, vinyl, metals (e.g. for electrical conductivity, finish or structural enhancement), expanding foam (e.g. for thermal insulation), resins, powders, textiles, dyes, inks and other surface finishes, or property-enhancing materials.

[0051] In use, the solenoid valve 31 controls the delivery of accelerator and cartilage material from the containers 29, 30 to be deposited through the nozzle 35. The systems of figure 4 for delivery of accelerator and cartilage material are shown as gravity fed systems. However, it is possible also to replace either of these with a pumped system. For example, a peristaltic pump could meter delivery of either or both accelerator or cartilage material to the nozzle 13.

[0052] Thus, in a general aspect, the container 29, valve 31, delivery pipe 111 and nozzle 35 or 13 provides an exemplary means for applying an accelerating agent to the stabilised cementitious material, and the main controller 110, interface 34 exemplify apparatus to control the flow rate of the timing and rate of application of an accelerating agent.

[0053] An accelerator for the build (cementitious) material may comprise sulphuric, aluminium salt and diethanolamine, and can be selected to control the setting time of the cementitious material. The accelerator may be mixed with a retarder, e.g. formed by amino-tris (methylenephosphonic acid), citric and formaldehyde, to secure a sufficient open time to ensure layer buildability. Preferably some retarder is premixed with the cementitious material provided in the hopper 102 and delivered to the deposition head 6. This provides a greater open time for use of the cementitious build material. Preferably, accelerator is added later than the retarder, e.g. at the nozzle 13 to shorten the stiffening time after deposition of the material.

[0054] Accelerator and cartilage materials in the containers 29, 30 of Figure 4 may be held under low pressure in the containers 29 and 30. When solenoid valve 31 is energized in such a manner as to allow passage of material from either container 29 or 30 into the nozzle 35, deposition onto the previously laid surface is coated with material from the selected container 29, 30. As mentioned earlier, the nozzle 35 may comprise a shroud which may consist of separated segments within, and may be rotatable to orientate in the direction of travel of the deposition head 6 along a work piece being constructed. Thus, in a general aspect, the print head 101 in combination with the containers 29, 30, solenoid valve 31, delivery pipes 111, 112 and nozzle 13, 35 provide a reservoir for accelerating agent, a reservoir for cartilage material and means for delivering the accelerating agent and cartilage material to a nozzle for extrusion therefrom.

[0055] Figure 5 shows further detail of the deposition head 11 for support material. Exemplary support material could be binder and sand. The binder is stored in a binder container 36 coupled to a mixing chamber 115 by a binder pump 37 and a binder entry point 38 of the mixing chamber 115. The support material (e.g. casting sand) is deliverable through a sand entry point 39 from a suitable container, not shown. The mixing chamber 115 includes mixing paddles 41, 42 for mixing the sand and binder. The paddles 41, 42 are rotated by a suitable motor 46 and shaft 117, which also rotates an anti-lodging rod 66 within the nozzle 12. Plates 43A, 43B have apertures 43.

[0056] In use, the mixed sand and binder is passed through the apertures 43 in the plates 43A, 43B which are size adjustable to regulate the rate at which the mixed material falls through, to control the mixing time in the mixing chamber 115 in order to maintain the degree of mixing. The mixed material is then extruded through the nozzle 12. The amount of support material in the mixing chamber 115 is controlled by a metering unit 40 comprising a rotating cylinder 118 with slits 119, and flow-rate of the support material is measured and controlled by a variable reluctance pickup 47 and a pump speed control circuit 48. As the shaft 117, mixing paddles 41, 42 and anti-lodging rod 66 rotate, the variable reluctance pickup creates a variable frequency signal according to the speed of rotation. The measurement made by the variable reluctance pickup could alternatively be generated by other devices, such as Hall-effect or optical devices, for example. This variable frequency signal is fed to a frequency-to-voltage converter and then to a pulse width modulation (PWM) circuit to drive the binder pump 37. The binder pump is preferably driven so as to maintain a desired or constant sand binder ratio. The rotation of anti-lodging rod 66 prevents residues building up inside the nozzle 12.

[0057] In a general aspect, the mixing chamber 115 provides an exemplary reservoir for support material for delivery to the nozzle 12 and the main controller 110 further controls the rate of flow of the support material to the nozzle by way of the motor 46 and binder pump 37.

