(19)
(11)EP 2 777 264 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
29.07.2020 Bulletin 2020/31

(21)Application number: 12788295.9

(22)Date of filing:  23.10.2012
(51)International Patent Classification (IPC): 
H04N 19/126(2014.01)
H04N 19/176(2014.01)
H04N 19/162(2014.01)
H04N 19/129(2014.01)
H04N 19/463(2014.01)
(86)International application number:
PCT/JP2012/006784
(87)International publication number:
WO 2013/069216 (16.05.2013 Gazette  2013/20)

(54)

IMAGE CODING APPARATUS, IMAGE CODING METHOD, IMAGE DECODING APPARATUS, IMAGE DECODING METHOD, AND STORAGE MEDIUM

BILDKODIERUNGSVORRICHTUNG, BILDKODIERUNGSVERFAHREN, BILDDEKODIERUNGSVORRICHTUNG, BILDDEKODIERUNGSVERFAHREN UND SPEICHERMEDIUM

APPAREIL DE CODAGE D'IMAGE, PROCÉDÉ DE CODAGE D'IMAGE, APPAREIL DE DÉCODAGE D'IMAGE, PROCÉDÉ DE DÉCODAGE D'IMAGE ET SUPPORT DE STOCKAGE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 07.11.2011 JP 2011243942
18.01.2012 JP 2012008199
14.03.2012 JP 2012057424
16.04.2012 JP 2012093113

(43)Date of publication of application:
17.09.2014 Bulletin 2014/38

(60)Divisional application:
20181270.8
20181271.6

(73)Proprietor: Canon Kabushiki Kaisha
Tokyo 146-8501 (JP)

(72)Inventor:
  • SHIMA, Masato
    Tokyo 146-8501 (JP)

(74)Representative: Uffindell, Christine Helen 
Canon Europe Ltd European Patent Department 3 The Square Stockley Park
Uxbridge, Middlesex UB11 1ET
Uxbridge, Middlesex UB11 1ET (GB)


(56)References cited: : 
WO-A2-2005/072312
  
  • GERGELY KORODI ET AL: "QuYK", 96. MPEG MEETING; 21-3-2011 - 25-3-2011; GENEVA; (MOTION PICTURE EXPERT GROUP OR ISO/IEC JTC1/SC29/WG11),, no. m19982, 20 March 2011 (2011-03-20), XP030048549,
  • RAPPORTEUR Q6/16: "H.264 Advanced video coding for generic audiovisual services (Rev): Output draft (for Consent)", ITU-T SG16 MEETING; 14-3-2011 - 25-3-2011; GENEVA,, no. T09-SG16-110314-TD-WP3-0188, 21 March 2011 (2011-03-21), XP030100592, cited in the application
  • LEE J H ET AL: "AN EFFICIENT ENCODING OF DCT BLOCKS WITH BLOCK-ADAPTIVE SCANNING", IEICE TRANSACTIONS ON COMMUNICATIONS, COMMUNICATIONS SOCIETY, TOKYO, JP, vol. E77-B, no. 12, 1 December 1994 (1994-12-01), pages 1489-1494, XP000498064, ISSN: 0916-8516
  • KWON S K ET AL: "Overview of H.264/MPEG-4 part 10", JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, ACADEMIC PRESS, INC, US, vol. 17, no. 2, 1 April 2006 (2006-04-01), pages 186-216, XP024905089, ISSN: 1047-3203, DOI: 10.1016/J.JVCIR.2005.05.010 [retrieved on 2006-04-01]
  • S-C LIM ET AL: "Diagonal scan for quantization matrix coefficients", 9. JCT-VC MEETING; 100. MPEG MEETING; 27-4-2012 - 7-5-2012; GENEVA; (JOINT COLLABORATIVE TEAM ON VIDEO CODING OF ISO/IEC JTC1/SC29/WG11 AND ITU-T SG.16 ); URL: HTTP://WFTP3.ITU.INT/AV-ARCH/JCTVC-SITE/,, no. JCTVC-I0102, 16 April 2012 (2012-04-16), XP030111865,
  • SZE V ET AL: "Parallelization of HHI_TRANSFORM_CODING", 94. MPEG MEETING; 11-10-2010 - 15-10-2010; GUANGZHOU; (MOTION PICTURE EXPERT GROUP OR ISO/IEC JTC1/SC29/WG11),, no. M18267, 5 October 2010 (2010-10-05), XP030046857,
  
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description

[Technical Field]



[0001] The present invention relates to an image coding apparatus, an image coding method, an image decoding apparatus, an image decoding method, and a storage medium. More specifically, the present invention relates to a coding/decoding method of a quantization matrix in an image.

[Background Art]



[0002] As a compression recording standard of a moving image, there is known H.264/MPEG-4 AVC (hereinafter referred to as H.264). (ITU-T H.264 (03/2010) Advanced video coding for generic audiovisual services) Regarding H.264, each element of a quantization matrix can be changed into an arbitrary value by coding scaling list information. According to chapter 7.3.2.1.1.1 of H.264, by adding a delta scale being a difference value between an element and its previous element, each element of the quantization matrix can take an arbitrary value.

[0003] Regarding H.264, elements of the quantization matrix are scanned in the direction from the element in the upper left corner of the two-dimensional quantization matrix, which corresponds to a low frequency component, to the element in the bottom right corner, which corresponds to a high frequency component. For example, in coding a two-dimensional quantization matrix illustrated in Fig. 6A, a scanning method called zigzag scanning illustrated in Fig. 13A is used. According to this processing, the quantization matrix is arranged into a one-dimensional matrix illustrated in Fig. 6B. Then, the difference between an element to be coded in the matrix and its previous element is calculated, and the matrix of the difference values illustrated in Fig. 6D is obtained. Further, the difference values are coded as a delta scale by a method called signed Exp-Golomb coding illustrated in Fig. 5A. For example, if the difference between an element in the matrix and its previous element is 0, a binary code 1 is coded. If the difference is -2, a binary code 00101 is coded.

[0004] However, regarding the zigzag scanning used in H.264, since elements of the quantization matrix are scanned in the diagonal direction, the amount of code of the quantization matrix is increased depending on the characteristics of the quantization matrix.

[0005] In WO 2005/072312 A2 (MATSUSHITA ELECTRIC IND CO L TD [JP]; KADONO SHINYA [JP]; KASHIWAGI YOS) 11 August 2005 (2005-08-11) quantization matrices are scanned with zig-zag or horizontal scanning pattern and are differentially encoded.

[0006] RAPPORTEUR 06/16: "H.264 Advanced video coding for generic audiovisual services (Rev): Output draft (for Consent)", ITU-T SG16 MEETING; 14-3-2011 - 25-3-2011; GENEVA, no. T09-SG16-110314-TD-WP3-0188, 21 March 2011 (2011-03-21), XP030100592, discloses scanning the quantization matrix using zig-zag scanning.

[0007] GERGELY KORODI ET AL: "QuYK", 96. MPEG MEETING; 21-3-2011 - 25-3-2011; GENEVA; (MOTION PICTURE EXPERT GROUP OR ISO/IEC JTC1/SC29/WG11), no. m19982, 20 March 2011 (2011-03-20), XP030048549, discloses using a vertical like scanning.

[0008] In SZE V ET AL: "Parallelization of HHI_TRANSFORM_CODING", 94. MPEG MEETING; 11-10-2010 - 15-10-201 O; GUANGZHOU; (MOTION PICTURE EXPERT GROUP OR ISO/IEC JTC1/SC29/WG11), no. M18267, 5 October 2010 (2010-10-05), XP030046857, all diagonal scans are in the same top-right direction to scan the transform coefficients (not the quantization matrix). [Summary of Invention]

[0009] The present invention is directed to realizing high efficiency coding/decoding of quantization matrices by introducing a unidirectional scanning method such as horizontal/vertical scanning in the coding of quantization matrices.

[0010] According to a first aspect of the present invention there is provided a coding apparatus as defined by claim 1.

[0011] According to a second aspect of the present invention there is provided a decoding apparatus as defined by claim 2.

[0012] According to a third aspect of the present invention there is provided a coding method as defined by claim 3.

[0013] According to a fourth aspect of the present invention there is provided a decoding method as defined by claim 4.

[0014] According to further aspects of the present invention there are provided computer-readable media as defined by claims 5, 6, 7 and 8.

[0015] According to an exemplary embodiment of the present invention, the amount of code necessary in coding quantization matrices can be reduced and high efficiency coding/decoding becomes possible.

[0016] Further features and aspects of the present invention will become apparent from the following detailed description of exemplary embodiments with reference to the attached drawings.

[Brief Description of Drawings]



[0017] The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate exemplary embodiments, features, and aspects of the invention and, together with the description, serve to explain the principles of the invention.

[0018] 

[Fig. 1] Fig. 1 is a block diagram illustrating a configuration of a first image coding apparatus.

[Fig. 2] Fig. 2 is a block diagram illustrating a configuration of a first image decoding apparatus.

[Fig. 3] Fig. 3 is a block diagram illustrating a configuration of a second image coding apparatus.

[Fig. 4] Fig. 4 is a block diagram illustrating a configuration of a second image decoding apparatus.

[Fig. 5A] Fig. 5A illustrates an example of a coding table of plus-minus symmetry.

