(19)
(11)EP 2 775 100 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
20.05.2020 Bulletin 2020/21

(21)Application number: 14157384.0

(22)Date of filing:  28.02.2014
(51)Int. Cl.: 
F01D 5/18  (2006.01)
F01D 5/28  (2006.01)

(54)

Turbine blade cooling channel formation by etching

Turbinenschaufel-Kühlkanalbildung durch Radierung

Formation de canal de refroidissement d'aube de turbine par eau-forte


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 08.03.2013 US 201313790615

(43)Date of publication of application:
10.09.2014 Bulletin 2014/37

(73)Proprietor: General Electric Company
Schenectady, NY 12345 (US)

(72)Inventors:
  • Knorr, David Bruce
    Schenectady, NY New York 12345 (US)
  • Morey, Kathleen Blanche
    Schenectady, NY New York 12345 (US)

(74)Representative: BRP Renaud & Partner mbB Rechtsanwälte Patentanwälte Steuerberater 
Königstraße 28
70173 Stuttgart
70173 Stuttgart (DE)


(56)References cited: : 
EP-A1- 2 537 636
US-A- 3 848 307
EP-A2- 0 113 883
US-A1- 2002 141 869
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND OF THE INVENTION



    [0001] Embodiments of the invention relate generally to turbine blades and, more particularly, to the formation of cooling channels on a surface of a turbine blade and turbine blades including such cooling channels.

    [0002] Turbine blades employed in high-temperature applications are typically a nickel-based super alloy and covered with a metallic bond coat and a ceramic thermal barrier coating. Embodiments of the invention facilitate improved cooling of a turbine blade, as compared to known configurations and methods of forming cooling channels. In turn, this enables use of the turbine blade in hot gas paths having a higher temperature, the use of a thinner thermal barrier coating, and a reduced cost, as compared to the use of nickel alloys. In some cases, cooling passages within the turbine blade may be simplified, since more of the active cooling of the turbine blade occurs at the blade surface. In addition, all cooling channels may be fabricated simultaneously, which reduces expense as compared to known methods of cooling channel formation, such as by water jet or electro-discharge machining.

    [0003] EP 0113883 A2 describes a fluid-cooled turbomachinery blading member.

    [0004] US 2002/0141869 A1 describes a turbine blade tip having thermal barrier coating-formed micro cooling channels.

    [0005] US 3,848,307 A describes the manufacture of fluid-cooled gas turbine airfoils.

    [0006] EP 2537636 A1 describes a component with cooling channels.

    BRIEF DESCRIPTION OF THE INVENTION



    [0007] In one embodiment, the invention provides a method of forming a cooling channel along a surface of a turbine blade according to claim 1.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0008] These and other features of this invention will be more readily understood from the following detailed description of the various aspects of the invention taken in conjunction with the accompanying drawings that depict various embodiments of the invention, in which:

    FIG. 1 shows a perspective view of a turbine blade according to an embodiment of the invention.

    FIG. 2 shows a flow diagram and cross-sectional side views of a method according to an embodiment of the invention.

    FIG. 3 shows a flow diagram and cross-sectional side views of a method according to another embodiment of the invention.

    FIGS. 4 and 5 show schematic top views of cooling channels formed according to embodiments of the invention.

    FIG. 6 shows a cross-sectional side view of a step of a method according to an embodiment of the invention.

    FIGS. 7-9 show schematic top views of cooling channels formed according to embodiments of the invention.

    FIG. 10 shows a flow diagram of a method disclosed herein.



    [0009] It is noted that the drawings of the invention are not to scale. The drawings are intended to depict only typical aspects of the invention, and therefore should not be considered as limiting the scope of the invention. In the drawings, like numbering represents like elements between the drawings.

    DETAILED DESCRIPTION OF THE INVENTION



    [0010] FIG. 1 shows a cross-sectional side view of a portion of a turbine blade 1 according to an embodiment of the invention. Turbine blade 1 includes a leading surface 8 and a trailing surface 10. A plurality of cooling channels 20 have been formed along trailing surface 10 according to one method of the invention. A bond coat layer 70 and thermal barrier coating layer 72 are formed atop trailing surface 10 and cover the plurality of cooling channels 20. Although cooling channels 20 are shown only along trailing surface 10 in FIG. 1, it should be appreciated that cooling channels may similarly be placed along leading surface 8 rather than or in addition to trailing surface 10.