[0058] An accelerator or "activation agent" for the support material may be delivered by way of an accelerator delivery pipe 44 to the nozzle 12. As shown, the nozzle 12 may be a multi-port nozzle and may include a shroud nozzle arrangement 45 to deliver the activation agent for the support material. The activation agent may therefore be delivered through a nozzle 45 that is one or more of coaxial with, adjacent to, or at least partially surrounding the support material nozzle 12. In one arrangement as shown, the activation agent nozzle 45 may comprise a circumferential slot around the support material nozzle 12. Another arrangement might be that the activation agent is mixed into the support material within the support material nozzle 12.

[0059] Such arrangements as described above are ideally suited for dispensing casting sand or another suitable powdered material that is set with a gaseous material, such as CO2. Moist sand, e.g. generated by the deposition head 11 mixing sand from entry point 39 with a wet binder material (e.g. water) from binder container 36), is set with the CO2. This enables the support material to be conveniently built up in layers in a similar manner to that of the cementitious material. As discussed earlier, support materials may be used which can be removed and possibly recycled after deposition, e.g. after construction of an article, or after deposition of subsequent layers of cementitious material. For example, a sand-based support material can be flushed with water during a later stage of the process.

[0060] An exemplary activation agent for the support material may be carbon dioxide (CO2), applied under low pressure to the mixed support material which accelerates the reaction between silica sand and sodium silicate, by causing desiccation. The accelerator may be delivered from an external cylinder (not shown), equipped with 6 mm pipe 44, and passed through a solenoid valve (not shown) to the exit nozzle 12 via the shroud 45. Thus, the support material can be activated during deposition.

[0061] Figure 6 shows further details of a mechanism for delivery of the sand component of the support material. The support material, e.g. dry silica sand, is blown through a delivery tube 55 from a bulk container 49 using low pressure compressed air, which is added through the air gauge 58 and needle valve 50, into a small reservoir 56 mounted near to the extreme end of the robotic arm assembly 1. Exhaust air from the reservoir 56 is regulated by the needle valve 52 and air tube 54 to reduce the velocity of dry sand to the deposition head 11 for the support material. During the periods of inactivity of support material deposition, a weight sensor 57 fitted to the reservoir 56 stops the flow of sand, using the needle valve 51 and air tube 53, when the reservoir 56 is full. Any one or more of the bulk container 49, the binder container 36 and the mixing chamber 115 may also exemplify a reservoir of support material.

[0062] As stated earlier, the cementitious material may be agitated to maintain freshness. Figure 7 depicts the details of a stirrer arrangement 120 that allows continuous or periodic agitation of the cementitious material. The stirrer arrangement 120 may be disposed at any suitable location in the cementitious material delivery path, e.g. at the hopper 102 and worm pump 2 assembly shown in figure 1 or downstream thereof. The cementitious material is delivered to container 59 which includes a mixing or stirring paddle 62 and a vibrator 65. The mixing or stirring paddle 62 is rotatable by motor 60 by way of a shaft 61. Agitation of the material in the container 59 is performed by the motor 60 driving the shaft 61 and mixing paddle 62, and by the vibrator 65 shaking the container 59. The paddle 62 has a specific surface area, thus it requires a certain force to move it. The force, which indicates the stiffness of the material, can be measured by a torque measuring unit 63. A force measurement processor 64 monitors the torque required to rotate the paddle 62 and adjusts process parameters and frequency and amplitude of the vibrator 65 to assist the flow of cementitious material.

[0063] Thus, in a general aspect, the stirring paddle 62 and / or the vibrator 65 exemplify agitation means suitable for agitating cementitious material or stabilised cementitious material.

[0064] Figure 8 shows a vibrating nozzle arrangement 121 configured to compact material as it is being deposited and improve inter-layer bonding for wet materials as well as improving surface finish. The vibrating nozzle arrangement 121 can be deployed either for depositing build (cementitious) material or support material, i.e. it can be incorporated into the nozzle 13 or the nozzle 12 of figures 2 and 3a.

[0065] The exemplification of figure 8 shows the vibrating nozzle arrangement 121 serving as a cementitious material nozzle. Cementitious material may be delivered through the hose 18 or other conduit, e.g. via the roller pump 24. The hose 18 is retained in a nozzle head 122 and is vibrated vertically (as orientated in the diagram) by the vibrator 123, i.e. the vibration occurs in the direction parallel to the hose long axis and in the direction of extrusion. The vibrator 123 may be a piezo-electric stack connected to a power supply through wires 67. A voice coil or mechanical movement could also or alternatively be employed for larger amplitudes while the vibrator 123 remains fixed. The application of ultrasonic vibration to the deposition head nozzle could also or alternatively be used for smaller amplitudes for precise material control.