[Fig. 5B] Fig. 5B illustrates an example of a coding table of plus-minus asymmetry.

[Fig. 6A] Fig. 6A illustrates an example of a quantization matrix.

[Fig. 6B] Fig. 6B illustrates an example of a quantization matrix.

[Fig. 6C] Fig. 6C illustrates an example of a quantization matrix.

[Fig. 6D] Fig. 6D illustrates an example of a difference matrix.

[Fig. 6E] Fig. 6E illustrates an example of a difference matrix.

[Fig. 7] Fig. 7 illustrates a coding example of a quantization matrix.

[Fig. 8A] Fig. 8A illustrates an example of a bit stream structure.

[Fig. 8B] Fig. 8B illustrates an example of a bit stream structure.

[Fig. 9] Figs. 9 is a flowchart illustrating image coding processing of the first image coding apparatus.

[Fig. 10] Fig. 10 is a flowchart illustrating image decoding processing of the first image decoding apparatus.

[Fig. 11] Fig. 11 is a flowchart illustrating image coding processing of the second image coding apparatus.

[Fig. 12] Fig. 12 is a flowchart illustrating image decoding processing of the second image decoding apparatus.

[Fig. 13A] Fig. 13A illustrates an example of a scanning method and a difference calculation method of coefficients of a quantization matrix.

[Fig. 13B] Fig. 13B illustrates an example of a scanning method and a difference calculation method of coefficients of a quantization matrix.

[Fig. 13C] Fig. 13C illustrates an example of a scanning method and a difference calculation method of coefficients of a quantization matrix.

[Fig. 13D] Fig. 13D illustrates an example of a scanning method and a difference calculation method of coefficients of a quantization matrix.

[Fig. 13E] Fig. 13E illustrates an example of a scanning method and a difference calculation method of coefficients of a quantization matrix.

[Fig. 14] Fig. 14 is a block diagram illustrating a configuration example of hardware of a computer applicable to the image coding apparatus and the decoding apparatus according to exemplary embodiments of the present invention.

[Fig. 15] Fig. 15 illustrates a coding example of a quantization matrix.

[Fig. 16A] Fig. 16A illustrates an example of a scanning method and a difference calculation method of coefficients of a quantization matrix.

[Fig. 16B] Fig. 16B illustrates an example of a scanning method and a difference calculation method of coefficients of a quantization matrix.

[Fig. 16C] Fig. 16C illustrates an example of a scanning method and a difference calculation method of coefficients of a quantization matrix.

[Fig. 17A] Fig. 17A illustrates an example of a quantization matrix.

[Fig. 17B] Fig. 17B illustrates an example of a difference matrix.

[Fig. 17C] Fig. 17C illustrates an example of a difference matrix.

[Fig. 18A] Fig. 18A illustrates an example of a scanning method of coefficients of a quantization matrix for use in a fourth image coding apparatus and in a fourth image decoding apparatus embodying the present invention.

[Fig. 18B] Fig. 18B illustrates an example of an alternative scanning method of coefficients of a quantization matrix.

[Fig. 18C] Fig. 18C illustrates an example of a scanning method of coefficients of a quantization matrix for use in the fourth image coding apparatus and in the fourth image decoding apparatus.

[Fig. 19A] Fig. 19A illustrates an example of a quantization matrix for use in the fourth image coding apparatus and in the fourth image decoding apparatus.

[Fig. 19B] Fig. 19B illustrates an example of a difference matrix for use in the fourth image coding apparatus and in the fourth image decoding apparatus.

[Fig. 20A] Fig. 20A illustrates an example of a scanning method of coefficients of a quantization matrix for use in the fourth image coding apparatus and in the fourth image decoding apparatus.

[Fig. 20B] Fig. 20B illustrates an example of a first alternative scanning method of coefficients of a quantization matrix.

[Fig. 20C] Fig. 20C illustrates an example of a second alternative scanning method of coefficients of a quantization matrix.

[Fig. 20D] Fig. 20D illustrates an example of a third alternative scanning method of coefficients of a quantization matrix.


[Description of Embodiments]



[0019] Various exemplary embodiments, features, and aspects of the invention will be described in detail below with reference to the drawings.

[0020] In the context of the present specification, a scanning method for a two-dimensional matrix illustrated in Fig. 13B is called horizontal scanning and a scanning method for a two-dimensional matrix illustrated in Fig. 13D is called vertical scanning.

[0021] Fig. 1 is a block diagram illustrating a first image coding apparatus not embodying the present invention. The first image coding apparatus does not directly embody the present invention because it involves scanning a two-dimensional quantization matrix using a zigzag scanning method (Fig. 13A), a horizontal scanning method (Fig. 13B), a vertical scanning method (Fig. 13D) or a variant thereof (Fig. 13C or 13E). However, later a fourth image coding apparatus - - which does embody the present invention - is described with reference to Fig. 18A and this builds on the first image coding apparatus.

[0022] In Fig. 1, a block division unit 101 divides an input image into a plurality of blocks.

[0023] A prediction unit 102 performs prediction of each block divided by the block division unit 101 in block units, determines a prediction method, calculates difference values according to the determined prediction method, and further calculates prediction errors. If an intra frame of a moving image or a still image is to be processed, intra prediction is performed. If an inter frame of a moving image is to be processed, motion compensated prediction is performed as well as the intra prediction. The intra prediction is generally realized by selecting an optimum prediction method from a plurality of methods in calculating predicted values from data of neighboring pixels.

[0024] A transformation unit 103 performs orthogonal transform to the prediction errors of each block. The transformation unit 103 performs the orthogonal transform in units of blocks to calculate transform coefficients. The size of the block is the size of the input block or a size obtained by further segmenting the input block. In the following description, a block which is to be transformed by the orthogonal transform is called a transformation block. Although the method of the orthogonal transform is not limited, discrete cosine transform or Hadamard transform can be used. Further, according to the present embodiment, a prediction error in block units of 8 x 8 pixels is divided into two portions lengthwise and breadthwise and a resulting 4 x 4 pixel transformation block is used in the orthogonal transform to simplify the description. However, the size and the shape of the transformation block are not limited to such an example. For example, the orthogonal transform can be performed by using a transformation block of the same block size or a transformation block obtained by dividing the block into smaller portions than is obtained when the block is divided into two portions lengthwise and breadthwise.

[0025] A quantization matrix storing unit 106 generates and stores quantization matrices. The generation method of the quantization matrices which are stored in the quantization matrix storing unit 106 is not limited. Thus, it can be quantization matrices input by the user, quantization matrices calculated from characteristics of an input image, or quantization matrices designated in advance as initial values. In the first image coding apparatus, a two-dimensional quantization matrix corresponding to a transformation block of 4 x 4 pixels illustrated in Fig. 6A is generated and stored.

[0026] A quantization unit 104 quantizes the transform coefficients using the quantization matrices stored in the quantization matrix storing unit 106. Quantization coefficients are obtained by this quantization process.

[0027] A coefficient coding unit 105 codes the quantization coefficients obtained in this manner and generates quantization coefficient coded data. Although the coding method is not limited, coding such as Huffman coding and arithmetic coding can be used.

[0028] A quantization matrix scanning unit 109 scans the two-dimensional quantization matrices stored in the quantization matrix storing unit 106, calculates the difference of each element, and arranges it in one-dimensional matrices. In the first image codign apparatus, the difference arranged in this one-dimensional matrix is called a difference matrix.

[0029] A quantization matrix coding unit 107 codes the difference matrices (one-dimensional matrices) arranged by the quantization matrix scanning unit 109 and generates quantization matrix coded data. An integration coding unit 108 generates header information as well as codes which are associated with the prediction or transformation, and also integrates the quantization coefficient coded data generated by the coefficient coding unit 105 and the quantization matrix coded data generated by the quantization matrix coding unit 107. The code associated with the prediction or transformation is, for example, a code associated with the selection of the prediction method or the division of the transformation block.

[0030] The coding operation of an image performed by the above-described image coding apparatus will now be described. Although in the present example moving image data is input in frame units, still image data of one frame can also be input. Further, in the present example, in order to simplify the description, only the processing of intra prediction coding is described. However, the present invention can also be applied to processing of inter prediction coding. In the present example, although the block division unit 101 divides an input image into blocks of 8 x 8 pixels, the size of the blocks is not limited to such an example.

[0031] Next, coding of elements of the quantization matrices is performed before the coding of the image. First, the quantization matrix storing unit 106 generates the quantization matrices. The quantization matrices are determined according to the size of the block that is coded. The determination method of the element of the quantization matrices is not limited. For example, a predetermined initial value can be used or a value which is individually set can be used. Further, the value can be generated and set according to the characteristics of the image.

[0032] The quantization matrix generated in this manner is stored in the quantization matrix storing unit 106. Fig. 6A illustrates an example of a quantization matrix which corresponds to a transformation block of 4 x 4 pixels. A thick frame 600 represents the quantization matrix. In order to simplify the description, the quantization matrix has the size of 16 pixels that correspond to the transformation block of 4 x 4 pixels, and each cell of the matrix represents an element. Although in the present example the quantization matrix illustrated in Fig. 6A is stored in a two-dimensional matrix, elements in the quantization matrix are not limited to such an example. For example, if a transformation block of 8 x 8 pixels is to be used in addition to the block size of the present embodiment, a different quantization matrix that corresponds to the transformation block of 8 x 8 pixels needs to be stored.

