(19)
(11)EP 2 774 287 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
29.09.2021 Bulletin 2021/39

(21)Application number: 12790625.3

(22)Date of filing:  02.11.2012
(51)International Patent Classification (IPC): 
H04B 10/116(2013.01)
H04N 5/225(2006.01)
H01L 27/146(2006.01)
H04B 10/69(2013.01)
(52)Cooperative Patent Classification (CPC):
H04B 10/116; H04B 10/691
(86)International application number:
PCT/GB2012/052732
(87)International publication number:
WO 2013/064835 (10.05.2013 Gazette  2013/19)

(54)

COMMUNICATION APPARATUS AND METHOD

KOMMUNIKATIONSVORRICHTUNG UND VERFAHREN

APPAREIL ET PROCÉDÉ DE COMMUNICATION


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 04.11.2011 GB 201119063

(43)Date of publication of application:
10.09.2014 Bulletin 2014/37

(73)Proprietor: The University Court of the University of Edinburgh
Edinburgh EH8 9YL (GB)

(72)Inventors:
  • HAAS, Harald
    Edinburgh EH9 3JL (GB)
  • POVEY, Gordon
    Edinburgh EH9 3JL (GB)
  • AFGANI, Mostafa
    Edinburgh EH9 3JL (GB)
  • SINANOVIC, Sinan
    Edinburgh EH9 3JL (GB)
  • TSONEV, Dobroslav
    Edinburgh EH9 3JL (GB)
  • UNDERWOOD, Ian
    Edinburgh EH9 3JL (GB)
  • POPOOLA, Wasiu
    Edinburgh EH9 3JL (GB)

(74)Representative: McGlashan, Graham Stewart 
Marks & Clerk LLP Aurora 120 Bothwell Street
Glasgow G2 7JS
Glasgow G2 7JS (GB)


(56)References cited: : 
EP-A1- 1 439 649
WO-A1-01/97479
WO-A1-99/53633
WO-A1-03/041354
WO-A1-2011/030109
US-A1- 2008 225 935
US-A1- 2009 317 088
US-B1- 6 445 479
WO-A1-01/97479
WO-A1-99/53633
WO-A1-03/041354
WO-A1-2011/030109
US-A1- 2005 225 664
US-A1- 2008 225 935
US-A1- 2010 079 131
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description


    [0001] The present invention relates to a communication method and apparatus and an associated receiver, particularly relating to receiving a communications signal using an optical sensor.

    Background



    [0002] Data may be encoded using radiation by time modulating a radiation source. For example, in visible light communications, the intensity of light produced from a light source, such as an LED, may be modulated over time in order to encode data in a light signal. A photo-detector can then be used to receive the time-modulated signal which is decoded to reveal the data that was transmitted by the light source.

    [0003] A digital camera can be conveniently used to receive the signal, which is then processed to extract the encoded data. In order to achieve an acceptably high transmission rate and achieve communication without obvious light flickering by the transmitting light source(s), the transmitting light source must be switchable between intensity levels at a suitably high rate. Conversely, the photo-detector must meet certain requirements, for example, by having an image capture rate fast enough to distinguish between the intensity transitions. However, at the same time, it would be beneficial if such communications methods could be used with common or off-the shelf apparatus.

    [0004] In certain communications methods, particularly in visible light communications, it is desirable to change the power of the radiation emitted by the transmitter, i.e. to use dimming of the radiation source. However, these changes can affect the data transmission capabilities.

    [0005] Various techniques are employed in the art in an attempt to address this problem. For example, in the IEEE 802.15.7 standard, a method referred to as variable pulse position modulation (VPPM) is used. This involves changing the pulse duration depending on the dimming level required. In VPPN, the data rate is independent of the dimming level, but the bandwidth efficiency is poor. Other techniques employed to address this problem involve changes of the light intensity level. Problems associated with at least some of these techniques include degradation of the data rate performance for high dimming (low optical power).

    [0006] Orthogonal frequency division multiplexing (OFDM) methods are popular for modulating signals in order to transmit data over dispersive channels. However, it is desirable to reduce the power consumption of communication systems. For example, this may be to maximise battery life for portable devices, or simply to save operating costs or reduce energy usage.

    [0007] A variation on the OFDM modulation scheme, called SIM-OFDM, has been proposed in order to reduce the power required by communications devices relative to those that use traditional OFDM. The SIM-OFDM technique is described in "Subcarrier Index Modulation OFDM" by R. Abualhiga and H. Haas, in Proc. of the International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Tokyo, Japan, Sep. 13-16, 2009.

    [0008] SIM-OFDM introduces an additional dimension alongside conventional OFDM encoding, the additional dimension coming from the state, i.e. active or inactive, of each frequency carrier available. In this way, frequency carrier states (i.e. used or unused) are used to encode data according to an on-off keying modulation scheme. As in OFDM, each active carrier transmits a signal that is modulated using a conventional modulation scheme such as but not limited to M-QAM. Each inactive carrier is set to a zero state. Hence, the power used to convey each M-QAM signal can also be used to encode further data by simply being present or not in a particular frequency carrier band. The SIM-OFDM concept is illustrated in Figure 1.

    [0009] In this case, the incoming bit stream is divided into blocks of bits, each having a length of N(0.5*log2(M) + 1), where N is the number of frequency carriers, and M is the constellation size of the respective M-QAM modulation scheme that is used. Each of these blocks is divided into two parts. The first N bits of the block form a first sub-block (BOOK). The remaining 0.5*N.log2(M) bits form a second sub-block (BQAM). The first sub-block (BOOK) is inspected and the majority bit type is determined by checking which bit value, 1 or 0, has most occurrences. The frequency carriers that have the same position inside the OFDM frame as the bits from the majority bit type in BOOK are classified as "active", and the rest of the frequency carriers (i.e. those that correspond to the minority bit type) are classified as "inactive". Inactive carriers are given the amplitude value 0 + 0j, where j = √-1. The first 0.5*N active frequency carriers are given amplitude values corresponding to the M-QAM constellation symbols necessary to encode the second sub-block (BQAM). The remaining active carriers can be used to signal the majority bit type of BOOK to the destination receiver and they will be assigned a signal whose power is equal to the average power for the given M-QAM scheme. Afterwards, an N-point IFFT transformation is performed in order to obtain the time-domain signal, which is transmitted.

    [0010] In this way, for example, if the binary sequence [0 1 0 0 0 1 1 1 0 1 0 1] is to be transmitted using 4-QAM and 6 carriers, then the sequence is divided into a first sub-block [1 1 0 1 0 1] and a second sub-block [0 1 0 0 0 1]. The second sub-block is modulated into frequency carriers using 4-QAM modulation. Since the majority bit in the first sub-block is 1, then an active carrier is chosen to represent 1. In this case, the 4-QAM modulated signals are transmitted on the first, third and fifth frequency carrier channels. The sixth carrier, which is also active, can be used to convey to the destination what the majority bit type in BOOK is. It will be allocated power equal to the average power of the respective M-QAM scheme. Its positive amplitude will represent the majority bit type - in this case 1. This carrier channel allocation effectively encodes the first sub-block as [1 1 0 1 0 1].

    [0011] A slight modification of SIM-OFDM involves signalling the majority bit type either through secure communication channels, or by reserving one particular frequency carrier and transmitting the desired value with a sufficiently high signal to noise ratio. It should also be noted that this modulation scheme saves power from all inactive carriers at the expense of spectral efficiency. The described configuration has been referred to as Power Saving Policy (PSP). In an alternative embodiment, for each single OFDM frame, the unused power from the inactive carriers can be reallocated to the active ones, which could lead to a performance enhancement.