[0066] Thus, in a general aspect, figure 8 provides a vibratable nozzle. The vibratable nozzle could be configured to vibrate the nozzle in a direction parallel to the nozzle axis. The nozzle axis, in this context, corresponds to the longitudinal axis of the hose and the direction of extrusion. A vibrating nozzle may improve the flow of material being extruded through the nozzle and or compact the extruded materials. The vibratable nozzle could be configured to vibrate the nozzle in a direction orthogonal to the nozzle axis. This may result in a different quality of surface without surface compaction.

[0067] Figures 9a and 9b show a variable diameter nozzle 130 configured to provide variable bead dimensions and variable bead aspect ratio. This allows higher density of fill for certain geometries and provides fast dynamic system response.

[0068] The variable diameter nozzle 130 can be deployed either for depositing build (cementitious) material or support material, i.e. it can be incorporated into the nozzle 13 or the nozzle 12 of figures 2 and 3a.

[0069] The exemplification of figures 9a and 9b shows the variable diameter nozzle 130 serving as a cementitious material nozzle 13. Cementitious material may be delivered through the hose 18 or other conduit, e.g. via the roller pump 24. The hose 18 is coupled into a hose housing 132 in nozzle 130 and the hose has multiple axial slots 131 cut to maximise closing movement. As shown in figures 9a and 9b, the axial slots 131 are preferably also slightly oblique to the long axis of the hose and preferably also somewhat oblique to the radial direction of the hose.

[0070] A motor and gearbox 68 are coupled to rotate a pinion gear 69, which engages and turns a ring gear 70 that is attached to a closing block 71. A thread 73 couples the ring gear 70 and closing block 71. Complementary tapered profiles 75 on each of the ring closing block 71 and hose housing 132 causes compression of the distal end 72 of the hose housing 132 when the closing block and nozzle 13 are axially displaced relative to one another using the thread 73. This causes the end of the hose housing 132 and hose 18 to reduce or increase in radius, thereby defining a variable diameter nozzle 130.

[0071] Other arrangements of variable diameter nozzle may be envisaged which allow changing of shape / cross-sectional profile of the nozzle. Thus, the expression "variable diameter" nozzle is intended to encompass a nozzle in which at least one cross-sectional dimension of a nozzle end can be varied. The cross-sectional profile need not be circular or elliptical, but could be rectangular, or other multi-sided shape. The hose need not have slots in it but could rely on pliancy, plasticity or elasticity of the hose material to contract or expand.

[0072] A variable diameter nozzle whose orifice can be automatically adjusted in shape and / or size to change the cross-sectional profile of extruded material in a controlled and continuous manner can be particularly useful when a layer of material to be deposited requires the formation of one or more beads which are required to be smaller or narrower than the standard bead size for a printed layer of material. This may avoid the need to leave partial gaps or change nozzles when different resolutions of printed bead are required.

[0073] The main controller 110 may be used to control any function of the delivery apparatus 100 based on information / feedback received from the optical sensor 32, such as flow rate of material to the nozzles 12, 13, 35, 45 and extrusion rate therefrom. The optical sensor or sensors could be replaced by or supplemented with other types of sensor suitable for monitoring the texture, shape or form of the layers being printed by the apparatus 100. For example, sensors using other parts of the electromagnetic spectrum or ultrasound could be used.

[0074] Although the means for indexing the nozzles along a predetermined path has been generally exemplified by a robotic arm having pivoting sections, it is possible for this function to be performed by any suitable robotic arm assembly or structure capable of manipulating the nozzles 12, 13, 35, 45 to the required position in space and the required angular presentation. For example, a gantry system could be used which presents an x-y-z stage for the print head 101. The gantry system may comprise four columns with two supporting beams that track vertically. The two supporting beams in turn support a third beam that tracks along one horizontal axis that supports the print head. The print head can then track in the other horizontal direction along the third beam. Other arrangements are, of course, possible.

[0075] The main controller 110 is preferably a computer control means although application specific circuits could be deployed instead or in addition. The main controller can be a single central unit or could be distributed among the various component parts of the apparatus 100.

[0076] Although the cementitious deposition head nozzle 13 and the support material deposition head nozzle 12 of the preferred embodiments have been shown as having different angular presentations on the print head 101 (figure 2) so that they can each be rotated into position (figures 2a and 2b) for deposition on a surface 104, it will be understood that the cementitious material nozzle 13 and the support material nozzle 12 could alternatively be provided in the same orientation, and could be immediately adjacent one another, so as to provide for simultaneous deposition or more rapid switching between deposition of cementitious material and support material, for example.