[0033] The quantization matrix scanning unit 109 reads out the two-dimensional quantization matrices stored in the quantization matrix storing unit 106 in order, scans each element, calculates the difference, and arranges the elements in one-dimensional matrices. In the present example, vertical scanning illustrated in Fig. 13D is used, and the difference between an element and its previous element is calculated for each element in the scanning order. However, the scanning method and the calculation method of the difference are not limited to such an example. The horizontal scanning illustrated in Fig. 13B can be used as the scanning method and the difference between an element and its previous element can be calculated for each element in the scanning order. Further, while using the scanning method illustrated in Fig. 13B, the difference regarding the elements on the left end can be calculated by obtaining a difference between the upper elements as illustrated in Fig. 13C. Thus, the difference between an element and its previous element is calculated as is performed in Fig. 13B except for the elements on the left end. Further, while using the scanning method illustrated in Fig. 13D, the difference regarding the elements on the top can be calculated by obtaining a difference between the left elements as illustrated in Fig. 13E. Thus, the difference between an element and its previous element is calculated as is performed in Fig. 13D except for the elements on the top. In the present example, the two-dimensional quantization matrix illustrated in Fig. 6A is scanned using the vertical scanning illustrated in Fig. 13D, and the difference between each element and its previous element is calculated, and the difference matrix illustrated in Fig. 6E is generated. Further, the difference value that corresponds to the first element of the matrix is obtained by calculating the difference between the value of the first element and a predetermined initial value. Although the initial value is set to 8 in the present example, an arbitrary value can be used as the initial value or a value of the first element itself can be coded.

[0034] The quantization matrix coding unit 107 reads out the difference matrices from the quantization matrix scanning unit 109 in order, codes the difference matrices, and generates the quantization matrix coded data. In the present example, the difference matrices are coded by using a coding table illustrated in Fig. 5A. However, the coding table is not limited to such an example and, for example, a coding table illustrated in Fig. 5B can be used.

[0035] Fig. 7 illustrates an example of a result obtained by calculating the difference matrix of the quantization matrix illustrated in Fig. 6A using the scanning methods in Figs. 13A and 13D and coding the difference matrix using the coding table illustrated in Fig. 5A. The columns of the element in Fig. 7 present the results obtained from scanning each element in the quantization matrix illustrated in Fig. 6A, and the columns of the difference value present the difference value between an element and the predetermined initial value 8 or the previous element. The columns of the code of the zigzag scanning present codes in a case where the zigzag scanning of the conventional method illustrated in Fig. 13A is used, and a total of 68 bits is necessary. On the other hand, columns of the code of the vertical scanning present codes in a case where the vertical scanning illustrated in Fig. 13D is used, and a total of 60 bits is necessary. Thus, by employing the vertical scanning, the same quantization matrix can be coded with a smaller amount of code. The coded data of the quantization matrices generated in this manner is input to the integration coding unit 108. The integration coding unit 108 codes header information necessary in coding the image data, and integrates the coded data of the quantization matrices.

[0036] Next, coding of the image data is performed. When image data of one frame is input to the block division unit 101, it is divided into block units of 8 x 8 pixels. The divided image data is input to the prediction unit 102.

[0037] The prediction unit 102 performs the prediction in block units to generate prediction errors. The transformation unit 103 divides the prediction errors generated by the prediction unit 102 into blocks of a transformation block size and performs orthogonal transform to obtain transform coefficients. Then, the obtained transform coefficients are input to the quantization unit 104. In the present example, prediction errors in block units of 8 x 8 pixels is divided into transformation block units of 4 x 4 pixels to perform orthogonal transform.

[0038] Referring back again to Fig. 1, the quantization unit 104 quantizes the transform coefficients output from the transformation unit 103 by using the quantization matrices stored in the quantization matrix storing unit 106 and generates quantization coefficients. The generated quantization coefficients are input to the coefficient coding unit 105.

[0039] The coefficient coding unit 105 codes the quantization coefficients generated by the quantization unit 104, generates quantization coefficient coded data, and outputs the generated quantization coefficient coded data to the integration coding unit 108. The integration coding unit 108 generates codes associated with the prediction and transformation in block units, integrates the codes in block units and the quantization coefficient coded data generated by the coefficient coding unit 105 together with the coded data of the header, and generates a bit stream. Then, the integration coding unit 108 outputs the generated bit stream.

[0040] Fig. 8A illustrates an example of a bit stream that is output by the first image coding apparatus. The sequence header includes the coded data of the quantization matrices and thus includes the results of the coding of each element. The position of the coded data, however, is not limited to such an example. For example, the coded data can be included in the picture header portion or other header portions. Further, if a change in the quantization matrix is to be performed in one sequence, the quantization matrix can be updated by newly coding the quantization matrix. In such a case, the entire quantization matrix can be rewritten. Further, if a scanning method and a transformation block size of the quantization matrix to be rewritten are designated, a portion of the quantization matrix can be changed according to the designation.

[0041] Fig. 9 is a flowchart illustrating the image coding processing performed by the first image coding apparatus. In step S901, the quantization matrix storing unit 106 generates quantization matrices.

[0042] In step S902, the quantization matrix scanning unit 109 scans the quantization matrices generated in step S901, calculates the difference between elements, and generates difference matrices. In the first image coding apparatus, a quantization matrix illustrated in Fig. 6A is scanned using the scanning method illustrated in Fig. 13D, and a difference matrix illustrated in Fig. 6E is generated. However, the quantization matrices and the scanning method are not limited to such examples.

[0043] In step S903, the quantization matrix coding unit 107 codes the difference matrices generated in step S902. In the first image coding apparatus, the quantization matrix coding unit 107 codes the difference matrices illustrated in Fig. 6E using the coding table illustrated in Fig. 5A. However, the coding table is not limited to such a table.

[0044] In step S904, the integration coding unit 108 codes and outputs the header portion of the bit stream. In step S905, the block division unit 101 divides the input image in a unit of frame into a unit of block. In step S906, the prediction unit 102 performs prediction in block units and generates prediction errors.

[0045] In step S907, the transformation unit 103 divides the prediction errors generated in step S906 into blocks of a transformation block size, performs the orthogonal transform, and generates transform coefficients. In step S908, the quantization unit 104 generates quantization coefficients by quantizing the transform coefficients generated in step S907 using the quantization matrices generated in step S901 and stored in the quantization matrix storing unit 106.

[0046] In step S909, the coefficient coding unit 105 codes the quantization coefficients generated in step S908, and generates quantization coefficient coded data. In step S910, the image coding apparatus determines whether the coding of all the transformation blocks in the block is completed, If the coding of all the transformation blocks is completed (YES in step S910), the processing proceeds to step S911. If the coding of all the transformation blocks is not yet completed (NO in step S910), the processing returns to step S907 and the next transformation block is processed.

[0047] In step S911, the image coding apparatus determines whether the coding of all the blocks is completed. If the coding of all the blocks is completed (YES in step S911), the image coding apparatus stops all the operations and then the processing ends. If the coding of all the blocks is not yet completed (NO in step S911), the processing returns to step S905, and the next block is processed.

[0048] According to the above-described configuration and operation, especially, by the calculation processing of the difference matrix by the unidirectional scanning of the quantization matrix in step S902, a bit stream including a smaller amount of code of the quantization matrices can be generated.

[0049] Although in the present example a frame that uses only intra prediction is described, it is apparent that the present invention can be applied to a frame that can use inter prediction.

[0050] Further, although in the present example a block of 8 x 8 pixels and a transformation block of 4 x 4 pixels are used, the present invention is not limited to such examples. For example, the block size can be 16 x 16 pixels or 32 x 32 pixels. Further, the shape of the block is not limited to a square and, for example, a rectangle of 16 x 8 pixels can be used.

[0051] Further, although the transformation block size is half of the block size lengthwise and breadthwise in the present example, the transformation block size can be the same as the block size or further smaller than half the size of the block lengthwise and breadthwise.

[0052] Further, in the present example, the difference matrices are generated and then coded. However, the quantization matrix coding unit 107 can directly calculate the difference values from the quantization matrices using a predetermined scanning method and code the difference values. In such a case, the quantization matrix scanning unit 109 is not necessary.

[0053] Further, if different quantization matrices are to be used depending on the scanning method of the transform coefficients, the scanning method of elements of the quantization matrix can be determined according to the scanning method of the transform coefficients.

[0054] Further, although in the present example a case with only one quantization matrix is described, the quantization matrix is not necessarily one. For example, if different quantization matrices are provided for luminance/chrominance, a common quantization matrix scanning method can be used or a different scanning method can be provided.

[0055] Fig. 2 is a block diagram illustrating a configuration of a first image decoding apparatus not embodying the present invention. With reference to the first image decoding apparatus, decoding of the bit stream generated in the first image coding apparatus of Fig. 1 will now be described.

[0056] In Fig. 2, a decoding/separating unit 201 decodes the header information of the input bit stream, separates necessary codes from the bit stream, and outputs the separated codes to the subsequent stages. The decoding/separating unit 201 performs an inverse operation of the operation performed by the integration coding unit 108 illustrated in Fig. 1. A quantization matrix decoding unit 206 decodes the quantization matrix coded data from the header information of the bit stream and generates difference matrices.