    [0012] Once a signal has been received by the receiver at the destination, it is transformed into the frequency domain with a fast Fourier transform operation. Then all the frequency carriers are inspected. Those carriers whose power is above a predetermined threshold are marked as active, and the rest of the carriers are marked as inactive. At least half of the total number of carriers are active. Hence, in case that less than 0.5*N active carriers are detected, the threshold value is decreased by a small step and the inspection is performed again. This procedure is done iteratively until at least 0.5*N active carriers are detected. Then the first sub-block (BOOK) is reconstructed from the detected states of the carriers and the known majority bit type. Afterwards, the first 0.5*N active carriers are demodulated according to the respective M-QAM scheme in order to reconstruct the second sub-block (BQAM) in the conventional manner. The spectral efficiency of this scheme is:


    It is an object of at least one embodiment of the present invention to improve the performance of the SIM-OFDM scheme. The bit error rate (BER) performance of SIM-OFDM in an Additive White Gaussian Noise (AWGN) channel is illustrated in Figure 2.

    [0013] It is at least one object of at least one embodiment of the present invention to provide an improved or alternative communication system and detector and/or to at least partially address at least one problem with the prior art.

    [0014] US2008225935 describes systems for providing GSM keying, in which a digital signal processor (DSP) is used to communicate digital data across an analog channel. The digital signal is split into a digital amplitude component and a digital phase component for processing by the DSP. In an example, the DSP is configured as a digital transmitter in a wireless communications system. The digital transmitter comprises a digital modulator that receives a baseband signal. In operation, the digital transmitter splits the baseband signal into a digital amplitude component and a digital phase component. The digital modulator transforms the baseband signal from the Cartesian domain to the polar domain. The resulting phase signal and amplitude signal are then provided separately to the digital power amplifier. The digital power amplifier transforms each bit of a digital envelope formed from the received phase signal and amplitude signal into an instantaneous RF signal component. The individual instantaneous RF components are combined to achieve a desired linear wideband amplitude modulation output signal.

    [0015] US2010079131 describes an electrical to audible signal measurement apparatus that comprises an absolute value converter, a voltage to frequency converter, a polarity detector, and a waveform changer. The absolute value converter is capable of converting a bipolar input signal into a unipolar signal. The voltage to frequency converter is connected to the absolute value converter and is capable of generating a frequency signal proportional to the unipolar signal. The polarity detector is capable of identifying a polarity of the bipolar input signal to form an identified polarity.

    Statements of Invention



    [0016] Various aspects of the present invention are defined in the independent claims. Some preferred features are defined in the dependent claims.

    [0017] According to an example described herein is a transmission system for transmitting data as part of a communications system, the data comprising a plurality of data symbols or elements, the transmission system being configured to divide the data into at least a first data portion and a second data portion, wherein the first data portion is communicated by transmitting signals in selected carrier channels, wherein the transmission system is configured to encode at least one data symbol or element by selecting a relative order of at least one first carrier channel having a first operational state and at least one second carrier having a second operational state.

    [0018] One of the first or second operational states may comprise a signal being carried by the associated carrier channel. The other of the first or second operational states may comprise an inactive and/or unused and/or zero state carrier channel or transmitting a signal at a level that is lower or otherwise distinguishable from the signals of the first state.

    [0019] The data symbol or element may comprise at least one bit of binary data.

    [0020] The signals being carried by the carrier channels may comprise a modulated or encoded signal, such as a M-QAM signal. At least one of the signals being carried by the carrier channels may modulate or encode the second data portion.

    [0021] The carrier channels may be sequential.

    [0022] For example, one of a data bit 0 or 1 may be encoded by providing a signal on a preceding or first carrier channel of a pair of carrier channels and leaving a following or second carrier channel of the pair of carrier channels inactive. The other of data bits 1 or 0 may be encoded by leaving the preceding or first carrier channel of the pair of data carrier channels inactive and providing a signal on the following or second carrier channel.

    [0023] At least one and optionally each carrier channel may comprise a different frequency band or channel. At least one and optionally each carrier may comprise a different time slot. At least one and optionally each carrier may comprise a different spatial position, for example, or a transmitter element such as an LED.

    [0024] The number of first carrier channels may be equal to the number of second carrier channels.

    [0025] The encoding may be based on a predetermined look-up table or the like. The encoding may be based on an algorithm that matches blocks of bits to a combination of carrier channels within a sub-block of the total number of carrier channels.

    [0026] The transmitter may be configured to convert at least one bipolar signal into one or more unipolar signals by transmitting only the absolute values of a bipolar signal and encoding the signs separately. The signs may be encoded within the same frame, preceding frames, or following frames. The signs may be encoded within the relative order of the carrier channels, which may be frequency, time, or spatial carrier channels, and may be encoded as symbols that modulate the carrier channels, or may be encoded in a separate modulation scheme on a separate part of the transmission stream. The signs may also be conveyed to the destination on a separate transmission channel, or a separate part of the communication system.

    [0027] Signs, phase or other information may be transmitted using spatial and/or spectral modulation. For example, a first transmitter element, such as a first LED, may be activated when the sign is positive, and a second transmitter element, such as a second LED, may be activated when the sign is negative. Similarly, at least a pair of LEDs having different colours or an LED configured to produce two or more colours (e.g. by varying it's temperature) may be provided and the respective differing colours may be associated with positive or negative signs respectively.

    [0028] These techniques used to transmit signs need not be limited to transmission of signs, e.g., they could be used to transmit other data such as phase information. For example, phase information may be encoded in the spatial domain, which may comprise use of a transmitter with a plurality of transmitter elements, such as LEDs, wherein use of selected transmitter element may be indicative of a different phase. For example, the first transmitter element may be indicative of a first phase, such as 45°, use of the second transmitter element may be indicative of a second phase, such as 90°, use of the third transmitter element may be indicative of a third phase such as 135° and use of the fourth transmitter element may be indicative of a fourth phase such as 0°. Whilst it will be appreciated that the above example uses four phases and transmitter elements for use with QPSK signals, it will be appreciated that other encoding schemes and numbers of transmitters / phases may be used.

    [0029] In a specific but non-limiting example, the transmitter may be configured to convert at least one multipolar signal into two or more unipolar signals. The unipolar signals may comprise, for example, time resolved signals / signals modulated in the time domain and/or frequency resolved signals / signals modulated in the frequency domain and/or spatially resolved signals / signals modulated in the spatial domain. At least one of the unipolar signals may be inactive or have zero intensity or at least an intensity that is distinguishable from any signal intensity used in at least one other of the unipolar signals. At least one other of the unipolar signals may have a magnitude that is equal or equivalent to a magnitude of the multipolar signal. The transmitter may be configured to encode a sign (e.g. positive or negative) of the multipolar signal by using a relative order of at least two of the converted unipolar signals. For example, if the unipolar signal having the same magnitude as the original signal is provided first and the inactive signal is provided second, then this may be representative of a positive signal having a magnitude equal to the first converted signal and if an inactive or zero converted signal is provided first and a converted signal having the magnitude of the original signal is provided second, then this may be representative of a negative signal having a magnitude that is equivalent to the magnitude of the second signal. It will be appreciated that the orders used to represent positive and negative signals may be reversed if preferred.

    [0030] According to an example described herein is a method for transmitting data in a communications system, the data comprising a plurality of data symbols or elements, the method comprising dividing the data into at least a first data portion and a second data portion, communicating the first data portion by transmitting signals in selected carrier channels, wherein the relative order of at least one first carrier channel having a first operational state and at least one second carrier having a second operational state is representative of each data symbol or element of the first data portion.

    [0031] The method may comprise using a transmitter as described above.

    [0032] According to an example described herein is a communications system comprising a transmission system as described above and a receiver for receiving a data signal from the transmission system, wherein the receiver is configured to determine the relative order of at least one carrier channel having a first operational state and at least one second carrier channel having a second operational state in order to determine at least a portion of the data.

    [0033] According to an example described herein is a method of communicating data that comprises a plurality of data symbols or elements, the method comprising:

    dividing the data into at least a first data portion and a second data portion, communicating the first data portion by transmitting signals in selected carrier channels, wherein the relative order of at least one first carrier channel having a first operational state and at least one second carrier having a second operational state is representative of each data element or symbol of the first data portion;

    receiving the signal from the transmission system, determining the relative order of the at least one carrier channel having a first operational state and the at least one second carrier channel in order to determine at least the first portion of the data.