    [0011] FIG. 2 shows a flow diagram and accompanying cross-sectional side views of a method according to one embodiment of the invention. At S1, a first mask material 30 is deposited atop a surface 10 of a turbine blade. Mask materials suitable for use according to embodiments of the invention include, for example, photoresist or a polymer material. First mask material 30 may be deposited using a number of methods or techniques, including, for example, dipping, spraying, or vapor deposition. The particular method or technique employed will depend, at least in part, on first mask material 30. First mask material 30 may be discretely deposited or may be deposited across a larger area and then patterned. As shown in FIG. 2, first mask material 30 covers a first portion 12 of surface 10, leaving a second portion 14 exposed. First portion 12 includes an area or areas of surface 10 in which cooling channels are to be formed. Second portion 14 includes areas of surface 10 in which cooling channels are not to be formed and may comprise some or all of surface 10 other than first portion 12. One skilled in the art will recognize, of course, that materials and deposition techniques other than those disclosed may be employed.

    [0012] At S2, a first barrier layer 40 is formed atop surface 10, covering both first mask material 30 and second portion 14 of surface 10. First barrier layer 40 may include, for example, Titanium oxynitride, TiO2, TaO2, TiN, SiO2, and high melting point oxides, such as aluminum oxide. First barrier layer 40 may be formed using any number of methods or techniques, including, for example, chemical vapor deposition, sputtering, or reactive sputtering . The particular method or technique employed will depend, at least in part, on first barrier layer 40. At S3, first mask material 30 is removed, along with the portion of barrier layer 40 atop first mask material 30, exposing first portion 12 of surface 10. First portion 12 may then be etched at S4 to form cooling channel 20 in surface 10. Etching first portion 12 may include any number of methods or techniques, including, for example, liquid chemical etching and reactive ion etching.

    [0013] In some embodiments of the invention, cooling channels 20 may be further processed to form overhanging structures above the cooling channels 20. This effectively reduces an opening to the cooling channel 20, which may be desirable in some circumstances. FIG. 3 shows a flow diagram and accompanying cross-sectional side views of a method of forming such overhanging structures. At S5, cooling channel 20 is filled with a second mask material 32. Second mask material 32 may be the same as first mask material 30 (FIG. 2) or may be a different mask material. Similarly, second mask material 32 may be deposited using the same method or technique as first mask material 30 or by a different method or technique.

    [0014] At S6, a high-temperature metal layer 50 is deposited, formed, or applied atop second mask material 32 and first barrier layer 40. High-temperature metal layer 50 may include, for example, a nickel-based super alloy or a refractory metal and may be deposited, formed, or applied using any number of methods or techniques, such as vapor deposition, sputtering, or electrochemical deposition.

    [0015] A third mask material 34 and second barrier layer 42 are then deposited or formed atop high-temperature metal layer 50 at S7. As can be seen in FIG. 3, third mask material 34 is deposited such that, in at least one dimension, its width is less than that of cooling channel 20. The deposition or forming of third mask material 34 and second barrier layer 42 are similar to the deposition or forming of first mask material 30 and first barrier layer 40 in FIG. 2. Third mask material 34 may be the same as first mask material 30 or second mask material 32 or may be a different mask material and may be deposited using the same or a different method or technique. Similarly, second barrier layer 42 may be the same as first barrier layer 40 or may be a different mask material and may be deposited using the same or a different method or technique.

    [0016] At S8, third mask material 34 and the portion of second barrier layer 42 atop third mask material 34 are removed, similar to the removal of first mask material 40 and a portion of first barrier layer 40 at S3 of FIG. 2. At S9, high-temperature metal layer 50 is etched where exposed by the removal of third mask material 34 and second barrier layer 42, forming an opening 22 through which second mask material 32 is removed from cooling channel 20. As can be seen in FIG. 3, the smaller dimension of third mask material 34, as compared to cooling channel 20, results in overhangs 60, 62 of high-temperature metal layer 50 and second barrier layer 42 above cooling channel 20.

    [0017] FIG. 4 shows a top view of a cooling channel 20 according to one embodiment of the invention. For ease of illustration and explanation, only second barrier layer 42 is shown. One skilled in the art will recognize, however, that high-temperature metal layer 50 lies below second barrier layer 42. In FIG. 4, overhangs 60, 62 reside adjacent opening 22 and over a portion of cooling channel 20. Other configurations are possible. In FIG. 5, for example, overhang 60 is continuous around a substantially square opening 22.