[0057] A quantization matrix inverse scanning unit 208 reproduces quantization matrices by performing inverse scanning of the difference matrices generated by the quantization matrix decoding unit 206. The quantization matrix inverse scanning unit 208 performs an inverse operation of the operation performed by the quantization matrix scanning unit 109 illustrated in Fig. 1. A quantization matrix storing unit 207 stores the quantization matrices reproduced by the quantization matrix inverse scanning unit 208.

[0058] On the other hand, a coefficient decoding unit 202 decodes quantization coefficients from the code separated by the decoding/separating unit 201 and reproduces quantization coefficients. An inverse quantization unit 203 performs inverse quantization of the quantization coefficients by using the quantization matrices stored in the quantization matrix storing unit 207, and reproduces transform coefficients. An inverse transformation unit 204 performs inverse orthogonal transform, which is an inverse operation of the operation performed by the transformation unit 103 illustrated in Fig. 1, and reproduces prediction errors. A prediction reconfiguration unit 205 reproduces block image data from the reproduced prediction errors and neighboring image data already decoded.

[0059] The decoding operation of an image according to the above-described image decoding apparatus will now be described. In the present example, although a bit stream of a moving image generated in the first exemplary embodiment is input in the unit of frame, a bit stream of a still image of one frame can also be input. Further, in the present example, in order to simplify the description, only intra prediction decoding process is described. However, the present invention can also be applied to inter prediction decoding process.

[0060] Regarding the illustration in Fig. 2, a bit stream of one frame is input to the decoding/separating unit 201, and header information necessary in reproducing the image is decoded. Further, codes used in the subsequent stages are separated from the header information and output. The quantization matrix coded data included in the header information is input to the quantization matrix decoding unit 206 and one-dimensional difference matrices are reproduced. In the first image decoding apparatus, by using the decoding table illustrated in Fig. 5A, a difference value of each element of the quantization matrices is decoded and the difference matrices are reproduced. However, the decoding table is not limited to the table illustrated in Fig. 5A. The reproduced difference matrices are input to the quantization matrix inverse scanning unit 208.

[0061] The quantization matrix inverse scanning unit 208 calculates each element of the quantization matrices from each difference value in the input difference matrices, performs inverse scanning, and reproduces the two-dimensional quantization matrices. The reproduced quantization matrices are input to and stored in the quantization matrix storing unit 207. Further, out of the codes separated by the decoding/separating unit 201, the quantization coefficient coded data is input to the coefficient decoding unit 202. Further, the coefficient decoding unit 202 decodes the quantization coefficient coded data for each transformation block, reproduces the quantization coefficients, and outputs the reproduced quantization coefficients to the inverse quantization unit 203.

[0062] The inverse quantization unit 203 inputs the quantization coefficients reproduced by the coefficient decoding unit 202 and the quantization matrices stored in the quantization matrix storing unit 207. Then, the inverse quantization unit 203 performs inverse quantization by using the quantization matrices, reproduces the transform coefficients, and outputs the reproduced transform coefficients to the inverse transformation unit 204. The inverse transformation unit 204 performs the inverse orthogonal transform, which is an inverse operation of the operation performed by the transformation unit 103 illustrated in Fig. 1, by using the input transform coefficients, reproduces the prediction errors, and outputs the prediction errors to the prediction reconfiguration unit 205. The prediction reconfiguration unit 205 performs the prediction based on the input prediction errors and using the data of the neighboring decoding-finished pixels, reproduces the image data in block units, and outputs the image data.

[0063] Fig. 10 is a flowchart illustrating the image decoding processing of the first image decoding apparatus.

[0064] In step S1001, the decoding/separating unit 201 decodes the header information and separates the codes to be output to the subsequent stages. In step S 1002, the quantization matrix decoding unit 206 decodes the quantization matrix coded data included in the header information using the decoding table illustrated in Fig. 5A and generates difference matrices necessary in the quantization matrix reproduction. In step S 1003, the quantization matrix inverse scanning unit 208 calculates each element of the quantization matrices from the difference matrices generated in step S 1002, performs inverse scanning, and reproduces two-dimensional quantization matrices.

[0065] In step S 1004, the coefficient decoding unit 202 decodes the quantization coefficient coded data in units of transformation blocks and reproduces quantization coefficients. In step S 1005, the inverse quantization unit 203 performs inverse quantization to the quantization coefficients reproduced in step S1004 by using the quantization matrices reproduced in step S1003, and reproduces transform coefficients. In step S1006, the inverse transformation unit 204 performs the inverse orthogonal transformation to the transform coefficients reproduced in step S1005, and reproduces the prediction errors. In step S1007, the image decoding apparatus determines whether the decoding of all the transformation blocks in the block is completed. If the decoding of all the transformation blocks is completed (YES in step S 1007), the processing proceeds to step S1008. If the decoding of all the transformation blocks is not yet completed (NO in step S1007), the processing returns to step S1004, and the next transformation block is processed.

[0066] In step S 1008, the prediction reconfiguration unit 205 performs the prediction using the neighboring pixels already decoded, adds the result to the prediction errors reproduced in step S 1006, and reproduces the decoded image of the block. In step S 1009, the image decoding apparatus determines whether the decoding of all the blocks is completed. If the decoding of all the blocks is completed (YES in step S 1009), all the operations are stopped and the processing ends. If the decoding of all the blocks is not yet completed (NO in step S1009), the processing returns to step S 1003, and the next block is processed.

[0067] According to the above-described processing, decoding of the bit stream having a smaller amount of code of the quantization matrix generated by the first image coding apparatus is performed, and the reproduced image can be obtained. Further, as described in relation to the first image coding apparatus, the size of the block, the size of the transformation block, and the shape of the block are not limited to the above-described examples.

[0068] Further, in the present example, the difference value of each element of the quantization matrix is decoded using the decoding table illustrated in Fig. 5A. However, the decoding table is not limited to such an example.

[0069] Further, if one sequence of a bit stream contains several quantization matrix coded data, the quantization matrices can be updated. In such a case, the decoding/separating unit 201 detects the quantization matrix coded data, decodes the quantization matrix coded data by the quantization matrix decoding unit 206, and generates difference matrices. The generated difference matrices are inversely scanned by the quantization matrix inverse scanning unit 208 and quantization matrices are reproduced. Then, corresponding data of the quantization matrices stored in the quantization matrix storing unit 207 is rewritten by the reproduced data of the quantization matrices. In such a case, the entire quantization matrix can be rewritten. Alternatively, a portion of the quantization matrix can be rewritten by determining the portion to be rewritten.

[0070] Although in the present example the processing is performed after the coded data of one frame is accumulated, the present invention is not limited to such an example. For example, the data can be input in a unit of block or in a unit of slice. A slice includes a plurality of blocks. Further, in place of blocks, data divided into packets of a fixed length can be input.

[0071] Further, in the present example, although the quantization matrix is reproduced after the difference matrix is generated, the quantization matrix decoding unit 206 can directly reproduce the quantization matrix by using a predetermined scanning method after decoding the difference value. In such a case, the quantization matrix inverse scanning unit 208 is not necessary.

[0072] Further, if different quantization matrices are to be used depending on the scanning method of the transform coefficients, the scanning method of elements of the quantization matrices can be determined according to the scanning method of the transform coefficients.

[0073] Fig. 3 is a block diagram illustrating a second image coding apparatus not embodying the present invention. In Fig. 3, components similar to those of the first image coding apparatus illustrated in Fig. 1 are denoted by the same reference numerals and their descriptions are not repeated.

[0074] A scanning control information generation unit 321 generates quantization matrix scanning method information, which is information of a scanning method of each quantization matrix. A quantization matrix scanning unit 309 determines the scanning method based on the quantization matrix scanning method information generated by the scanning control information generation unit 321, scans the quantization matrices stored in the quantization matrix storing unit 106, calculates difference values, and generates difference matrices.

[0075] An integration coding unit 308 generates header information and codes associated with the prediction and the transformation as is performed by the integration coding unit 108 in Fig. 1. The integration coding unit 308 is different from the integration coding unit 108 such that it inputs the quantization matrix scanning method information generated by the scanning control information generation unit 321 and codes it.

[0076] The image coding operation performed by the above-described image coding apparatus will now be described.

[0077] The scanning control information generation unit 321 generates the quantization matrix scanning method information, which indicates the scanning method of each quantization matrix and the calculation method of the difference value. In the second image coding apparatus, if the quantization matrix scanning method information is 0, the quantization matrix is scanned using the scanning method illustrated in Fig. 13A. Then, a difference value between an element and its previous element in the scanning order is calculated for all the elements, and the difference matrix is generated. Further, if the quantization matrix scanning method information is 1, the quantization matrix is scanned using the scanning method illustrated in Fig. 13B. Then, a difference value between an element and its previous element in the scanning order is calculated for all the elements, and the difference matrix is generated. Furthermore, if the quantization matrix scanning method information is 2, the quantization matrix is scanned using the scanning method illustrated in Fig. 13D. Then, a difference value between an element and its previous element in the scanning order is calculated for all the elements, and the difference matrix is generated. The scanning method of each element of the quantization matrix and the difference calculation method are not limited to the above-described examples, and methods other than those described with reference to Figs. 13A, 13B, and 13D can be used. For example, the difference calculation methods illustrated in Figs. 13C and 13E can be used. Further, the combination of the quantization matrix scanning method information and the scanning method of the quantization matrix is not limited to the above-described example. The generation method of the quantization matrix scanning method information is not limited. Thus, the information can be a value input by the user, a value designated as a fixed value, or a value calculated from the characteristics of the quantization matrices stored in the quantization matrix storing unit 106. The generated quantization matrix scanning method information is input to the quantization matrix scanning unit 309 and the integration coding unit 308.