[0077] Advantages of enabling the delivery of both cementitious material and support material in a "printing" type process is that a reduced, or minimum, volume and mass of cementitious material can be delivered to the point of use, reducing the cost and time for building and post-processing, clear-up and recycling time. The delivery paths for both cementitious material and the support material can be separately optmised for delivery to and from the same print head. This enables formation of structures that include hollow panels and components and doubly curved structures. The deposition process can be combined with other surface preparation or surface treatment techniques, e.g. for forming smooth surfaces, such as tamping, or by a vibration / oscillatory instrument, air jets or combinations thereof.

[0078] Other embodiments are intentionally within the scope of the accompanying claims.


Claims

1. A multi-layer construction method in which construction of each layer comprises the steps of:

providing a cementitious material;

delivering said cementitious material to a nozzle (13);

indexing said nozzle along a pre-determined path; and

applying said cementitious material to a work surface (104) by extrusion through said nozzle;

these steps being repeated for each additional layer of construction required the method further comprising:

substantially simultaneously with said application of said cementitious material, applying a support material in a contiguous layer with said cementitious material in areas where cementitious material is not desired, such that said support material, along with said cementitious material, provides the work surface for the next layer of construction and

applying a cartilage layer to the upper surface of the support layer in areas where the subsequent layer is to be one of cementitious material, or vice versa.


 
2. A construction method according to claim 1 in which the cementitious material is a stabilised cementitious material.
 
3. A construction method as described in claim 1 or claim 2 in which the cementitious material is a concrete material.
 
4. A construction method according to any of claims 1, 2 or 3, further comprising the step of applying an accelerating agent to said cementitious material.
 
5. A method according to any preceding claim, wherein said stabilised cementitious material is also agitated, through vibration, stirring, mixing or any other commonly known method.
 
6. A method according to any preceding claim wherein said indexing of said nozzle along said predetermined path is computer controlled.
 
7. The method described in claim 1 in which the support material is a sand-based material.
 
8. The method described in claim 1 further comprising exposing said support material to an activation agent.
 
9. The method of claim 8 in which the activation agent is a gaseous material and the support material is casting sand or another suitable powdered material that can be set with the gaseous material.
 
10. A method according to any preceding claim further comprising the use of one or more cameras (32) to capture real-time information relating to surface texture and/or deformation of the work surface (104), said information being used to determine application conditions necessary for the current layer being applied.
 
11. The method of claim 10 wherein said application conditions are one or more of nozzle size, nozzle orientation, flow rate of cementitious material, velocity of nozzle indexing and rate or timing of application of accelerating agent.
 
12. Apparatus (100) for performing a multi-layer construction method according to any preceding claim comprising a reservoir (4) of a cementitious material, said reservoir being functionally connected to a cementitious material nozzle (13), means (1) for indexing said cementitious material nozzle along a pre-determined path, means (5) for controlling the flow of said cementitious material from said reservoir to said cementitious material nozzle (13) and extruding said material out of said cementitious material nozzle, the apparatus further comprising:

a reservoir (49, 36, 115) of support material, said reservoir being functionally connected to a support material application nozzle (12), means (1) for indexing said support material application nozzle along a pre-determined path, means (37, 46, 110, 115) for controlling the flow of said support material from said reservoir (49, 36, 115) to said support material application nozzle (12) and extruding said material out of said support material application nozzle; and

a reservoir (30) of cartilage material, said reservoir being functionally connected to a cartilage material application nozzle (35), means (1) for indexing said cartilage material application nozzle along a pre-determined path, means (31) for controlling the flow of said cartilage material from said reservoir to said cartilage material application nozzle and extruding said material out of said cartilage material application nozzle,

the apparatus being further configured to substantially simultaneously with application of said cementitious material, apply a support material in a contiguous layer with said cementitious material in areas where cementitious material is not desired, such that said support material, along with said cementitious material, provides the work surface for the next layer of construction and to apply a cartilage layer to the upper surface of the support layer in areas where the subsequent layer is to be one of cementitious material, or vice versa.


 
13. Apparatus according to claim 12, further comprising means (29, 111) for applying an accelerating agent to said cementitious material.
 
14. Apparatus according to either of claims 12 or 13 further comprising agitation means (61, 62, 65, 123), said agitation means being in functional communication with said cementitious material reservoir (4) and / or said functional connection (18) between said reservoir and said cementitious material nozzle (13).
 
15. Apparatus according to any of claims 12 to 14, further comprising computer control means (110), said control means controlling the indexing of said nozzles, the flow rate of said cementitious material and the timing and rate of application of said accelerating agent.
 