    [0018] FIG. 6 shows a cross-sectional view of another embodiment of the invention. Here, opening 122 is offset and substantially flush with a wall 121 of cooling channel 120. As such, a single overhang 160 is formed above cooling channel 120. FIGS. 7-9 show top views of various arrangements of opening 122 relative to cooling channel 120 according to such an embodiment.

    [0019] In FIGS. 3-9, opening 22, 122 is shown as being substantially square- or rectangular-shaped. This is neither necessary nor essential, however, and openings formed according to the various embodiments of the invention may have any number of two-dimensional shapes.

    [0020] In any of the embodiments of the invention, once surface 10, 110 is etched to form cooling channel 20, 120, a metallic bond coat, such as MCrAlY, may be applied in a manner that is sufficient to cover first barrier layer 40 or second barrier layer 140, as well as to cover the surfaces of, but not fill, cooling channel 20, 120. Similarly, in any of the embodiments of the invention, the cooling channel 20, 120 formed may be joined to a source of cooling fluid, such as air or steam, for example, within the turbine blade 1 (FIG. 1). For example, once cooling channel 20, 120 is formed, a passage may be formed, such as by drilling, from a bottom surface of the cooling channel 20, 120 through to a source of cooling air in the center of the turbine blade.

    [0021] In some embodiments of the invention, high-temperature metal layer 50, 150 includes a porous metal layer. Use of such a porous metal layer reduces stress in a thermal barrier coating (TBC) applied to the turbine blade during later processing steps, since it is more compliant than either the turbine blade itself or the TBC. Porous metal layers also reduces the thermal diffusivity, as compared to a similar non-porous metal layers. This increases the temperature drop between the hot gas and the turbine blade.

    [0022] FIG. 10 shows a flow diagram of a method of forming a porous metal layer on a turbine blade disclosed herein. At S10, a metal layer, for example, 42 in FIG 3, is aluminized. This may be achieved using any number of methods or techniques, including, for example, dipping the metal layer in an aluminum bath, spray depositing aluminum onto the metal layer, or vapor depositing aluminum onto the metal layer.

    [0023] At S1 1, the aluminized metal layer is converted to an aluminide layer. Typically, this is achieved by heating the aluminized metal layer to a temperature between about 660°C and about 1200°C in the absence of oxygen.

    [0024] At S12, aluminum is removed from the aluminide layer to form a porous metal layer. The aluminum may be removed using any number of methods or techniques, but is typically removed by applying a caustic solution to the aluminide layer. Where the metal layer was a nickel alloy, the porous metal layer thus formed comprises a porous nickel alloy layer.

    [0025] A number of additional processes may be carried out on the porous metal layer. For example, at S13, the porous metal layer may optionally be passivated by oxidation. This may be desirable, for example, where the metal layer will be exposed to high temperatures, since the high surface area of the porous metal layer is likely to be pyrophoric. Oxidizing the porous metal layer may be achieved by, for example, heating in air around 400C.

    [0026] At S14, a bond coat and/or thermal barrier coating may optionally be applied to the porous metal layer formed at S12 or the oxidized porous metal layer formed at S13.

    [0027] As described herein, the porous metal layer is formed from high-temperature metal layer 50, 150, although other metal layers may similarly be made porous to provide increased compliance. For example, the nickel-based superalloy of the turbine blade itself may be made porous using the method described above or a similar method. In addition, the turbine blade may be coated with a layer of a nickel-based heat resistant alloy which is then made porous using the method described above or a similar method.

    [0028] In any case, additional layers may be deposited atop the porous metal layer to complete the finishing of the turbine blade. For example, in some embodiments of the invention, a turbine blade comprises a nickel-based superalloy airfoil, an oxidized porous metal layer on a surface of the airfoil, a bond coat, and a thermal barrier coating over the oxidized porous material.

    [0029] The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the disclosure. As used herein, the singular forms "a", "an" and "the" are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms "comprises" and/or "comprising," when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.

    [0030] This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any related or incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal language of the claims.