[0078] Based on the quantization matrix scanning method information which has been input, the quantization matrix scanning unit 309 scans each quantization matrix stored in the quantization matrix storing unit 106, calculates a difference value, generates a difference matrix, and outputs the difference matrix to the quantization matrix coding unit 107.

[0079] The integration coding unit 308 codes the quantization matrix scanning method information generated by the scanning control information generation unit 321, generates a quantization matrix scanning method information code, and outputs the generated quantization matrix scanning method information code by implementing it in the header information. Although the coding method is not limited, Huffman coding and arithmetic coding can be used. Fig. 8B illustrates an example of a bit stream including the quantization matrix scanning method information code. The quantization matrix scanning method information code can be included in either the sequence header or the picture header. However, it needs to exist before each piece of quantization matrix coded data.

[0080] Fig. 11 is a flowchart illustrating the image coding processing of the second image coding apparatus. In Fig. 11, steps similar to those of the flowchart of Fig. 9 performed by the first image coding apparatus are denoted by the same reference numerals and their descriptions are not repeated.

[0081] In step S1151, the scanning control information generation unit 321 determines the quantization matrix scanning method to be performed in step S1152 and generates quantization matrix scanning method information. In step S1152, the quantization matrix scanning unit 309 calculates the difference values by scanning the quantization matrices generated in step S901 by using the quantization matrix scanning method determined in step S1151, and generates difference matrices. In step S1153, the quantization matrix coding unit 107 codes the difference matrices generated in step S1152. In step S1154, the quantization matrix coding unit 107 codes the quantization matrix scanning method information, generates the quantization matrix scanning method information code, implements it in the header portion as other codes are implemented, and outputs the code.

[0082] According to the above-described configuration and operation, each quantization matrix is scanned by an optimum scanning method, and a bit stream with a smaller amount of code of the quantization matrix can be generated. Further, if different quantization matrices are to be used depending on the scanning method of the transform coefficients, the scanning method of elements of the quantization matrices can be determined according to the scanning method of the transform coefficients. If a different scanning method is to be used, a flag indicating such a method and quantization matrix scanning method information to be used can be coded.

[0083] Further, although in the present example a case where one quantization matrix is used is described, the quantization matrix is not necessarily one. For example, if different quantization matrices are provided for luminance/chrominance, common coded information of a quantization matrix scanning method can be used or a different scanning method can be provided, coded, and used.

[0084] Further, the scanning control information generation unit 321 can generate the scanning method by referencing the quantization matrices generated by the quantization matrix storing unit 106. Further, as described above, if a plurality of scanning methods is prepared in advance, a desirable scanning method can be selected from the scanning methods and used as the quantization matrix scanning information. Furthermore, the order of the elements that are scanned can be coded. Regarding the quantization matrix in Fig. 13A, an order such as 1, 2, 6, 7, 3, 5, 8, 13, 4, 9, 12, 14, 10, 11, 15, 16 can be coded and transmitted.

[0085] Fig. 4 is a block diagram illustrating a second image decoding apparatus not embodying the present invention. In Fig. 4, components similar to those of the first image decoding apparatus illustrated in Fig. 2 are denoted by the same reference numerals and their descriptions are not repeated. With reference to the second image decoding apparatus , decoding of the bit stream generated in the second image coding apparatus will be described.

[0086] A decoding/separating unit 401 decodes header information of the bit stream which has been input, separates the necessary codes from the bit stream and outputs the codes to the subsequent stages. The decoding/separating unit 401 is different from the decoding/separating unit 201 illustrated in Fig. 2 in that the quantization matrix scanning method information code is separated from the header information of the bit stream and that it is output to the subsequent stage.

[0087] A scanning control information decoding unit 421 decodes the quantization matrix scanning method information code separated by the decoding/separating unit 401, and reproduces the quantization matrix scanning method information. A quantization matrix inverse scanning unit 408 reproduces the quantization matrices by performing inverse scanning of the difference matrices generated by the quantization matrix decoding unit 206 based on the quantization matrix scanning method information.

[0088] The image decoding operation of the above-described image decoding apparatus will now be described.

[0089] In Fig. 4, a input bit stream of one frame is input to the decoding/separating unit 401 and header information necessary in reproducing the image is decoded. Further, the codes used in the subsequent stages are separated and output. The quantization matrix scanning method information code included in the header information is input to the scanning control information decoding unit 421, and quantization matrix scanning method information is reproduced. Then, the reproduced quantization matrix scanning method information is input to the quantization matrix inverse scanning unit 408. On the other hand, the quantization matrix coded data included in the header information is input to the quantization matrix decoding unit 206.

[0090] The quantization matrix decoding unit 206 decodes the quantization matrix coded data and reproduces the difference matrices. The reproduced difference matrices are input to the quantization matrix inverse scanning unit 408. The quantization matrix inverse scanning unit 408 inversely scans the difference matrices input from the quantization matrix decoding unit 206 based on the quantization matrix scanning method information, adds the difference in units of elements, and reproduces the quantization matrices. The reproduced quantization matrices are stored in the quantization matrix storing unit 207.

[0091] Fig. 12 is a flowchart illustrating the image decoding processing of the second image decoding apparatus. In Fig. 12, steps similar to those of the flowchart of Fig. 10 performed by the first image decoding apparatus are denoted by the same reference numerals and their descriptions are not repeated.

[0092] In step S1001, the decoding/separating unit 401 decodes the header information. In step S1251, the scanning control information decoding unit 421 decodes the quantization matrix scanning method information code included in the header information, and reproduces the quantization matrix scanning method information. In step S1253, the quantization matrix inverse scanning unit 408 performs inverse scanning of the difference matrices reproduced in step S1252 by using the information of the scanning method of the quantization matrix reproduced in step S1251, and reproduces the quantization matrices.

[0093] According to the above-described configuration and operation, each quantization matrix generated by the second image coding apparatus is scanned by an optimum scanning method, and a bit stream with a smaller amount of code of the quantization matrix is decoded, and a reproduced image is obtained.

[0094] Further, if different quantization matrices are to be used depending on the scanning method of the orthogonal transform coefficient, the scanning method of elements of the quantization matrices can be determined according to the scanning method of the transform coefficients. If a different scanning method is to be used, a flag indicating such a method and quantization matrix scanning method information to be used can be coded.

[0095] Next, a third image coding apparatus, also not embodying the present invention, will be described. The configuration of the third image coding apparatus is similar to the first image coding apparatus illustrated in Fig. 1. However, the operation of the quantization matrix scanning unit 109 is different. Since, in the third image coding apparatus, processing other than the processing of the quantization matrix scanning unit 109 is similar to that of the first image coding apparatus, the description of such processing is not repeated.

[0096] The quantization matrix scanning unit 109 in the third image coding apparatus reads out the quantization matrices in a two-dimensional shape in order from the quantization matrix storing unit 106, calculates the difference between each element and its predicted value, scans the calculated difference, and arranges the obtained result in one-dimensional matrices. The calculation method of the difference is different from the method used by the quantization matrix scanning unit 109 of the first image coding apparatus.

[0097] In the third image coding apparatus, as illustrated in Fig. 16C, a predicted value is calculated by referencing the left and upper elements, and the calculated predicted value is scanned by horizontal scanning illustrated in Fig. 16A. Then, the obtained result is arranged in a one-dimensional matrix. Regarding the calculation method of the predicted value, although the element with a larger value out of the left and the upper elements is used as the predicted value in the present example, the calculation method is not limited to such an example. For example, the smaller value can be used as the predicted value or a mean value of the two elements can be used as the predicted value. Regarding the coding of the elements in the first row of the matrix, the left element is considered as the predicted value. Further, regarding the coding of the elements in the leftmost column of the matrix, the upper element is considered as the predicted value. Further, the difference value that corresponds to the first element of the matrix is obtained by calculating the difference between the value of the first element and a predetermined initial value. Although in the present example the initial value is set to 8, an arbitrary value can be used or a value of the first element itself can be used. Further, the scanning method is not limited to the horizontal scanning. In other words, a different scanning method, such as the vertical scanning illustrated in Fig. 16B, can be used so long as it is a unidirectional scanning method.

[0098] The flowchart of the image coding process of the third image coding apparatus is similar to the flowchart of Fig. 9 performed by the first image coding apparatus except for the operation in step S902. Since operations other than what is performed in step S902 are similar to those described in relation to the first image coding apparatus, their descriptions are not repeated.