16. Apparatus according to any of claims 12 to 15 wherein said indexing means comprises a robotic arm (1, 103).
 
17. Apparatus according to claim 16 wherein said robotic arm (1, 103) is capable of indexing along three independent axes and also capable of multi axis rotation of said nozzles (13, 12).
 
18. Apparatus according to claim 12 further comprising means (44, 45) for applying an activation agent to said support material.
 
19. Apparatus according to claim 18 in which the means for applying an activation agent comprises means (44, 45) for delivering a gaseous material to the support material application nozzle (12) and the support material is casting sand or another suitable powdered material that can be set with the gaseous material.
 
20. Apparatus according to claim 15 further comprising one or more cameras (32), said one or more cameras being either static, mounted to said robotic arm (1) or independently indexable to track said extrusion nozzles, said cameras being capable of capturing information relating to texture, shape or form, said one or more cameras being capable of transferring said information to said computer control means (110), said computer control means being capable of interpreting said information and subsequently using said information to inform control of one or more of the extrusion nozzles and the flow of one or more materials from one or more of the reservoirs to one or more of the nozzles.
 
21. Apparatus according to any one of claims 12 to 20 in which any one or more of the nozzles comprises a vibratable nozzle (121).
 
22. Apparatus according to any one of claims 12 to 20 in which any one of the nozzles comprises a variable diameter nozzle (130).
 


Ansprüche

1. Mehrschicht-Aufbauverfahren, in dem ein Aufbauen jeder Schicht die folgenden Schritte umfasst:

Bereitstellen eines zementartigen Materials;

Liefern des zementartigen Materials an eine Düse (13);

Anordnen der Düse entlang eines vorgegebenen Pfads; und

Aufbringen des zementartigen Materials auf eine Arbeitsoberfläche (104) durch Extrudieren durch die Düse;

wobei diese Schritte für jede erforderliche zusätzliche Aufbauschicht wiederholt werden,

wobei das Verfahren ferner Folgendes umfasst:

Aufbringen eines Stützmaterials in einer an das zementartige Material angrenzenden Schicht, im Wesentlichen gleichzeitig mit dem Aufbringen des zementartigen Materials, in Bereichen, wo zementartiges Material nicht erwünscht ist, sodass das Stützmaterial gemeinsam mit dem zementartigen Material die Arbeitsoberfläche für die nächste Aufbauschicht bereitstellt, und

Aufbringen einer Knorpelschicht auf die obere Oberfläche der Stützschicht in Bereichen, wo die darauffolgende Schicht eine aus zementartigem Material sein soll, oder umgekehrt.


 
2. Aufbauverfahren nach Anspruch 1, wobei das zementartige Material ein stabilisiertes zementartiges Material ist.
 
3. Aufbauverfahren nach Anspruch 1 oder 2, wobei das zementartige Material ein Betonmaterial ist.
 
4. Aufbauverfahren nach einem der Ansprüche 1, 2 oder 3, ferner umfassend den Schritt des Aufbringens eines Beschleunigungsmittels auf das zementartige Material.
 
5. Verfahren nach einem der vorhergehenden Ansprüche, wobei das stabilisierte zementartige Material durch Rütteln, Rühren, Mischen oder ein anderes allgemein bekanntes Verfahren ferner verrührt wird.
 
6. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Anordnen der Düse entlang des vorgegebenen Pfads computergesteuert ist.
 
7. Verfahren nach Anspruch 1, wobei das Stützmaterial ein Material auf Sandbasis ist.
 
8. Verfahren nach Anspruch 1, ferner umfassend das Aussetzen des Stützmaterials einem Aktivierungsmittel.
 
9. Verfahren nach Anspruch 8, wobei das Aktivierungsmittel ein gasförmiges Material ist und das Stützmaterial Gießsand oder ein anderes geeignetes pulverförmiges Material ist, das mit dem gasförmigen Material erhärten kann.
 
10. Verfahren nach einem der vorhergehenden Ansprüche, ferner umfassend den Gebrauch einer oder mehrerer Kameras (32), um Echtzeitinformationen bezüglich Oberflächenbeschaffenheit und/oder Verformung der Arbeitsoberfläche (104) zu erfassen, wobei die Informationen verwendet werden, um Anwendungsbedingungen, die für die gegenwärtig aufgebrachte Schicht erforderlich sind, zu bestimmen.
 
11. Verfahren nach Anspruch 10, wobei es sich bei den Anwendungsbedingungen um Düsengröße, Düsenausrichtung, Durchflussrate des zementartigen Materials, Geschwindigkeit der Düsenanordnung und/oder Aufbringungsrate oder -zeit eines Beschleunigungsmittels handelt.
 