    [0034] The method may comprise a method as described above and/or comprise use of a transmission system as described above and/or a communications system as described above.

    [0035] According to an example described herein is a transmitter and/or encoder for transmitting and/or encoding at least one bipolar signal, the transmitter and/or encoder being configured to encode a magnitude or absolute value of the at least one bipolar signal into at least one unipolar signal and further configured to encode and/or transmit a sign or phase of at least one bipolar signal separately and/or differently to the corresponding magnitude or absolute value of the at least one bipolar signal.

    [0036] The signs or phases of the at least one bipolar signal may be encoded within the same frame, preceding frames, or following frames. The signs or phases may be encoded within the relative order of carriers that carry the unipolar signals, which may be frequency, time, or spatial carriers, and may be encoded as symbols that modulate the carriers, or may be encoded in a separate modulation scheme on a separate part of the transmission stream. The signs or phases may also be conveyed to the destination on a separate transmission channel, or a separate part of the communication system.

    [0037] Optionally but not essentially, the transmitter and/or encoder may be configured to encode each bipolar signal into two or more corresponding unipolar signals, which may be encoded on first and second carrier channels. The transmitter may be configured to encode the sign or phase of the bipolar signal based on the relative order of the first and second operational states. One of the first or second operational states may be indicative of the magnitude or absolute value of the bipolar signal.

    [0038] According to an example described herein is a receiver for receiving a signal from a transmission system, the receiver being configured to receive at least one unipolar signal from the transmission system, determine a magnitude of at least one bipolar signal from the at least one unipolar signal and determine a sign or phase of the at least one bipolar signal, wherein the sign or phase of the at least one bipolar signal is encoded and/or transmitted separately and/or differently to the corresponding magnitude of the at least one bipolar signal.

    [0039] The receiver may be configured to reconstruct the bipolar signal using the determined magnitude and sign or phase of the bipolar signal.

    [0040] The signs or phases of the at least one bipolar signal may be encoded within the same frame, preceding frames, or following frames. The signs or phases may be encoded within the relative order of the carriers, which may be frequency, time, or spatial carriers, and may be encoded as symbols that modulate the carriers, or may be encoded in a separate modulation scheme on a separate part of the transmission stream. The signs may also be conveyed to the destination on a separate transmission channel, or a separate part of the communication system.

    [0041] Optionally but not essentially, the receiver may be configured to determine the relative order of at least one carrier channel having a first operational state and at least one second carrier channel having a second operational state in order to determine the sign or phase of the bipolar signal based on the relative order of the first and second operational states.

    [0042] The receiver may be configured to receive a signal from a transmission system as described above and/or be configured for use in a communications system as described above.

    [0043] According to an example described herein is a method for decoding a signal received from a transmission system, the method comprising receiving at least one unipolar signal from the transmission system, determining a magnitude of at least one bipolar signal from the at least one unipolar signal and determining a sign or phase of the at least one bipolar signal, wherein the sign or phase of the at least one bipolar signal is encoded and/or transmitted separately and/or differently to the corresponding magnitude of the at least one bipolar signal.

    [0044] The method may comprise receiving a signal sent using the method as described above or from a transmission system as described above.

    [0045] According to an example described herein is a method of converting at least one bipolar signal into at least one unipolar signal, the method comprising determining a sign or phase of at least one component of the bipolar signal, encoding and/or transmitting the absolute values of a bipolar signal in the unipolar signal and encoding and/or transmitting the sign or phase of the at least one bipolar signal separately and/or differently to the encoding and/or transmitting the absolute values of a bipolar signal.

    [0046] For example, the method may comprise converting at least one of the components of the multipolar signal into corresponding first and second unipolar signal components. The first and second unipolar signal components may have different amplitudes or magnitudes. The order of the first and second unipolar signal components may be dependent on the sign or phase of the corresponding multipolar signal component.

    [0047] At least one of the first or second unipolar signal components may be indicative of the intensity or magnitude of the corresponding multipolar signal component. The other of the first or second multipolar signal components may have an amplitude or magnitude of zero and/or comprise an inactive or empty carrier channel.

    [0048] The order of the first and second unipolar signal components over time may be dependent on the sign of the corresponding multipolar signal component. The first and second unipolar signal components may be resolved and/or seprated in the time, frequency and/or spatial domains.

    [0049] According to an example described herein is a computer program product adapted to implement the apparatus or method of one or more of the preceding aspects.

    [0050] According to an example described herein is a carrier medium comprising the computer program product or a programmable apparatus when programmed with the computer program product.

    [0051] It will be appreciated that features analogous to those described above in relation to any of the above aspects may be equally applicable to any of the other aspects.

    [0052] Apparatus features analogous to those described above in relation to a method and method features analogous to those described above in relation to an apparatus are also intended to fall within the scope of the present invention.

    Brief Description of the Drawings



    [0053] Examples of the present invention will be described in relation to the following drawings.

    Figure 1 is an illustration of a prior art SIM-OFDM method;

    Figure 2 is a plot showing the performance differences between SIM-OFDM and OFDM for differing QAM constellation sizes;

    Figure 3 illustrates an encoding or modulation method;

    Figure 4 shows a specific example of the method of Figure 3, where the total number of carriers is six and the number of active carriers is three;

    Figure 5 shows an OFDM signal in the time domain;

    Figure 6 shows the OFDM signal of Figure 5 that has been subjected to a DC shift;

    Figure 7 shows the OFDM signal of Figure 5 transformed using the method of an embodiment of the present invention;

    Figure 8 shows the performance of the method illustrated in Figure 3 relative to OFDM;

    Figure 9 shows the performance of the method illustrated using Figure 7 relative to ACO and OFDM for bipolar signals as a function of the electrical signal to noise ratio;

    Figure 10 shows the performance of the method illustrated using Figure 7 relative to ACO and DCO for unipolar signals as a function of the electrical signal to noise ratio;

    Figure 11 shows the bit error rate performance of the method illustrated using Figure 7 relative to ACO and DCO as a function of the optical signal to noise ratio.


    Detailed Description of the Drawings



    [0054] Embodiments of the present invention relate to systems that time modulate radiation to encode and transmit data or other information. In a specific embodiment that relates to light communications, the intensity of light produced from a light source is modulated over time in order to encode data or other information. A photo-detector can then be used to receive the time-modulated signal which is decoded to reveal the data which was transmitted by the illumination source.

    [0055] Communications systems can be configured to transmit data using one or more of various known modulation or encoding schemes, such as OFDM and SIM-OFDM.

    [0056] The authors have found by studying the SIM-OFDM method in the presence of Additive White Gaussian Noise that the expected improved system performance compared to conventional OFDM modulation techniques is not achievable, as can be seen from Figure 2. Without wishing to be bound to any particular theory, there may be various possible reasons for this. First, using coherent on off keying (OOK) detection requires a threshold, whose level should not be higher than the power of the M-QAM symbol closest to 0. Otherwise, symbols whose power is lower than the threshold will not be detectable even under high SNR conditions and a constant BER floor will be reached above zero. The low threshold level does not allow the OOK scheme to take full advantage of the high power in each carrier for higher order M-QAM. Second, in order to correctly demodulate a given M-QAM symbol, it is not only necessary to correctly detect the state (i.e. active or inactive) of its carrier, but also the states of all carriers before it. This is necessary because incorrect detection of a carrier state causes the bits in the second sub-block (BQAM) to be misplaced and become out of sequence, which completely destroys the M-QAM information in any subsequent active carriers.

    [0057] One possible solution would be to transmit the exact number of excess carriers ,Nex = Na ― N/2, separately for each frame, just like the majority bit type is sent to the destination, where Na represents the number of active carriers. That way, instead of using a threshold for on-off keying (OOK) detection, the number of active carriers Na with the highest power can be taken as active for each frame, provided that Nex is securely transmitted to the destination. This technique leads to better performance, but is still insufficient. If all active carriers are used to transmit M-QAM symbols, the spectral efficiency is slightly increased to:

    where E[Na] stands for the statistical expectation of Na.