[0099] In step S902, the quantization matrix scanning unit 109 calculates the difference of each element of the quantization matrices generated in step S901, scans the difference which has been calculated, and generates difference matrices. The present example describes a case where the quantization matrix illustrated in Fig. 17A is generated in step S901. A two-dimensional difference value matrix illustrated in Fig. 17B is calculated using the largest value out of the upper and the left elements of the generated quantization matrix illustrated in Fig. 16C as the predicted value. Then, the obtained difference value matrix is scanned by horizontal scanning illustrated in Fig. 16A, and the difference matrix illustrated in Fig. 17C is generated. If the upper and the left elements are used, the value which is used for the difference value calculation method is not limited to the largest value, and the smallest value or a mean value can also be used. Further, the scanning method is not limited to the horizontal scanning and a different scanning method can be used so long as it is a unidirectional scanning method.

[0100] Fig. 15 is a table obtained by calculating the difference values of the quantization matrix illustrated in Fig. 17A by using the largest value of the upper and the left elements as a predicted value as illustrated in Fig. 16C, scanning the difference value by using the scanning method illustrated in Fig. 16A, and coding it using the coding table illustrated in Fig. 5A. The column of the difference value in Fig. 15 shows a result obtained by scanning the difference value between the predicted value and each element horizontally, where the predicted value is a predetermined initial value (8) or a largest value of the left and the upper elements. The values in this table are the same as those of the difference matrix illustrated in Fig. 17C. The column of the code in Fig. 15 shows a code obtained by the coding of the difference value using the coding table in Fig. 5A, and a total of 50 bits is necessary. This indicates that the quantization matrix can be coded with less than 68 bits necessary in the conventional method illustrated in Fig. 7. Further, it is further less than the 60 bits required in the first image coding apparatus.

[0101] According to the above-described configuration and operation, a bit stream which requires much less bits for the quantization matrices can be generated.

[0102] Although in the present example the predicted value is calculated by using the left and the upper elements, the predicted value can also be calculated, for example, by using an upper left element alternatively. Furthermore, an element other than such elements can also be used. In such a case, in addition to the largest, the smallest, and the mean values, a median value can also be used alternatively.

[0103] Next, a third image decoding apparatus, also not embodying the present invention, will be described. The third image decoding apparatus has a configuration similar to the first image decoding apparatus illustrated in Fig. 2. However, the operation of the quantization matrix inverse scanning unit 208 is different. Since the processing of the third image decoding apparatus is similar to that of the first image decoding apparatus except for the operation performed by the quantization matrix inverse scanning unit 208, the description of similar processing is not repeated. With reference to the third decoding apparatus, decoding of the bit stream generated by the third image coding apparatus will be described.

[0104] The quantization matrix inverse scanning unit 208 performs an inverse operation of the quantization matrix scanning unit 109 in the third image coding apparatus. The difference matrices input to the quantization matrix inverse scanning unit 208 have each of the difference values inversely scanned and two-dimensional difference value matrices are reproduced. Further, each element of the quantization matrices is calculated and two-dimensional quantization matrices are reproduced. In the third image decoding apparatus, the difference matrices are inversely scanned using the horizontal scanning illustrated in Fig. 16A and two-dimensional difference value matrices are reproduced. Further, each element of the quantization matrices is calculated from the left and the upper element and the difference value as illustrated in Fig. 16C, and two-dimensional quantization matrices are reproduced. The method for the inverse scanning is not limited to the horizontal scanning, and a vertical scanning illustrated in Fig. 16B can also be used. In other words, any scanning method can be used so long as it is a unidirectional scanning method. As for the calculation method of each element of the quantization matrices, in the present example, the element with a larger value out of the left and the upper elements is determined as the predicted value, and the sum of the predicted value and the difference value is considered as the value of each element of the quantization matrices. However, the predicted value of each element is not limited to such a value. For example, a smaller value out of the left and the upper elements or a mean value of the two elements can be employed as the predicted value. Then, a sum of the predicted value and the difference value is determined as the value of each element of the quantization matrices. Further, regarding the reproduction of the elements at the top row of the matrix, their left element is used as the predicted value. Furthermore, regarding the reproduction of the elements at the left end of the matrix, their upper element is used as the predicted value. Then, a sum of the predicted value and the difference value is determined as the value of each element. Further, regarding the reproduction of the first element of the matrix, the predetermined initial value is used as the predicted value. Then, a sum of the predicted value and the difference value is determined as the value of the first element of the matrix. Although in the present example the initial value is set to 8, an arbitrary value can be used as the initial value or a value of the first element itself can be coded. Further, the scanning method is not limited to the horizontal scanning. In other words, a different scanning method, such as the vertical scanning illustrated in Fig. 16B, can be used so long as it is a unidirectional scanning method.

[0105] The flowchart of the image decoding processing in the third image decoding apparatus is similar to the flowchart of Fig. 10 performed by the first image decoding apparatus except for the operation in step S 1003. Thus, operations other than step S 1003 are similar to those of the first image decoding apparatus and their descriptions are not repeated.

[0106] In step S 1003, the quantization matrix inverse scanning unit 208 reproduces two-dimensional difference value matrices by performing inverse scanning of each difference value obtained from the difference matrices generated in step S1002. Further, two-dimensional quantization matrices are reproduced by calculation of each element of the quantization matrices. In the third image decoding apparatus, the difference matrix illustrated in Fig. 17C is used in describing this processing. The difference matrix is inversely scanned by the horizontal scanning illustrated in Fig. 16A, and a two-dimensional difference value matrix illustrated in Fig. 17B is calculated. Then, a larger value out of the upper and the left elements is determined as the predicted value. Further a sum of each predicted value and each difference value is set as the value of each element of the quantization matrix. The inverse scanning method is not limited to the horizontal scanning so long as it is a unidirectional inverse scanning method. Further, an element of a smaller value out of the left and the upper elements or a mean value of the elements can be used as the predicted value alternatively in obtaining the value of each element used for the reproduction of each element of the quantization matrix.

[0107] According to the above-described configuration and operation, a reproduced image can be obtained by decoding the bit stream with a smaller amount of code of the quantization matrix generated by the third image coding apparatus.

[0108] Although in the present example the predicted value is calculated by using the left and the upper elements, the predicted value can also be calculated, for example, by using an upper left element alternatively. Furthermore, an element other than such elements can also be used. In such a case, in addition to the largest, the smallest, and the mean values, a median value can also be used alternatively.

[0109] Next, a fourth image coding apparatus will be described. The fourth image coding apparatus embodies the present invention. The configuration of the fourth image coding apparatus is similar to the first image coding apparatus illustrated in Fig. 1. However, the operation of the quantization matrix scanning unit 109 is different. Since, processing other than the processing of the quantization matrix scanning unit 109 is similar to that of the first image coding apparatus, the description of such processing is not repeated.

[0110] The quantization matrix scanning unit 109 reads out the quantization matrices in two-dimensional shape in order from the quantization matrix storing unit 106, calculates the difference between each element and the predicted value, scans the calculated differences, and arranges the obtained result in one-dimensional matrices. The calculation method of the difference values is different from the method used by the quantization matrix scanning unit 109 of the first image coding apparatus.

[0111] According to the present embodiment, the diagonal unidirectional scanning illustrated in Fig. 18A is used and the difference between an element and its previous element is calculated for each element in the scanning order. Further, if a transformation block size of 8 x 8 pixels is additionally used in the present embodiment, a unidirectional scanning in the diagonal direction corresponding to the 8 x 8 pixels transformation block illustrated in Fig. 18C is used.

[0112] Incidentally, a diagonal unidirectional scanning illustrated in Fig. 18B can also be used alternatively but such use does not embody the present invention. The scanning direction in Fig. 18B and the scanning direction in Fig. 18A are symmetric with respect to a diagonal line.

[0113] The flowchart of the image coding process according to the present embodiment is similar to the flowchart according to the first image coding apparatus illustrated in Fig. 9 except for the operation in step S902. Since operations other than what is performed in step S902 are similar to those described in the first exemplary embodiment, their descriptions are not repeated.

[0114] In step S902, the quantization matrix scanning unit 109 scans the quantization matrices generated in step S901. Then, the difference of each element is calculated and difference matrices are generated. According to the present embodiment, the quantization matrix illustrated in Fig. 19A is scanned by the scanning method illustrated in Fig. 18A, and the difference matrix illustrated in Fig. 19B is generated. However, the quantization matrix and the scanning method are not limited to such examples.

[0115] According to the above-described configuration and operation, for a video coding method that uses diagonal scanning illustrated in Fig. 18A in place of the zigzag scanning illustrated in Fig. 13A to code quantization coefficients, a bit stream with similar or higher efficiency can be generated while saving memory used by sharing scanning method.

[0116] In recent years, JCT-VC (Joint Collaborative Team on Video Coding) has been created by experts from ISO/IEC and ITU-T to develop a new international video coding standard as a successor of H.264. According to the contribution JCTVC-J0150 submitted to JCT-VC, it is reported that equivalent or slightly improved efficiency is confirmed by employing a diagonal scanning method, which is equivalent to the method of the present embodiment, for the coding of the quantization matrices. Further, since zigzag scanning is not used in High Efficiency Video Coding (HEVC), which is under standardization in JCT-VC, a memory-saving effect by sharing the scanning method is also reported in the contribution. <http://phenix.int-evry.fr/jct/doc_end_user/documents/10_Stockholm/wg11/>

[0117] Further, as illustrated in Figs. 20A to 20D, if the quantization matrix is divided into a number of small matrices, the small matrices can be scanned by the unidirectional scanning. In this manner, the scanning method of the 4 x 4 quantization matrix can be applied to a quantization matrix of a larger size, and the memory necessary in storing the scanning order information can be reduced.