12. Vorrichtung (100) zum Durchführen eines Mehrschicht-Aufbauverfahrens nach einem der vorhergehenden Ansprüche, umfassend einen Behälter (4) für zementartiges Material, wobei der Behälter funktionsfähig mit einer Düse (13) für zementartiges Material, einem Mittel (1) zum Anordnen der Düse für zementartiges Material entlang eines vorgegebenen Pfads, einem Mittel (5) zum Regeln des Flusses des zementartigen Materials von dem Behälter zur Düse (13) für zementartiges Material und zum Extrudieren des Materials aus der Düse für zementartiges Material verbunden ist, wobei die Vorrichtung ferner Folgendes umfasst:

einen Behälter (49, 36, 115) für Stützmaterial, wobei der Behälter funktionsfähig mit einer Auftragungdüse (12) für Stützmaterial, einem Mittel (1) zum Anordnen der Auftragungdüse für Stützmaterial entlang eines vorgegebenen Pfads, einem Mittel (37, 46, 110, 115) zum Regeln des Flusses des Stützmaterials von dem Behälter (49, 36, 115) zur Auftragungdüse (12) für Stützmaterial und zum Extrudieren des Materials aus der Auftragungdüse des Stützmaterials verbunden ist; und

einen Behälter (30) für Knorpelmaterial, wobei der Behälter funktionsfähig mit einer Auftragungdüse (35) für Knorpelmaterial, einem Mittel (1) zum Anordnen der Auftragungdüse für Knorpelmaterial entlang eines vorgegebenen Pfads, einem Mittel (31) zum Regeln des Flusses des Knorpelmaterials von dem Behälter zur Auftragungdüse für Knorpelmaterial und zum Extrudieren des Materials aus der Auftragungdüse des Knorpelmaterials verbunden ist,

wobei die Vorrichtung ferner konfiguriert ist, im Wesentlichen gleichzeitig mit dem Aufbringen des zementartigen Materials ein Stützmaterial in einer an das zementartige Material angrenzenden Schicht in Bereichen aufzubringen, wo zementartiges Material nicht erwünscht ist, sodass das Stützmaterial gemeinsam mit dem zementartigen Material die Arbeitsoberfläche für die nächste Aufbauschicht bereitstellt, und eine Knorpelschicht auf die obere Oberfläche der Stützschicht in Bereichen aufzubringen, wo die darauffolgende Schicht eine aus zementartigem Material sein soll, oder umgekehrt.


 
13. Vorrichtung nach Anspruch 12, ferner umfassend ein Mittel (29, 111) zum Aufbringen eines Beschleunigungsmittels auf das zementartige Material.
 
14. Vorrichtung nach einem der Ansprüche 12 oder 13, ferner umfassend ein Rührmittel (61, 62, 65, 123), wobei das Rührmittel in funktionsfähiger Verbindung mit dem Behälter (4) für zementartiges Material und/oder in der funktionsfähigen Verbindung (18) zwischen dem Behälter und der Düse (13) für das zementartige Material steht.
 
15. Vorrichtung nach einem der Ansprüche 12 bis 14, ferner umfassend ein Computersteuerungsmittel (110), wobei das Steuerungsmittel das Anordnen der Düsen, den Durchfluss des zementartigen Materials und die Aufbringungszeit und -rate des Beschleunigungsmittels regelt.
 
16. Vorrichtung nach einem der Ansprüche 12 bis 15, wobei das Anordnungsmittel einen Roboterarm (1, 103) umfasst.
 
17. Vorrichtung nach Anspruch 16, wobei der Roboterarm (1, 103) zum Anordnen entlang drei unabhängiger Achsen in der Lage ist und ferner zum mehrachsigen Drehen der Düsen (13, 12) in der Lage ist.
 
18. Vorrichtung nach Anspruch 12, ferner umfassend ein Mittel (44, 45) zum Aufbringen eines Aktivierungsmittels auf das Stützmaterial.
 
19. Vorrichtung nach Anspruch 18, wobei das Mittel zum Aufbringen eines Aktivierungsmittels ein Mittel (44, 45) zum Liefern eines gasförmigen Materials an die Auftragungdüse (12) für Stützmaterial umfasst und das Stützmaterial Gießsand oder ein anderes geeignetes pulverförmiges Material ist, das mit dem gasförmigen Material erhärten kann.
 