    [0058] Figure 3 illustrates an encoding or modulation method provided as information useful in understanding the present invention. As in SIM-OFDM, data is split into at least two portions, wherein a first portion (BOOK) of the data is encoded by transmitting signals using selected carrier channels, wherein the remaining (i.e. non-selected carrier channels) are left inactive and/or at zero or low intensity. A second portion (BQAM) of the data is encoded by modulating the active carrier channels, for example, by using amplitude modulation techniques known in the art such as M-QAM.

    [0059] However, instead of using every carrier state to encode a bit (or other data element), as is the case in SIM-OFDM, the present invention uses the states of two or more carriers, in this case, a carrier pair. The processor of the transmitter is configured to encode bits in the first data portion BOOK by selecting which carrier from the pair is active. In this case, when a data bit 1 is encountered, the first or preceding carrier is selected to be active (i.e. a signal is provided / carried on the first or preceding carrier) and the second or following carrier is left inactive. When a data bit 0 is encountered, the first or preceding carrier is left inactive and the second or following carrier is made active (i.e. a signal is provided on it). The processor of the transmitter is configured to encode the bits in the second data portion BQAM by modulating all of the active carriers using an modulation scheme such as M-QAM, so that each active carrier channel encodes a data symbol or data element of the second data portion BQAM in the form of an M-QAM symbol.

    [0060] At the receiver, once the signal is received, the processor of the receiver is configured to process the carriers in the received signal two at a time and the carrier states, active or inactive, are determined by comparing the relative power levels of each carrier in the pair. The carrier with more power is considered active. Based on the determined states of the carrier pairs, the first data portion BOOK is determined.

    [0061] Afterwards, all of the active carriers are demodulated according to the associated demodulation scheme (in this case M-QAM) and the second portion of the data BQAM is reconstructed.

    [0062] In this approach, it is not necessary to determine and transmit majority bit type, as the determination of which carrier is active is based on a comparison of a pair of carriers and not an individual carrier with a threshold. Using this technique, the overall spectral efficiency is slightly reduced to:



    [0063] However, any error in the detection of the carrier states influences only the M-QAM symbol encoded in the relevant carrier.

    [0064] Optionally, the concept can be extended to using more than two carriers at a time to represent bits from the first data portion BOOK. For example, six carriers can be used, with three carriers being set as active and the rest of the carriers being set as inactive. In this example, there are 6! / 3!.3! = 20 possible combinations to represent bits. This means that a total of four bits (24= 16 < 20) can be encoded in 6 carriers' states when three are active, as depicted in Figure 4. The encoding can be based either on a predetermined table or an algorithm that matches blocks of bits to a combination of La active carriers in a sub-block of L carriers in total. The spectral efficiency is thereby increased.

    [0065] Extending this to a group of L carriers of which La of the carriers are set as active, the spectral efficiency of the system becomes:



    [0066] The BER performance can get worse as L increases, since the negative effects described for the original SIM-OFDM method appear inside each group of L carriers. As La approaches L, the spectral efficiency of the system gets closer to that of conventional OFDM. As L approaches N, and La approaches 1, the spectral efficiency of the system starts to resemble that of Pulse Position Modulation (PPM). As L approaches N, and La approaches N/2, the spectral efficiency of the system gets closer to that of the former SIM-OFDM scheme. In any case, the present invention has an advantage over SIM-OFDM because it keeps a constant number of active carriers and requires no majority bit type information.

    [0067] In cases where inter-symbol interference is not an issue, OFDM does not provide particular advantages to the system. In this case, the concept can be realized in the time domain in exactly the same manner, where the carriers would correspond to time samples rather than frequency carriers.

    [0068] Use of the above method may result in a number of advantages over the existing SIM-OFDM technique. For example, the number of active carriers, Na, is known at each instant, so it need not be transmitted and the usage of a threshold is not necessary. In addition, the number of active and inactive samples is the same in each frame, so majority bit type does not need to be relayed to the destination. Furthermore, false detection of a carrier state influences only the M-QAM symbol it encodes and the error does not propagate in the rest of the frame. Advantageously, the bit error rate vs.

    performance is improved compared to the former SIM-OFDM scheme and in certain cases compared to conventional OFDM. Additionally, peak-to-average power ratio (PAPR) is reduced relative to the SIM-OFDM and OFDM schemes and a power efficient modulation scheme for optical wireless communication is introduced.

    [0069] A comparison of the performance of a communications system that operates using the above encoding method relative to a corresponding system using the conventional OFDM method in the presence of Additive White Guassian Noise (AWGN) is illustrated in Figure 8. As can be clearly seen from this, a system using the modulation / encoding scheme of the present invention achieves better bit error ratio results than the prior art systems under the same conditions.

    [0070] Further research of the properties of SIM-OFDM based techniques by the present inventors have shown that such systems can achieve better peak-to-average power ratio (PAPR) than equivalent systems using conventional OFDM. For OFDM with square constellation M-QAM, the PAPR is calculated as:



    [0071] A general formula for PAPR estimation is:



    [0072] The PAPR depends on both the number of active carriers, expressed by Na, and the way they are modulated, expressed by the ratio:



    [0073] The best PAPR is achieved using Frequency Shift Keying (FSK), since Na = 1 and

    . The worst is achieved in the case of conventional OFDM when Na = N, and both N and M are as high as possible. An advantage of the above encoding method of the present invention over conventional OFDM and SIM-OFDM comes from the fact that in general it requires less active carriers to represent the same amount of information.

    [0074] For the particular purpose of optical wireless communication using intensity modulation (IM) at the transmitter and direct detection (DD) at the receiver, an embodiment of the present invention can be realized. In optical communication systems, there is an issue with using optical communications systems to transmit bipolar data signals 2005, i.e. signals having both positive 2010 and negative 2015 signal components, as an optical transmitter such as an LED can generally only transmit positive real signal values. In OFDM, N time domain samples 2020 of a real OFDM frame with N carriers are obtained after the required modulation steps, as shown in Figure 5. Such a signal is made real for the purposes of IM / DD communication. Additionally, the OFDM signal can be made positive by introducing a DC shift as depicted in Figure 6. This approach is known as DCO-OFDM.

    [0075] An alternative approach is known as ACO-OFDM in which properties of Fourier transforms are exploited so that a positive signal can be obtained in the time domain by simply ignoring (cutting off) any negative values. However, this approach has half the spectral efficiency of DCO and half the power efficiency for bipolar signals.

    [0076] An embodiment of the present invention (referred to as Unipolar orthogonal frequency division multiplexing, U-OFDM, by the present inventors), provides a more elegant solution, that outperforms ACO. As shown in Figure 7, in the U-OFDM method according to an embodiment of the present invention, each time sample 2020 of the bipolar OFDM signal of Figure 5 is transformed into two time samples 2020A, 2020B. If the original time sample 2020 was positive 2010, the first one 2010A of the two new time samples 2020A, 2020B is equal to the amplitude of the original time sample 2010, so it can be called an "active sample". The second time sample 2010B is equal to zero, so it can be called an "inactive sample". If the original time sample 2020 in the bipolar signal 2005 of Figure 5 is negative 2015, the first one 2015A of the two new unipolar samples 2020A, 2020B is set to zero, so it can be called "inactive sample". The second unipolar time sample 2015B is made equal to the absolute value of the original bipolar time sample 2015, so it can be called an "active sample". This way, only the absolute value of the signal 2005 is transmitted, and the sign of each sample 2020 is encoded in the position of the "active" and "inactive" samples in each pair.

    [0077] This concept can be easily extended intuitively. The essential part of the U-OFDM algorithm is in transmitting only the absolute values of the bipolar signal and the signs separately. The signs, which are effectively equal to one bit of information each, can be encoded in a variety of different ways. The case presented in Figure 7 shows how the signs can be encoded in the relative position of the active and inactive samples. Additionally or alternatively, the signs can be encoded as bits and/or can be modulated on frequency carriers, time carriers and/or spatial carriers. They can be part of the current frame, the previous frame, the next frame, etc. They can also be conveyed to the destination on a parallel communications channel or as a separate part of the system. The modulation type can be any existing digital modulation scheme. Different approaches towards the sign encoding will lead to different spectral efficiencies and different bit error rate performances.