[0118] Next, a fourth image decoding apparatus will be described. The fourth image decoding apparatus embodies the present invention. The fourth image decoding apparatus has a configuration similar to the first image decoding apparatus illustrated in Fig. 2. However, the operation of the quantization matrix inverse scanning unit 208 is different. Since, the processing of the present embodiment is similar to that of the first image decoding apparatus except for the operation performed by the quantization matrix inverse scanning unit 208, the description of similar processing is not repeated. According to the present embodiment, decoding of the bit stream generated by the fourth image coding apparatus will be described.

[0119] The quantization matrix inverse scanning unit 208 performs an inverse operation of the quantization matrix scanning unit 109 in the fourth image coding apparatus. The difference matrices input to the quantization matrix inverse scanning unit 208 have each element of the quantization matrix calculated from each difference value. Then, the calculated elements are inversely scanned and two-dimensional quantization matrices are reproduced.

[0120] According to the present embodiment, each element of the quantization matrices is calculated from each difference value of the difference matrices, and the obtained element is inversely scanned using the scanning method illustrated in Fig. 18A to reproduce two-dimensional quantization matrices.

[0121] Incidentally, the inverse scanning method is not limited to the method illustrated in Fig. 18A and the diagonal unidirectional scanning illustrated in Fig. 18B can be used alternatively, but such use does not embody the present invention. The scanning direction in Fig. 18B and the scanning direction in Fig. 18A are symmetric with respect to a diagonal line.

[0122] The flowchart of the image decoding processing according to the present embodiment is similar to the flowchart of the first image decoding apparatus illustrated in Fig. 10 except for the operation in step S1003. Thus, operations other than step S1003 are similar to those of the first image decoding apparatus and their descriptions are not repeated.

[0123] In step S1003, the quantization matrix inverse scanning unit 208 reproduces two-dimensional quantization matrices by calculating each element of the quantization matrices from the difference matrices generated in step S1002 and performing inverse scanning of each element. According to the present embodiment, each element of the quantization matrix is calculated from the difference matrix illustrated in Fig. 19B, and each calculated element is inversely scanned using the inverse scanning method illustrated in Fig. 18A. Consequently, the quantization matrix illustrated in Fig. 19A is reproduced. The difference matrix and the inverse scanning method are not limited to such examples.

[0124] According to the above-described configuration and operation, a reproduced image can be obtained by decoding a bit stream with similar or slightly better coding efficiency generated by fourth image coding apparatus while saving memory used by sharing the scanning method.

[0125] According to the above-described exemplary embodiment, each processing unit illustrated in Figs. 1 to 4 is realized by a hardware component. However, the processing performed by each processing unit illustrated in Figs. 1 to 4 can be performed by a computer-executable program.

[0126] Fig. 14 is a block diagram illustrating an example of a hardware configuration of a computer which can be used for the image processing apparatus according to the above-described exemplary embodiments.

[0127] A central processing unit (CPU) 1401 controls the entire computer according to a computer program or data stored in a random access memory (RAM) 1402 or a read-only memory (ROM) 1403. Further, the CPU 1401 executes the above-described processing performed by the image processing apparatus according to the above-described exemplary embodiments. In other words, the CPU 1401 functions as each of the processing units illustrated in Figs. 1 to 4.

[0128] The RAM 1402 includes an area used for temporarily storing a computer program or data loaded from an external storage device 1406 or data acquired externally via an interface (I/F) 1407. Further, the RAM 1402 includes a work area which is used when the CPU 1401 executes various types of processing. In other words, the RAM 1402 can be assigned as a frame memory or arbitrarily provide other various areas.

[0129] Setting data of the computer and programs such as a boot program are stored in the ROM 1403. An operation unit 1404 includes a keyboard or a mouse. By the user of the computer operating the operation unit 1404, various instructions are input to the CPU 1401. An output unit 1405 outputs the result of the processing executed by the CPU 1401. The output unit 1405 is, for example, a display device such as a liquid crystal display and is capable of displaying the processing result.

[0130] The external storage device 1406 is a large capacity information storage unit typified by a hard disk drive device. An operating system (OS) and a computer program, which is used when the CPU 1401 realizes the function of each unit illustrated in Figs. 1 to 4, are stored in the external storage device 1406. Further, each image data as a processing object can be stored in the external storage device 1406.

[0131] The computer program or data stored in the external storage device 1406 is loaded into the RAM 1402 as appropriate according to the control of the CPU 1401 and processed by the CPU 1401. A network such as a local area network (LAN) or the Internet and other apparatus such as a projection apparatus or a display device can be connected to an I/F 1407, so that the computer can receive and transmit various pieces of information via the I/F 1407. A bus 1408 connects each of the above-described units.

[0132] The operation realized by the above-described configuration is performed mainly by the CPU 1401. The processing described with reference to the flowchart described above is controlled by the CPU 1401.

[0133] The present invention can be achieved when a storage medium storing code of a computer program that realizes the above-described function is supplied to the system and the system reads out and executes the code of the computer program. In this case, the program code read out from the storage medium itself realizes the function of the above-described exemplary embodiment, and the storage medium which stores the program code constitutes the present invention. Further, a case where an OS or the like, which runs on a computer, executes a part or whole of the actual processing based on an instruction of the program code so that a function of the above-described function is realized is also included in the present invention.

[0134] Furthermore, the present invention can be achieved by the following configuration. Specifically, the computer program code read out from the storage medium is written in a memory provided in a function expanding card inserted in a computer or a function expanding unit connected to the computer, and a CPU provided in the function expanding card or the function expanding unit performs the whole or a part of the actual processing based on an instruction from the computer program code to realize the functions of the above-described exemplary embodiment. The above-described configuration is also included in the present invention.

[0135] When the present invention is applied to the above-described storage medium, the code of the computer program corresponding to the flowchart described above is stored in the storage medium.

[0136] While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all modifications, equivalent structures, and functions falling within the scope of the appended claims.

[0137] This application claims priority from Japanese Patent Applications No. 2011-243942 filed November 7, 2011, No. 2012-008199 filed January 18, 2012, No. 2012-057424 filed March 14, 2012, and No. 2012-093113 filed April 16, 2012.


Claims

1. A coding apparatus for coding an image in units of two-dimensional blocks comprising:

block dividing means (101) configured to divide an input image into a plurality of two-dimensional blocks;

prediction means (102) configured to perform prediction based on a coded pixel to generate prediction errors;

transformation means (103) configured to perform orthogonal transform on the prediction errors to generate transform coefficients;

quantization matrix generation means (104, 106) configured to generate a two-dimensionally expressed quantization matrix of size 4 x 4 that is used to quantize the transform coefficients in such a two-dimensional block;

quantization means (104) configured to generate quantized coefficients by quantizing the generated transform coefficients using the quantization matrix;

coefficient coding means (105) configured to code the quantized coefficients; and

quantization matrix coding means (107, 109) configured to scan elements of the matrix in a scanning order made up of a first scanning step followed by two or more successive sequences of scanning steps followed by a penultimate scanning step followed by a last scanning step, each said scanning step moving from a start position to an end position, and the end position of one scanning step in the scanning order being the start position of the next scanning step in the scanning order, the start position of the first scanning step being a top-left position of the matrix,

the end position of the first scanning step being a position immediately below the top-left position,
the penultimate scanning step being an up-right scanning step, the end position of the last scanning step being the bottom-right position of the matrix,
the start position of the last scanning step being the position immediately above the bottom-right position,
each said sequence:

(i) starting at a position along a left or bottom edge of the matrix and

(ii) ending at a position immediately below the starting position, or immediately to the right of the starting position, as the case may be, and

(iii) also having a reversing position between the starting and ending positions, the reversing position being along a top edge of the matrix in the case where the starting position is along the left edge or being along a right edge of the matrix in the case where the starting position is along the bottom edge, and

(iv) being made up of one or more up-right scanning steps between the starting position and the reversing position of the sequence concerned, followed by a single down-left scanning step between the reversing position and the ending position of the sequence concerned,
the end position of each said up-right scanning step being a position immediately above and immediately to the right of the start position of the up-right scanning step concerned, and

the quantization matrix coding means (107, 109) being configured to calculate N difference values, a first difference value being a difference between the matrix element at the top-left position of the quantization matrix and a predetermined initial value, and an n-th difference value being a difference between the matrix element at the end position of the (n-1)th scanning step and the matrix element at the start position of the (n-1) th scanning step, n being an integer from 2 to N, and the quantization matrix coding means being further configured to code the N calculated difference values.
 