    Claims

    1. A method of forming a cooling channel (20) along a surface (10) of a turbine blade, the method comprising:

    applying a first mask material (30) to a first portion (12) of a surface (10) of a turbine blade;

    forming a first barrier (40) layer atop the first mask material (30) and atop a second portion (14) of the surface (10) of the turbine blade;

    removing the first mask material (30) and the barrier layer (40) atop the first mask material (30) to expose the first portion (12) of the surface (10) of the turbine blade;

    etching the first portion (12) of the surface (10) of the turbine blade to form a cooling channel (20) along the surface (10) of the turbine blade; filling the cooling channel (20) with a second mask material (32);

    depositing a high-temperature metal layer (50) atop the second mask material (32) and the first barrier layer (40) of the turbine blade;

    depositing a third mask material (34) atop the high-temperature metal layer (50), the third mask having a dimension smaller than the cooling channel (20); and wherein the third mask material is deposited such that, in at least one dimension, its width is less than that of the cooling channel (20);

    depositing a second barrier layer (42) atop the third mask material (34) and the high-temperature metal layer (50);

    removing the third mask material and the second barrier layer (42) atop the third mask material (34);

    etching the high-temperature metal layer (50) through to the second mask material (32); and

    removing the second mask material (32).


     
    2. The method of claim 1, further comprising:
    applying a metallic bond coat to the surface (10) of the turbine blade sufficient to cover but not fill the cooling channel (20).
     
    3. The method of claim 1 or claim 2, further comprising:
    forming a passage between the cooling channel (20) and cooling source within the turbine blade.
     
    4. The method of claim 1, further comprising:
    applying a metallic bond coat to the surface (10) of the turbine blade sufficient to cover but not fill the cooling channel (20).
     
    5. The method of any preceding claim, wherein the cooling channel (20) has a first width and etching the high-temperature metal layer (50) includes etching the high-temperature metal layer (50) to a second width that is less than the first width, such that at least a portion of the high-temperature metal layer (50) extends over the cooling channel (20).
     
    6. The method of any preceding claim, wherein the high-temperature metal layer (50) includes a porous metal layer (50).
     
    7. The method of any preceding claim, wherein a porous metal layer (50) is formed by:

    aluminizing the high-temperature metal layer (50);

    converting the aluminized high-temperature metal layer to an aluminide layer; and

    removing aluminum from the aluminide layer to form the porous metal layer.


     
    8. The method of claim 7, wherein aluminizing includes at least one of the following: dipping the high-temperature metal layer (50) in an aluminum bath, spray depositing aluminum onto the high-temperature metal layer (50), or vapor depositing aluminum onto the high-temperature metal layer (50).
     
    9. The method of claim 7 or claim 8, wherein removing aluminum from the aluminide layer includes leaching aluminum from the aluminide layer using a caustic solution.
     
    10. The method of any one of claims 7 to 9, further comprising:
    oxidizing the porous metal layer.
     
    11. The method of any preceding claim, wherein the first mask material (30) is selected from a group consisting of: photoresists and polymer materials.
     
    12. The method of any preceding claim, wherein the first barrier (40) layer includes at least one material selected from a group consisting of: Titanium oxynitride, TiO2, TaO2, TiN, SiO2, aluminum oxide, and refractory metal oxide.
     


    Ansprüche

    1. Verfahren zum Bilden eines Kühlkanals (20) entlang einer Oberfläche (10) einer Turbinenschaufel, wobei das Verfahren umfasst:

    Aufbringen eines ersten Maskenmaterials (30) auf einen ersten Abschnitt (12) einer Oberfläche (10) einer Turbinenschaufel;

    Bilden einer ersten Barriereschicht (40) auf dem ersten Maskenmaterial (30) und auf einem zweiten Abschnitt (14) der Oberfläche (10) der Turbinenschaufel;

    Entfernen des ersten Maskenmaterials (30) und der Barriereschicht (40) auf dem ersten Maskenmaterial (30), um den ersten Abschnitt (12) der Oberfläche (10) der Turbinenschaufel freizulegen;

    Ätzen des ersten Abschnitts (12) der Oberfläche (10) der Turbinenschaufel, um einen Kühlkanal (20) entlang der Oberfläche (10) der Turbinenschaufel zu bilden;

    Füllen des Kühlkanals (20) mit einem zweiten Maskenmaterial (32);

    Abscheiden einer Hochtemperaturmetallschicht (50) auf dem zweiten Maskenmaterial (32) und der ersten Barriereschicht (40) der Turbinenschaufel;