    [0078] In the specific example given in Figure 7, the spectral efficiency of OFDM is halved since no bits are transmitted in the inactive sample states. This can be mitigated in a similar manner to the previously described concept by encoding more than one sample sign in a group of more than two samples. At the receiver, the maximum of each sample pair is taken. Its amplitude becomes the amplitude of the original sample, and the sign is retrieved from its position in the pair. Afterwards, the demodulation process can continue as in conventional OFDM.

    [0079] By employing the U-OFDM method described above, the performance of the communication system can be improved over communication systems that use the existing DCO-OFDM and ACO-OFDM techniques, as shown in Figures 9 to 11. The BER performance of U-OFDM in the presence of Additive White Gaussian Noise (AWGN) compared to pure OFDM and ACO-OFDM for bipolar signals is illustrated in Figure 9. Performance of U-OFDM compared to DCO and ACO for unipolar signals is illustrated in Figure 10. The biasing levels for DCO are adopted from J. Armstrong and B. J. C. Schmidt, "Comparison of Asymmetrically Clipped Optical OFDM and DC-Biased Optical OFDM in AWGN" IEEE Communication Letters 12(5):343-345, May 2008, such that no noticeable distortion is experienced in the BER curves due to signal clipping. Figure 11 presents the comparison between U-OFDM, ACO and DCO for optical SNR introduced in the above article by Armstrong et. al. for the purpose of comparing optical efficiency of the modulation schemes.

    [0080] As a summary example of an embodiment of the present invention, two copies of a bipolar signal are made. The bipolar signal is made up of a plurality of samples / portions. The first copy is kept in its original form. Samples of the second signal are switched in polarity (multiplied by -1 so that positive become negative and negative become positive). Then the negative samples in both copies are clipped. In this way, the first copy retains the original positive samples and substitutes the negative samples with zeros. The second copy retains the original negative samples as positive samples and substitutes the original positive samples with zeros. Both copies are now unipolar.

    [0081] The copies can be transmitted in two separate time slots, streams, or divisions of other transmission mechanisms. At the receiver, the original signal can be reconstructed from the first and second copy after both are received, for example, by simple subtraction of the second signal copy from the first one. In this way, positive samples of the first signal copy will stay unaltered and positive samples of the second signal copy will shift polarity again to become negative samples. Of course, the zero samples will have no influence on any of the reconstructed samples since adding or subtracting a zero does not introduce a change.

    [0082] Alternatively, samples in both signal copies could be examined in corresponding pairs (e.g. the first sample of the first copy is compared with the first sample of the second copy, the second sample of first copy is compared with the second sample of the second copy, and so on) to determine whether the original sample is contained in the first or the second copy (e.g. the value of a sample in one copy will be zero whilst the value in the corresponding sample in the other copy will be a positive number). In this way, the value and sign associated with the original sample can be determined. Since there is noise present at each sample, an example of a method for determining which copy holds a sample and which copy holds a zero is to take the higher value of the two as the sample an to consider the other (lower) one as a zero. In that way, zero samples can be disregarded instead of added to the "active" samples, and ideally the noise power could be reduced by half compared to the other approach.

    [0083] Importantly, techniques such as the above comprise the division of an original sample into negative and positive samples in two separate unipolar information sequences which can be recombined later without breaking the original frame structure.

    [0084] It should be noted that various numbers of transmit-antennas, i.e. more than two transmit-antennas at the transmitter, and receivers, i.e. more than one receive-antenna at the receiver, could be used.

    [0085] It will be appreciated that the transmitters, receivers and/or communications system and/or methods described above may be used in conjunction with other embodiments described above.

    [0086] A skilled person will appreciate that variations of the disclosed arrangements are possible without departing from the invention.

    [0087] For example, although the above embodiments may comprise a system that uses a light source that comprises LEDs 25a, 25b, 25c, other light sources may be used, particularly light sources having a fast switching time that allows for modulation of the output.

    [0088] In addition, although embodiments are described above that may use intensity modulation and specifically on-off keying, it will be appreciated that other modulation schemes may be alternatively or additionally used, such as spatial modulation, colour modulation, multi-level intensity modulation and the like.

    [0089] Although the above example may use a portable electronics device 40, it will be appreciated that the electronics device need not be portable but that any suitably programmable or configurable device that comprises a camera 35 and is capable of implementing a rolling shutter as described above may be used.

    [0090] Alternative embodiments of the invention can be implemented as a computer program product for use with a computer system, the computer program product being, for example, a series of computer instructions stored on a tangible data recording medium, such as a diskette, CD-ROM, ROM, or fixed disk, or embodied in a computer data signal, the signal being transmitted over a tangible medium or a wireless medium, for example, microwave or infrared. The series of computer instructions can constitute all or part of the functionality described above, and can also be stored in any memory device, volatile or non-volatile, such as semiconductor, magnetic, optical or other memory device.

    [0091] It will also be well understood by persons of ordinary skill in the art that whilst the preferred embodiment implements certain functionality by means of software, that functionality could equally be implemented solely in hardware (for example by means of one or more ASICs (application specific integrated circuit)) or indeed by a mix of hardware and software. As such, the scope of the present invention should not be interpreted as being limited only to being implemented in software.


    Claims

    1. An optical communications system comprising an optical transmitter that is adapted to transmit positive real valued optical signals and an encoder for encoding at least one bipolar signal (2005) having both positive (2010) and negative (2015) signal components (2020), the encoder being configured to encode a magnitude or absolute value of the at least one bipolar signal (2005) into at least one unipolar signal (2020A, 2020B) and the system is further configured to optically transmit the at least one unipolar signal with the optical transmitter using optical wireless communications using at least one of: intensity modulation, spatial modulation, colour modulation, or multi-level intensity modulation; and to encode and transmit signs of at least one bipolar signal separately and/or differently to the corresponding magnitude or absolute value of the at least one bipolar signal, wherein the signs indicate that the signal component (2020) is either positive or negative.
     
    2. The optical communications system according to claim 1, wherein the signs are encoded using the relative order of carriers that carry the unipolar signal(s) or are encoded as symbols that modulate the carriers or are encoded in a separate modulation scheme on a separate part of the transmission stream; and optionally the carriers comprise frequency, time, and/or spatial carriers.
     
    3. The optical communications system according to claim 1 or claim 2, wherein the signs are conveyed on a separate transmission channel to a transmission channel used for transmission of the corresponding magnitude or absolute value of the at least one bipolar signal, or a separate part of the optical communication system.
     
    4. The optical communications system according to any preceding claim, wherein the encoder is configured to encode each bipolar signal into two or more corresponding unipolar signals on respective first and second carrier channels, wherein the transmitter is configured to encode the sign of the bipolar signal based on the relative order of first and second operational states, wherein one of the first or second operational states is indicative of the magnitude or absolute value of the bipolar signal.
     
    5. An optical communications receiver configured for receiving an optical signal representing positive real signal values from an optical transmission system, the optical receiver being configured to receive at least one unipolar signal (2020A, 2020B) from the optical transmission system, determine a magnitude of at least one bipolar signal (2005) from the at least one unipolar signal (2020A, 2020B), wherein the bipolar signal (2005) has both positive (2010) and negative (2015) signal components (2020), and determine at least one sign of the bipolar signal components (2020), wherein the sign indicates that the signal component (2020) is either positive or negative, and the at least one sign is encoded and transmitted separately and/or differently to the corresponding magnitude of the at least one bipolar signal.
     
    6. The optical communications receiver according to claim 5, wherein the signs are encoded within the relative order of carriers or are encoded as symbols that modulate carriers or are encoded in a separate modulation scheme on a separate part of the transmission stream; and optionally the signs are conveyed on a separate transmission channel, or a separate part of the optical communication system.
     