20. Vorrichtung nach Anspruch 15, ferner umfassend eine oder mehrere Kameras (32), wobei die eine oder die mehreren Kameras entweder feststehend sind, auf dem Roboterarm (1) befestigt sind oder unabhängig angeordnet werden können, um die Extrusionsdüsen zu verfolgen, wobei die Kameras in der Lage sind, Informationen bezüglich Beschaffenheit, Gestalt oder Form zu erfassen, wobei die eine oder die mehreren Kameras in der Lage sind, die Informationen an das Computersteuerungsmittel (110) zu übertragen, wobei das Computersteuerungsmittel in der Lage ist, die Informationen zu interpretieren und darauffolgend die Informationen zu verwenden, um eine oder mehrere der Extrusionsdüsen sowie den Durchfluss eines oder mehrerer Materialien von einem oder mehreren der Behälter zu einem oder mehreren der Düsen zu regeln.
 
21. Vorrichtung nach einem der Ansprüche 12 bis 20, wobei eine oder mehrere der Düsen eine rüttelbare Düse (121) umfassen.
 
22. Vorrichtung nach einem der Ansprüche 12 bis 20, wobei eine der Düsen eine Düse (130) mit variablem Durchmesser umfasst.
 


Revendications

1. Procédé de construction multicouche dans lequel la construction de chaque couche comprend les étapes :

de fourniture d'un matériau cimentaire ;

de distribution dudit matériau cimentaire dans une buse (13) ;

de positionnement de ladite buse le long d'un chemin prédéterminé ; et

d'application dudit matériau cimentaire à une surface de travail (104) par extrusion à travers ladite buse;

ces étapes étant répétées pour chaque couche de construction supplémentaire requise

le procédé comprenant en outre :

sensiblement simultanément à ladite application dudit matériau cimentaire, l'application d'un matériau de support dans une couche contiguë avec ledit matériau cimentaire dans des zones où le matériau cimentaire n'est pas souhaité, de sorte que ledit matériau de support, conjointement avec ledit matériau cimentaire, fournit la surface de travail pour la couche de construction suivante et

d'application d'une couche de cartilage à la surface supérieure de la couche de support dans des zones où la couche ultérieure doit être une couche de matériau cimentaire, ou vice versa.


 
2. Procédé de construction selon la revendication 1, dans lequel le matériau cimentaire est un matériau cimentaire stabilisé.
 
3. Procédé de construction selon la revendication 1 ou la revendication 2, dans lequel le matériau cimentaire est un matériau de béton.
 
4. Procédé de construction selon l'une quelconque des revendications 1, 2 ou 3, comprenant en outre l'étape d'application d'un agent d'accélération audit matériau cimentaire.
 
5. Procédé selon l'une quelconque des revendications précédentes, dans lequel ledit matériau cimentaire stabilisé est également agité, par l'intermédiaire d'une vibration, d'un brassage, d'un mélange ou de tout autre procédé communément connu.
 
6. Procédé selon l'une quelconque des revendications précédentes, dans lequel ledit positionnement de ladite buse le long dudit chemin prédéterminé est commandé par ordinateur.
 
7. Procédé selon la revendication 1, dans lequel le matériau de support est un matériau à base de sable.
 
8. Procédé selon la revendication 1, comprenant en outre l'exposition dudit matériau de support à un agent d'activation.
 
9. Procédé selon la revendication 8, dans lequel l'agent d'activation est un matériau gazeux et le matériau de support est du sable de moulage ou un autre matériau pulvérulent approprié qui peut être fixé avec le matériau gazeux.
 
10. Procédé selon l'une quelconque des revendications précédentes, comprenant en outre l'utilisation d'une ou de plusieurs caméras (32) pour capturer des informations en temps réel concernant une texture et/ou une déformation de surface de la surface de travail (104), lesdites informations étant utilisées pour déterminer des conditions d'application nécessaires pour l'application de la couche actuelle.
 
11. Procédé selon la revendication 10, dans lequel lesdites conditions d'application sont l'un ou plusieurs parmi la taille de la buse, l'orientation de la buse, le débit de matériau cimentaire, la vitesse du positionnement de la buse et le débit ou le moment de l'application de l'agent d'accélération.
 