    Abscheiden eines dritten Maskenmaterials (34) auf der Hochtemperaturmetallschicht (50), wobei die dritte Maske eine kleinere Dimension aufweist als der Kühlkanal (20); und wobei das dritte Maskenmaterial derart abgeschieden ist, dass seine Breite in mindestens einer Dimension geringer ist als die des Kühlkanals (20);

    Abscheiden einer zweiten Barriereschicht (42) auf dem dritten Maskenmaterial (34) und der Hochtemperaturmetallschicht (50);

    Entfernen des dritten Maskenmaterials und der zweiten Barriereschicht (42) auf dem dritten Maskenmaterial (34);

    Ätzen der Hochtemperaturmetallschicht (50) bis zu dem zweiten Maskenmaterial (32); und

    Entfernen des zweiten Maskenmaterials (32).


     
    2. Verfahren nach Anspruch 1, ferner umfassend:
    Aufbringen einer metallischen Haftbeschichtung auf die Oberfläche (10) der Turbinenschaufel, die ausreicht, um den Kühlkanal (20) abzudecken, aber nicht zu füllen.
     
    3. Verfahren nach Anspruch 1 oder Anspruch 2, ferner umfassend:
    Bilden eines Durchgangs zwischen dem Kühlkanal (20) und einer Kühlquelle innerhalb der Turbinenschaufel.
     
    4. Verfahren nach Anspruch 1, ferner umfassend:
    Aufbringen einer metallischen Haftbeschichtung auf die Oberfläche (10) der Turbinenschaufel, die ausreicht, um den Kühlkanal (20) abzudecken, aber nicht zu füllen.
     
    5. Verfahren nach einem der vorstehenden Ansprüche, wobei der Kühlkanal (20) eine erste Breite aufweist und das Ätzen der Hochtemperaturmetallschicht (50) Ätzen der Hochtemperaturmetallschicht (50) auf eine zweite Breite einschließt, die geringer als die erste Breite ist, derart, dass sich mindestens ein Teil der Hochtemperaturmetallschicht (50) über den Kühlkanal (20) erstreckt.
     
    6. Verfahren nach einem der vorstehenden Ansprüche, wobei die Hochtemperaturmetallschicht (50) eine poröse Metallschicht (50) einschließt.
     
    7. Verfahren nach einem der vorstehenden Ansprüche, wobei eine poröse Metallschicht (50) gebildet wird durch:

    Aluminisieren der Hochtemperaturmetallschicht (50);

    Umwandeln der aluminisierten Hochtemperaturmetallschicht in eine Aluminidschicht; und

    Entfernen von Aluminium von der Aluminidschicht, um die poröse Metallschicht zu bilden.


     
    8. Verfahren nach Anspruch 7, wobei Aluminisieren mindestens eins der folgenden einschließt: Eintauchen der Hochtemperaturmetallschicht (50) in ein Aluminiumbad, Sprühabscheiden von Aluminium auf die Hochtemperaturmetallschicht (50) oder Aufdampfen von Aluminium auf die Hochtemperaturmetallschicht (50).
     
    9. Verfahren nach Anspruch 7 oder Anspruch 8, wobei das Entfernen von Aluminium von der Aluminidschicht Auslaugen von Aluminium aus der Aluminidschicht unter Verwendung einer ätzenden Lösung einschließt.
     
    10. Verfahren nach einem der Ansprüche 7 bis 9, ferner umfassend: Oxidieren der porösen Metallschicht.
     
    11. Verfahren nach einem der vorstehenden Ansprüche, wobei das erste Maskenmaterial (30) aus einer Gruppe bestehend aus Photoresists und Polymermaterialien ausgewählt ist.
     
    12. Verfahren nach einem vorstehenden Anspruch, wobei die erste Barriere-(40) Schicht mindestens ein Material einschließt, das aus einer Gruppe bestehend aus Titanoxynitrid, TiO22, TaO2, TiN, SiO2, Aluminiumoxid und einem feuerfesten Metalloxid ausgewählt ist.
     