    7. A method for decoding an optical signal received from an optical transmission system, the signal representing positive real signal values, the method comprising receiving at least one unipolar signal (2020A, 2020B) from the optical transmission system, the at least one unipolar signal being representative of at least one bipolar signal (2005) having both positive (2010) and negative (2015) signal components (2020), determining a magnitude of the at least one bipolar signal (2005) from the at least one unipolar signal (2020A, 2020B) and determining a sign of the at least one bipolar signal (2005), wherein the sign indicates that the signal component (2020) is either positive or negative and the sign is encoded and transmitted separately and/or differently to the corresponding magnitude of the at least one bipolar signal.
     
    8. A method of converting at least one bipolar signal (2005) into at least one unipolar signal (2020A, 2020B) for transmission by an optical transmitter that transmits positive real valued optical signals, the at least one bipolar signal (2005) having both positive (2010) and negative (2015) signal components (2020), the method comprising determining a sign of at least one component (2020) of the bipolar signal (2005), encoding and transmitting the absolute values of a bipolar signal (2005) in the unipolar signal (2020A, 2020B) with the optical transmitter using optical wireless communications using at least one of: intensity modulation, spatial modulation, colour modulation, or multi-level intensity modulation; and encoding and transmitting at least one sign of the at least one bipolar signal separately and/or differently to the encoding and/or transmitting the absolute values of a bipolar signal.
     
    9. The method of claim 8, wherein the method comprises converting at least one of the components of the bipolar signal into corresponding first and second unipolar signal components, the first and second unipolar signal components having different amplitudes or magnitudes and the order of the first and second unipolar signal components is dependent on the sign of the corresponding multipolar signal component.
     
    10. The optical communications system of claim 1, wherein the optical communications system is an optical transmission system for optically transmitting data as part of a communications system, the data comprising a plurality of data symbols or elements, wherein at least a portion of the data is communicated by optically transmitting signals in selected carrier channels, wherein the optical transmission system is configured to encode the signs of the at least one bipolar signal by selecting a relative order of at least one first carrier channel having a first operational state and at least one second carrier channel having a second operational state.
     
    11. The optical communications system of claim 10, wherein one of the first or second operational states comprises the at least one unipolar signal being carried by the associated carrier channel and the other of the first or second operational states comprises an inactive and/or unused and/or zero state carrier channel or transmitting a unipolar signal at a level that is lower or otherwise distinguishable from the unipolar signals of the first state.
     
    12. A method for transmitting data in an optical communications system, the data comprising a plurality of data symbols or elements, the method comprising converting at least one bipolar signal into at least one unipolar signal using the method of claim 8, the method further comprising communicating at least a portion of the data by transmitting the unipolar signals in selected carrier channels using optical wireless communications, wherein the relative order of at least one first carrier channel having a first operational state and at least one second carrier having a second operational state is representative of one of the signs of the at least one bipolar signal.
     
    13. A communications system comprising the optical communications system according to claim 11 and an optical receiver for receiving a data signal from the optical communications system, wherein the optical receiver is configured to determine the relative order of at least one carrier channel having a first operational state and at least one second carrier channel having a second operational state in order to determine at least a portion of the data.
     
    14. A method of optically communicating data that comprises a plurality of data symbols or elements, the method comprising: converting at least one bipolar signal into at least one unipolar signal using the method of claim 8; communicating at least a portion of the data by transmitting the unipolar signals in selected carrier channels, wherein the relative order of at least one first carrier channel having a first operational state and at least one second carrier having a second operational state is representative of data elements or symbols of the first data portion; receiving the signal from the transmission system; and determining the relative order of the at least one carrier channel having a first operational state and the at least one second carrier channel in order to determine representing one of the signs of the at least one bipolar signal.
     
    15. A computer program product adapted such that when run on a suitable processing device, causes the processing device to carry out the method according to any of claims 7 to 9, or 12.
     


    Ansprüche

    1. Optisches Kommunikationssystem, umfassend einen optischen Sender, der angepasst ist zum Übertragen positiver reellwertiger optischer Signale, und einen Codierer zum Codieren mindestens eines bipolaren Signals (2005), das sowohl positive (2010) als auch negative (2015) Signalkomponenten (2020) aufweist, wobei der Codierer konfiguriert ist zum Codieren eines Größenwerts oder eines Absolutwerts des mindestens einen bipolaren Signals (2005) zu mindestens einem unipolaren Signal (2020A, 2020B) und das System ferner konfiguriert ist zum optimalen Übertragen des mindestens einen unipolaren Signals mit dem optischen Sender unter Verwendung optischer drahtloser Kommunikationen unter Verwendung mindestens eines von: Intensitätsmodulation, Raummodulation, Farbmodulation oder mehrstufiger Intensitätsmodulation; und zum Codieren und Übertragen von Vorzeichen mindestens eines bipolaren Signals separat und/oder unterschiedlich zu dem korrespondierenden Größenwert oder Absolutwert des mindestens einen bipolaren Signals, wobei die Vorzeichen angeben, dass die Signalkomponente (2020) entweder positiv oder negativ ist.
     
    2. Optisches Kommunikationssystem nach Anspruch 1, wobei die Vorzeichen unter Verwendung der relativen Reihenfolge von Trägern, die das oder die unipolaren Signale tragen, codiert werden oder als Symbole, die die Träger modulieren, codiert werden oder in einem separaten Modulationsschema in einem separaten Teil des Übertragungsstroms codiert werden; und wobei wahlweise die Träger Frequenz-, Zeit- und/oder Raumträger umfassen.
     
    3. Optisches Kommunikationssystem nach Anspruch 1 oder Anspruch 2, wobei die Vorzeichen in einem separaten Übertragungskanal zu einem Übertragungskanal, der zur Übertragung des korrespondierenden Größenwerts oder Absolutwerts des mindestens einen bipolaren Signals verwendet wird, oder einem separaten Teil des optischen Kommunikationssystems befördert werden.
     
    4. Optisches Kommunikationssystem nach einem der vorhergehenden Ansprüche, wobei der Codierer konfiguriert ist zum Codieren jedes bipolaren Signals zu zwei oder mehr korrespondierenden unipolaren Signalen in jeweiligen ersten und zweiten Trägerkanälen, wobei der Sender konfiguriert ist zum Codieren des Vorzeichens des bipolaren Signals basierend auf der relativen Reihenfolge von ersten und zweiten Betriebszuständen, wobei einer des ersten oder zweiten Betriebszustands den Größenwert oder Absolutwert des bipolaren Signals angibt.
     
    5. Optischer Kommunikationsempfänger, konfiguriert zum Empfangen eines optischen Signals, das positive reelle Signalwerte repräsentiert, von einem optischen Übertragungssystem, wobei der optische Empfänger konfiguriert ist zum Empfangen mindestens eines unipolaren Signals (2020A, 2020B) von dem optischen Übertragungssystem, Bestimmen eines Größenwerts von mindestens einem bipolaren Signal (2005) aus dem mindestens einen unipolaren Signal (2020A, 2020B), wobei das bipolare Signal (2005) sowohl positive (2010) als auch negative (2015) Signalkomponenten (2020) aufweist, und Bestimmen mindestens eines Vorzeichens der bipolaren Signalkomponenten (2020), wobei das Vorzeichen angibt, dass die Signalkomponente (2020) entweder positiv oder negativ ist, und das mindestens eine Vorzeichen separat und/oder unterschiedlich zu dem korrespondierenden Größenwert des mindestens einen bipolaren Signals codiert und übertragen wird.
     
    6. Optischer Kommunikationsempfänger nach Anspruch 5, wobei die Vorzeichen innerhalb der relativen Reihenfolge von Trägern codiert werden oder als Symbole, die Träger modulieren, codiert werden oder in einem separaten Modulationsschema in einem separaten Teil des Übertragungsstroms codiert werden; und wahlweise die Vorzeichen in einem separaten Übertragungskanal oder einem separaten Teil des optischen Kommunikationssystems befördert werden.
     