12. Appareil (100) pour réaliser un procédé de construction multicouche selon l'une quelconque des revendications précédentes, comprenant un réservoir (4) d'un matériau cimentaire, ledit réservoir étant fonctionnellement raccordé à une buse de matériau cimentaire (13), des moyens (1) pour positionner ladite buse de matériau cimentaire le long d'un chemin prédéterminé, des moyens (5) pour réguler l'écoulement dudit matériau cimentaire à partir dudit réservoir vers ladite buse de matériau cimentaire (13) et pour extruder ledit matériau de ladite buse de matériau cimentaire, l'appareil comprenant en outre :

un réservoir (49, 36, 115) de matériau de support, ledit réservoir étant fonctionnellement raccordé à une buse d'application de matériau de support (12), des moyens (1) pour positionner ladite buse d'application de matériau de support le long d'un chemin prédéterminé, des moyens (37, 46, 110, 115) pour réguler l'écoulement dudit matériau de support à partir dudit réservoir (49, 36, 115) vers ladite buse d'application de matériau de support (12) et pour extruder ledit matériau de ladite buse d'application de matériau de support ; et

un réservoir (30) de matériau de cartilage, ledit réservoir étant fonctionnellement raccordé à une buse d'application de matériau de cartilage (35), des moyens (1) pour positionner ladite buse d'application de matériau de cartilage le long d'un chemin prédéterminé, des moyens (31) pour réguler l'écoulement dudit matériau de cartilage à partir dudit réservoir vers ladite buse d'application de matériau de cartilage et pour extruder ledit matériau de ladite buse d'application de matériau de cartilage,

l'appareil étant en outre configuré pour, sensiblement simultanément à l'application dudit matériau cimentaire, appliquer un matériau de support dans une couche contiguë audit matériau cimentaire dans des zones où du matériau cimentaire n'est pas souhaité, de sorte que ledit matériau de support, conjointement avec ledit matériau cimentaire, fournit la surface de travail pour la couche de construction suivante et pour appliquer une couche de cartilage à la surface supérieure de la couche de support dans des zones où la couche ultérieure doit être une couche de matériau cimentaire, ou vice versa.


 
13. Appareil selon la revendication 12, comprenant en outre des moyens (29, 111) pour appliquer un agent d'accélération audit matériau cimentaire.
 
14. Appareil selon l'une ou l'autre des revendications 12 ou 13, comprenant en outre des moyens d'agitation (61, 62, 65, 123), lesdits moyens d'agitation étant en communication fonctionnelle avec ledit réservoir de matériau cimentaire (4) et/ou ledit raccordement fonctionnel (18) entre ledit réservoir et ladite buse de matériau cimentaire (13).
 
15. Appareil selon l'une quelconque des revendications 12 à 14, comprenant en outre des moyens de commande par ordinateur (110), lesdits moyens de commande commandant le positionnement desdites buses, le débit dudit matériau cimentaire et le moment et le débit de l'application dudit agent d'accélération.
 
16. Appareil selon l'une quelconque des revendications 12 à 15, dans lequel lesdits moyens de positionnement comprennent un bras robotisé (1, 103).
 
17. Appareil selon la revendication 16, dans lequel ledit bras robotisé (1, 103) est capable d'un positionnement le long de trois axes indépendants et également capable d'une rotation multiaxe desdites buses (13, 12).
 
18. Appareil selon la revendication 12, comprenant en outre des moyens (44, 45) pour appliquer un agent d'activation audit matériau de support.
 
19. Appareil selon la revendication 18, dans lequel les moyens pour appliquer un agent d'activation comprennent des moyens (44, 45) pour distribuer un matériau gazeux à la buse d'application de matériau de support (12) et le matériau de support est du sable de moulage ou un autre matériau pulvérulent approprié qui peut être fixé avec le matériau gazeux.
 
20. Appareil selon la revendication 15, comprenant en outre une ou plusieurs caméras (32), lesdites une ou plusieurs caméras étant soit statiques, montées sur ledit bras robotisé (1), soit positionnables indépendamment pour suivre lesdites buses d'extrusion, lesdites caméras étant capables de capturer des informations concernant la texture ou la forme, lesdites une ou plusieurs caméras étant capables de transférer lesdites informations vers lesdits moyens de commande par ordinateur (110), lesdits moyens de commande par ordinateur étant capables d'interpréter lesdites informations et d'utiliser ultérieurement lesdites informations pour informer d'une commande de l'une ou de plusieurs des buses d'extrusion et de l'écoulement des un ou plusieurs matériaux à partir d'un ou de plusieurs des réservoirs vers une ou plusieurs des buses.
 
21. Appareil selon l'une quelconque des revendications 12 à 20, dans lequel l'une quelconque ou plusieurs des buses comprennent une buse vibrante (121).
 
22. Appareil selon l'une quelconque des revendications 12 à 20, dans lequel l'une quelconque des buses comprend une buse de diamètre variable (130).
 




Drawing
























REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Non-patent literature cited in the description