    Revendications

    1. Procédé de formation d'un canal de refroidissement (20) le long d'une surface (10) d'une aube de turbine, le procédé comprenant :

    l'application d'un premier matériau de masque (30) sur une première partie (12) d'une surface (10) d'une aube de turbine ;

    la formation d'une première couche barrière (40) au-dessus du premier matériau de masque (30) et au-dessus d'une deuxième partie (14) de la surface (10) de l'aube de turbine ;

    le retrait du premier matériau de masque (30) et de la couche barrière (40) au-dessus du premier matériau de masque (30) pour exposer la première partie (12) de la surface (10) de l'aube de turbine ;

    la gravure de la première partie (12) de la surface (10) de l'aube de turbine pour former un canal de refroidissement (20) le long de la surface (10) de l'aube de turbine ;

    le remplissage du canal de refroidissement (20) avec un deuxième matériau de masque (32) ;

    le dépôt d'une couche métallique à haute température (50) au-dessus du deuxième matériau de masque (32) et de la première couche barrière (40) de l'aube de turbine ;

    le dépôt d'un troisième matériau de masque (34) au-dessus de la couche métallique à haute température (50), le troisième masque ayant une dimension inférieure au canal de refroidissement (20) ; et dans lequel le troisième matériau de masque est déposé de telle sorte que, dans au moins une dimension, sa largeur est inférieure à celle du canal de refroidissement (20) ;

    le dépôt d'une deuxième couche barrière (42) au-dessus du troisième matériau de masque (34) et de la couche métallique à haute température (50) ;

    le retrait du troisième matériau de masque et de la deuxième couche barrière (42) au-dessus du troisième matériau de masque (34) ;

    la gravure de la couche métallique à haute température (50) à travers le deuxième matériau de masque (32) ; et

    le retrait du deuxième matériau de masque (32).


     
    2. Procédé selon la revendication 1, comprenant en outre :
    l'application d'une couche de liaison métallique sur la surface (10) de l'aube de turbine suffisante pour recouvrir mais pas remplir le canal de refroidissement (20).
     
    3. Procédé selon la revendication 1 ou la revendication 2, comprenant en outre :
    la formation d'un passage entre le canal de refroidissement (20) et la source de refroidissement à l'intérieur de l'aube de turbine.
     
    4. Procédé selon la revendication 1, comprenant en outre :
    l'application d'une couche de liaison métallique sur la surface (10) de l'aube de turbine suffisante pour recouvrir mais pas remplir le canal de refroidissement (20).
     
    5. Procédé selon l'une quelconque des revendications précédentes, dans lequel le canal de refroidissement (20) a une première largeur et la gravure de la couche métallique à haute température (50) comprend la gravure de la couche métallique à haute température (50) jusqu'à une deuxième largeur qui est inférieure à la première largeur, de telle sorte qu'au moins une partie de la couche métallique à haute température (50) s'étend au-dessus du canal de refroidissement (20).
     
    6. Procédé selon l'une quelconque des revendications précédentes, dans lequel la couche métallique à haute température (50) comprend une couche métallique poreuse (50).
     
    7. Procédé selon l'une quelconque des revendications précédentes, dans lequel une couche métallique poreuse (50) est formée par :

    l'aluminisation de la couche métallique à haute température (50) ;

    la conversion de la couche métallique à haute température aluminisée en une couche d'aluminure ; et

    le retrait de l'aluminium de la couche d'aluminure pour former la couche métallique poreuse.


     
    8. Procédé selon la revendication 7, dans lequel l'aluminisation comprend au moins l'une des étapes suivantes : le trempage de la couche métallique à haute température (50) dans un bain d'aluminium, le dépôt par pulvérisation d'aluminium sur la couche métallique à haute température (50), ou le dépôt par vaporisation d'aluminium sur la couche métallique à haute température (50).
     
    9. Procédé selon la revendication 7 ou la revendication 8, dans lequel le retrait de l'aluminium de la couche d'aluminure comprend la lixiviation de l'aluminium de la couche d'aluminure à l'aide d'une solution caustique.
     
    10. Procédé selon l'une quelconque des revendications 7 à 9, comprenant en outre :
    l'oxydation de la couche métallique poreuse.
     
    11. Procédé selon l'une quelconque des revendications précédentes, dans lequel le premier matériau de masque (30) est choisi dans un groupe constitué par : des photoréserves et des matériaux polymères.
     
    12. Procédé selon l'une quelconque des revendications précédentes, dans lequel la première couche barrière (40) comprend au moins un matériau choisi dans un groupe constitué par : de l'oxynitrure de titane, du TiO2, du TaO2, du TiN, du SiO2, de l'oxyde d'aluminium, et de l'oxyde de métal réfractaire.
     




    Drawing


















    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description