    7. Verfahren zum Decodieren eines optischen Signals, empfangen von einem optischen Übertragungssystem, wobei das Signal positive reelle Signalwerte repräsentiert, das Verfahren umfassend Empfangen mindestens eines unipolaren Signals (2020A, 2020B) von dem optischen Übertragungssystem, wobei das mindestens eine unipolare Signal mindestens ein bipolares Signal (2005) mit sowohl positiven (2010) als auch negativen (2015) Signalkomponenten (2020) repräsentiert, Bestimmen eines Größenwerts des mindestens einen bipolaren Signals (2005) aus dem mindestens einen unipolaren Signal (2020A, 2020B) und Bestimmen eines Vorzeichens des mindestens einen bipolaren Signals (2005), wobei das Vorzeichen angibt, dass die Signalkomponente (2020) entweder positiv oder negativ ist, und das Vorzeichen separat und/oder unterschiedlich zu dem korrespondierenden Größenwert des mindestens einen bipolaren Signals codiert und übertragen wird.
     
    8. Verfahren zum Umwandeln mindestens eines bipolaren Signals (2005) in mindestens ein unipolares Signal (2020A, 2002B) zur Übertragung durch einen optischen Sender, der positive reellwertige optische Signale überträgt, wobei das mindestens eine bipolare Signal (2005) sowohl positive (2010) als auch negative (2015) Signalkomponenten (2020) aufweist, das Verfahren umfassend Bestimmen eines Vorzeichens mindestens einer Komponente (2020) des bipolaren Signals (2005), Codieren und Übertragen der Absolutwerte eines bipolaren Signals (2005) in dem unipolaren Signal (2020A, 2020B) mit dem optischen Sender unter Verwendung optischer drahtloser Kommunikationen unter Verwendung mindestens eines von: Intensitätsmodulation, Raummodulation, Farbmodulation oder mehrstufiger Intensitätsmodulation; und Codieren und Übertragen von mindestens einem Vorzeichen des mindestens einen bipolaren Signals separat und/oder unterschiedlich zu dem Codieren und/oder Übertragen der Absolutwerte eines bipolaren Signals.
     
    9. Verfahren nach Anspruch 8, wobei das Verfahren umfasst, mindestens eine der Komponenten des bipolaren Signals in korrespondierende erste und zweite unipolare Signalkomponenten umzuwandeln, wobei die ersten und zweiten unipolaren Signalkomponenten unterschiedliche Amplituden oder Größenwerte aufweisen und die Reihenfolge der ersten und zweiten unipolaren Signalkomponenten von dem Vorzeichen der korrespondierenden multipolaren Signalkomponente abhängig ist.
     
    10. Optisches Kommunikationssystem nach Anspruch 1, wobei das optische Kommunikationssystem ein optisches Übertragungssystem zum optischen Übertragen von Daten als Teil eines Kommunikationssystems ist, die Daten umfassend eine Vielzahl von Datensymbolen oder -elementen, wobei mindestens ein Abschnitt der Daten durch optisches Übertragen von Signalen in ausgewählten Trägerkanälen kommuniziert wird, wobei das optische Übertragungssystem konfiguriert ist zum Codieren der Vorzeichen des mindestens einen bipolaren Signals durch Auswählen einer relativen Reihenfolge mindestens eines ersten Trägerkanals, der einen ersten Betriebszustand aufweist, und mindestens eines zweiten Trägerkanals, der einen zweiten Betriebszustand aufweist.
     
    11. Optisches Kommunikationssystem nach Anspruch 10, wobei einer der ersten oder zweiten Betriebszustände umfasst, dass das mindestens eine unipolare Signal durch den assoziierten Trägerkanal getragen wird, und der andere der ersten oder zweiten Betriebszustände einen inaktiven und/oder nicht verwendeten und/oder Nullzustand-Trägerkanal oder Übertragen eines unipolaren Signals auf einem Niveau, das niedriger ist oder auf andere Weise von den unipolaren Signalen des ersten Zustands unterscheidbar ist, umfasst.
     
    12. Verfahren zum Übertragen von Daten in einem optischen Kommunikationssystem, die Daten umfassend eine Vielzahl von Datensymbolen oder -elementen, das Verfahren umfassend Umwandeln mindestens eines bipolaren Signals in mindestens ein unipolares Signal unter Verwendung des Verfahrens nach Anspruch 8, das Verfahren ferner umfassend Kommunizieren mindestens eines Abschnitts der Daten durch Übertragen der unipolaren Signale in ausgewählten Trägerkanälen unter Verwendung von optischen drahtlosen Kommunikationen, wobei die relative Reihenfolge mindestens eines ersten Trägerkanals, der einen ersten Betriebszustand aufweist, und mindestens eines zweiten Trägerkanals, der einen zweiten Betriebszustand aufweist, eines der Vorzeichen des mindestens einen bipolaren Signals repräsentiert.
     
    13. Kommunikationssystem, umfassend das optische Kommunikationssystem nach Anspruch 11 und einen optischen Empfänger zum Empfangen eines Datensignals von dem optischen Kommunikationssystem, wobei der optische Empfänger konfiguriert ist zum Bestimmen der relativen Reihenfolge mindestens eines Trägerkanals, der einen ersten Betriebszustand aufweist, und mindestens eines zweiten Trägerkanals, der einen zweiten Betriebszustand aufweist, um mindestens einen Abschnitt der Daten zu bestimmen.
     
    14. Verfahren zum optischen Kommunizieren von Daten, die eine Vielzahl von Datensymbolen oder -elementen umfassen, das Verfahren umfassend: Umwandeln mindestens eines bipolaren Signals in mindestens ein unipolares Signal unter Verwendung des Verfahrens nach Anspruch 8; Kommunizieren mindestens eines Abschnitts der Daten durch Übertragen der unipolaren Signale in ausgewählten Trägerkanälen, wobei die relative Reihenfolge mindestens eines ersten Trägerkanals, der einen ersten Betriebszustand aufweist, und mindestens eines zweiten Trägerkanals, der einen zweiten Betriebszustand aufweist, Datenelemente oder -symbole des ersten Datenabschnitts repräsentiert; Empfangen des Signals von dem Übertragungssystem; und Bestimmen der relativen Reihenfolge des mindestens einen Trägerkanals, der einen ersten Betriebszustand aufweist, und des mindestens einen zweiten Trägerkanals, um ein repräsentierendes Vorzeichen der Vorzeichen des mindestens einen bipolaren Signals zu bestimmen.
     
    15. Computerprogrammprodukt, das derart angepasst ist, dass es, wenn es in einer geeigneten Verarbeitungsvorrichtung ausgeführt wird, bewirkt, dass die Verarbeitungsvorrichtung das Verfahren nach einem der Ansprüche 7 bis 9 oder 12 ausführt.
     


    Revendications

    1. Système de communication optique comprenant un émetteur optique qui est adapté pour émettre des signaux optiques en valeurs réelles positives et un codeur pour coder au moins un signal bipolaire (2005) qui comporte des composantes de signal (2020) à la fois positives (2010) et négatives (2015), le codeur étant configuré pour coder une valeur d'ordre de grandeur ou absolue de l'au moins un signal bipolaire (2005) en au moins un signal unipolaire (2020A, 2020B) et le système est en outre configuré pour émettre optiquement l'au moins un signal unipolaire à l'aide de l'émetteur optique en utilisant des communications sans fil optiques en utilisant au moins une parmi: une modulation d'intensité, une modulation spatiale, une modulation de couleur ou une modulation d'intensité à multiples niveaux; et pour coder et émettre des signes d'au moins un signal bipolaire séparément et/ou différemment par rapport à la valeur d'ordre de grandeur ou absolue correspondante de l'au moins un signal bipolaire, dans lequel les signes indiquent que la composante de signal (2020) est soit positive, soit négative.
     
    2. Système de communication optique selon la revendication 1, dans lequel les signes sont codés en utilisant l'ordre relatif de porteuses qui transportent le signal/les signaux unipolaire(s) ou sont codés en tant que symboles qui modulent les porteuses ou sont codés selon un schéma de modulation séparé sur une partie séparée du flux d'émission; et en option, les porteuses comprennent des porteuses de fréquences, temporelles et/ou spatiales.
     
    3. Système de communication optique selon la revendication 1 ou la revendication 2, dans lequel les signes sont convoyés sur un canal d'émission séparé jusqu'à un canal d'émission qui est utilisé pour l'émission de la valeur d'ordre de grandeur ou absolue correspondante de l'au moins un signal bipolaire, ou une partie séparée du système de communication optique.
     
    4. Système de communication optique selon l'une quelconque des revendications qui précèdent, dans lequel le codeur est configuré pour coder chaque signal bipolaire en deux signaux unipolaires correspondants ou plus sur des premier et second canaux de porteuse respectifs, dans lequel l'émetteur est configuré pour coder le signe du signal bipolaire sur la base de l'ordre relatif de premier et second états opérationnels, dans lequel l'un des premier et second états opérationnels est indicatif de la valeur d'ordre de grandeur ou absolue du signal bipolaire.
     
    5. Récepteur de communication optique configuré pour recevoir un signal optique qui représente des valeurs de signal réelles positives en provenance d'un système d'émission optique, le récepteur optique étant configuré pour recevoir au moins un signal unipolaire (2020A, 2020B) en provenance du système d'émission optique, pour déterminer un ordre de grandeur d'au moins un signal bipolaire (2005) à partir de l'au moins un signal unipolaire (2020A, 2020B), dans lequel le signal bipolaire (2005) comporte des composantes de signal (2020) à la fois positives (2010) et négatives (2015), et pour déterminer au moins un signe des composantes de signal bipolaire (2020), dans lequel le signe indique que la composante de signal (2020) est soit positive, soit négative, et l'au moins un signe est codé et émis séparément et/ou différemment par rapport à l'ordre de grandeur correspondant de l'au moins un signal bipolaire.
     
    6. Récepteur de communication optique selon la revendication 5, dans lequel les signes sont codés à l'intérieur de l'ordre relatif de porteuses ou sont codés en tant que symboles qui modulent les porteuses ou sont codés selon un schéma de modulation séparé sur une partie séparée du flux d'émission; et en option, les signes sont convoyés sur un canal d'émission séparé, ou une partie séparée du système de communication optique.
     
    7. Procédé pour décoder un signal optique qui est reçu depuis un système d'émission optique, le signal représentant des valeurs de signal réelles positives, le procédé comprenant la réception d'au moins un signal unipolaire (2020A, 2020B) en provenance du système d'émission optique, l'au moins un signal unipolaire étant représentatif d'au moins un signal bipolaire (2005) qui comporte des composantes de signal (2020) à la fois positives (2010) et négatives (2015), la détermination d'un ordre de grandeur de l'au moins un signal bipolaire (2005) à partir de l'au moins un signal unipolaire (2020A, 2020B) et la détermination d'un signe de l'au moins un signal bipolaire (2005), dans lequel le signe indique que la composante de signal (2020) est soit positive, soit négative et le signe est codé et émis séparément et/ou différemment par rapport à l'ordre de grandeur correspondant de l'au moins un signal bipolaire.
     
    8. Procédé de conversion d'au moins un signal bipolaire (2005) selon au moins un signal unipolaire (2020A, 2020B) pour son émission par un émetteur optique qui émet des signaux optiques en valeurs réelles positives, l'au moins un signal bipolaire (2005) comportant des composantes de signal (2020) à la fois positives (2010) et négatives (2015), le procédé comprenant la détermination d'un signe d'au moins une composante (2020) du signal bipolaire (2005), le codage et l'émission des valeurs absolues d'un signal bipolaire (2005) selon le signal unipolaire (2020A, 2020B) à l'aide de l'émetteur optique en utilisant des communications sans fil optiques en utilisant au moins une modulation parmi: une modulation d'intensité, une modulation spatiale, une modulation de couleur et une modulation d'intensité à multiples niveaux; et le codage et l'émission d'au moins un signe de l'au moins un signal bipolaire séparément et/ou différemment par rapport au codage et/ou à l'émission des valeurs absolues d'un signal bipolaire.
     
    9. Procédé selon la revendication 8, dans lequel le procédé comprend la conversion d'au moins l'une des composantes du signal bipolaire en des première et seconde composantes de signal unipolaire correspondantes, les première et seconde composantes de signal unipolaire présentant des amplitudes ou ordres de grandeur différent(e)s et l'ordre des première et seconde composantes de signal unipolaire dépend du signe de la composante de signal multipolaire correspondante.
     
    10. Système de communication optique selon la revendication 1, dans lequel le système de communication optique est un système d'émission optique pour émettre optiquement des données en tant que partie d'un système de communication, les données comprenant une pluralité de symboles ou d'éléments de données, dans lequel au moins une section des données est communiquée en émettant optiquement des signaux dans des canaux de porteuse sélectionnés, dans lequel le système d'émission optique est configuré pour coder les signes de l'au moins un signal bipolaire en sélectionnant un ordre relatif d'au moins un premier canal de porteuse qui présente un premier état opérationnel et d'au moins un second canal de porteuse qui présente un second état opérationnel.
     
    11. Système de communication optique selon la revendication 10, dans lequel l'un des premier et second états opérationnels comprend le fait que l'au moins un signal unipolaire est transporté par le canal de porteuse associé et l'autre des premier et second états opérationnels comprend un canal de porteuse à l'état inactif et/ou inutilisé et/ou à zéro ou l'émission d'un signal unipolaire à un niveau qui est inférieur à celui des signaux unipolaires du premier état ou qui peut en être distingué de toute autre façon.
     
    12. Procédé pour émettre des données dans un système de communication optique, les données comprenant une pluralité de symboles ou d'éléments de données, le procédé comprenant la conversion d'au moins un signal bipolaire en au moins un signal unipolaire en utilisant le procédé selon la revendication 8, le procédé comprenant en outre la communication d'au moins une section des données en émettant les signaux unipolaires dans des canaux de porteuse sélectionnés en utilisant des communications sans fil optiques, dans lequel l'ordre relatif d'au moins un premier canal de porteuse qui présente un premier état opérationnel et d'au moins un second canal de porteuse qui présente un second état opérationnel est représentatif de l'un des signes de l'au moins un signal bipolaire.
     
    13. Système de communication comprenant le système de communication optique selon la revendication 11 et un récepteur optique pour recevoir un signal de données en provenance du système de communication optique, dans lequel le récepteur optique est configuré pour déterminer l'ordre relatif d'au moins un canal de porteuse qui présente un premier état opérationnel et d'au moins un second canal de porteuse qui présente un second état opérationnel afin de déterminer au moins une section des données.
     
    14. Procédé de communication optique de données qui comprennent une pluralité de symboles ou d'éléments de données, le procédé comprenant: la conversion d'au moins un signal bipolaire selon au moins un signal unipolaire en utilisant le procédé selon la revendication 8; la communication d'au moins une section des données en émettant les signaux unipolaires dans des canaux de porteuse sélectionnés, dans lequel l'ordre relatif d'au moins un premier canal de porteuse qui présente un premier état opérationnel et d'au moins un second canal de porteuse qui présente un second état opérationnel est représentatif d'éléments ou de symboles de données de la première section de données; la réception du signal en provenance du système d'émission; et la détermination de l'ordre relatif de l'au moins un premier canal de porteuse qui présente un premier état opérationnel et de l'au moins un second canal de porteuse afin de déterminer un signe parmi les signes qui représente l'au moins un signal bipolaire.
     
    15. Progiciel adapté de telle sorte que, lorsqu'il est exécuté sur un dispositif de traitement approprié, il force le dispositif de traitement à mettre en œuvre le procédé selon l'une quelconque des revendications 7 à 9 ou 12.
     




    Drawing


























    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description




    Non-patent literature cited in the description