2. A decoding apparatus for decoding a bit stream including coded data of an image, the decoding apparatus comprising:

decoding/separating means (201) configured to decode header information of the bit stream and to separate required coded data from the bit stream;

coefficient decoding means (202) configured to decode quantized coefficients from quantization coefficient coded data included in the separated coded data;

quantization matrix decoding means (206) for decoding quantization matrix coded data included in the separated coded data to generate a plurality of difference values, each said difference value representing a difference between a pair of elements included in a two-dimensional quantization matrix of size 4 x 4 used to quantize a two-dimensional block of the image, the elements being arranged in the two-dimensional quantization matrix in a scanning order made up of a first scanning step followed by two or more successive sequences of scanning steps followed by a penultimate scanning step followed by a last scanning step, each said scanning step moving from a start position to an end position, and the end position of one scanning step in the scanning order being the start position of the next scanning step in the scanning order,
the start position of the first scanning step being a top-left position of the matrix,
the end position of the first scanning step being a position immediately below the top-left position,
the penultimate scanning step being an upright scanning step, the end position of the last scanning step being the bottom-right position of the matrix,
the start position of the last scanning step being the position immediately above the bottom-right position,
each said sequence:

(i) starting at a position along a left or bottom edge of the matrix an

(ii) ending at a position immediately below the starting position, or immediately to the right of the starting position, as the case may be, and

(iii) also having a reversing position between the starting and ending positions, the reversing position being along a top edge of the matrix in the case where the starting position is along the left edge or being along a right edge of the matrix in the case where the starting position is along the bottom edge, and

(iv) being made up of one or more up-right scanning steps between the starting position and the reversing position of the sequence concerned, followed by a single down-left scanning step between the reversing position and the ending position of the sequence concerned,
the end position of each said up-right scanning step being a position immediately above and immediately to the right of the start position of the up-right scanning step concerned; and

reconstruction means (208) for reconstructing the two-dimensional quantization matrix from the difference values generated by the quantization matrix decoding means, the reconstructed quantization matrix being for use in performing inverse quantization on a block of the image;

wherein the reconstruction means is configured to calculate elements of the reconstructed quantization matrix and arrange them in accordance with the scanning order such that:

a first element is calculated by adding a predetermined initial value and a first said difference value and is arranged at the start position of the first scanning step in the scanning order,

an n-th element is calculated by adding an n-th said difference value and an (n-1)th element of the reconstructed matrix, n being an integer from 2 to N, where N is the number of said difference values, and is arranged at the end position of the (n-1)th scanning step in the scanning order;

the decoding apparatus further comprising inverse quantization means (203) configured to generate transform coefficients in the two-dimensional block by performing inverse quantization on the quantized coefficients using the reconstructed quantization matrix.


 
3. A coding method for coding an image in units of two-dimensional blocks comprising:

dividing an input image into a plurality of two-dimensional blocks;

performing prediction based on a coded pixel to generate prediction errors;

performing orthogonal transform on the prediction errors to generate transform coefficients;

generating (S901) a two-dimensionally expressed quantization matrix of size 4 x 4 that is used to quantize such a two-dimensional block;

scanning (S902) elements of the matrix in a scanning order made up of a first scanning step followed by two or more successive sequences of scanning steps followed by a penultimate scanning step followed by a last scanning step, each said scanning step moving from a start position to an end position, and the end position of one scanning step in the scanning order being the start position of the next scanning step in the scanning order,
the start position of the first scanning step being a top-left position of the matrix,
the end position of the first scanning step being a position immediately below the top-left position,
the penultimate scanning step being an up-right scanning step, the end position of the last scanning step being the bottom-right position of the matrix,
the start position of the last scanning step being the position immediately above the bottom-right position,
each said sequence:

(i) starting at a position along a left or bottom edge of the matrix and

(ii) ending at a position immediately below the starting position, or immediately to the right of the starting position, as the case may be, and

(iii) also having a reversing position between the starting and ending positions, the reversing position being along a top edge of the matrix in the case where the starting position is along the left edge or being along a right edge of the matrix in the case where the starting position is along the bottom edge, and

(iv) being made up of one or more up-right scanning steps between the starting position and the reversing position of the sequence concerned, followed by a single down-left scanning step between the reversing position and the ending position of the sequence concerned,
the end position of each said up-right scanning step being a position immediately above and immediately to the right of the start position of the up-right scanning step concerned, and

calculating (S902) N difference values, a first difference value being a difference between the matrix element at the top-left position of the quantization matrix and a predetermined initial value, and an n-th difference value being a difference between the matrix element at the end position of the (n-1)th scanning step and the matrix element at the start position of the (n-1) th scanning step, n being an integer from 2 to N, and

coding (S903) the N calculated difference values.


 
4. A decoding method for decoding a bit stream including coded data of an image, the decoding method comprising:

decoding (S1001) header information of the bit stream and separating required coded data from the bit stream;

decoding (S1004) quantized coefficients from quantization coefficient coded data included in the separated coded data;

decoding (S1002) quantization matrix coded data included in the separated coded data to generate a plurality of difference values, each said difference value representing a difference between a pair of elements included in a two-dimensional quantization matrix of size 4 x 4 used to quantize a two-dimensional block of the image, the quantized transform coefficients being arranged in the two-dimensional quantization matrix in a scanning order made up of a first scanning step followed by two or more successive sequences of scanning steps followed by a penultimate scanning step followed by a last scanning step,
each said scanning step moving from a start position to an end position, and the end position of one scanning step in the scanning order being the start position of the next scanning step in the scanning order,
the start position of the first scanning step being a top-left position of the matrix,
the end position of the first scanning step being a position immediately below the top-left position,
the penultimate scanning step being an up-right scanning step, the end position of the last scanning step being the bottom-right position of the matrix,
the start position of the last scanning step being the position immediately above the bottom-right position,
each said sequence:

(i) starting at a position along a left or bottom edge of the matrix and

(ii) ending at a position immediately below the starting position, or immediately to the right of the starting position, as the case may be, and

(iii) also having a reversing position between the starting and ending positions, the reversing position being along a top edge of the matrix in the case where the starting position is along the left edge or being along a right edge of the matrix in the case where the starting position is along the bottom edge, and

(iv) being made up of one or more up-right scanning steps between the starting position and the reversing position of the sequence concerned, followed by a single down-left scanning step between the reversing position and the ending position of the sequence concerned,
the end position of each said up-right scanning step being a position immediately above and immediately to the right of the start position of the up-right scanning step concerned;

reconstructing (S1003) the two-dimensional quantization matrix from said difference values, the reconstructed quantization matrix being for use in performing inverse quantization on a block of the image; and

wherein the reconstructing involves calculating elements of the reconstructed quantization matrix and arranging them in accordance with the scanning order such that:

a first element is calculated by adding a predetermined initial value and a first said difference value and is arranged at the start position of the first scanning step in the scanning order,

an n-th element is calculated by adding an n-th said difference value and an (n-1)th element of the reconstructed matrix, n being an integer from 2 to N, where N is the number of said difference values, and is arranged at the end position of the (n-1)th scanning step in the scanning order;

the decoding method further comprising generating transform coefficients in the two-dimensional block by performing inverse quantization (S1005) on the quantized coefficients using the reconstructed quantization matrix.


 
5. A computer-readable storage medium storing computer-executable instructions that, when loaded and executed by a computer, cause the computer to perform a coding method according to claim 3.
 
6. A computer-readable storage medium storing computer-executable instructions that, when loaded and executed by a computer, cause the computer to perform a decoding method according to claim 4.
 
7. A computer-readable storage medium storing a program that, when loaded and executed by a computer, causes the computer to function as the coding apparatus according to claim 1.
 
8. A computer-readable storage medium storing a program that, when loaded and executed by a computer, causes the computer to function as the decoding apparatus according to claim 2.
 


Ansprüche

1. Kodiervorrichtung zum Kodieren eines Bilds in Einheiten von zweidimensionalen Blöcken, umfassend:

eine Blockaufteileinrichtung (101), die konfiguriert ist zum Aufteilen eines Eingabebilds in mehrere zweidimensionale Blöcke;

eine Vorhersageeinrichtung (102), die konfiguriert ist zum Durchführen einer Vorhersage basierend auf einem kodierten Pixel, um Vorhersagefehler zu erzeugen;

eine Umwandlungseinrichtung (103), die konfiguriert ist zum Durchführen einer orthogonalen Umwandlung an den Vorhersagefehlern, um Umwandlungskoeffizienten zu erzeugen;

eine Quantisierungsmatrixerzeugungseinrichtung (104, 106), die konfiguriert ist zum Erzeugen einer zweidimensional dargestellten Quantisierungsmatrix der Größe 4 x 4, die zum Quantisieren der Transformationskoeffizienten in solch einem zweidimensionalen Block verwendet wird;

eine Quantisierungseinrichtung (104), die konfiguriert ist zum Erzeugen von quantisierten Koeffizienten durch Quantisieren der erzeugten Umwandlungskoeffizienten unter Verwendung der Quantisierungsmatrix;

eine Koeffizientenkodiereinrichtung (105), die konfiguriert ist zum Kodieren der quantisierten Koeffizienten; und

eine Quantisierungsmatrixkodiereinrichtung (107, 109), die konfiguriert ist zum Abtasten von Elementen der Matrix in einer Abtastreihenfolge, die gebildet ist aus einem ersten Abtastschritt, gefolgt von zwei oder mehr aufeinanderfolgenden Sequenzen von Abtastschritten, gefolgt von einem vorletzten Abtastschritt, gefolgt von einem letzten Abtastschritt, wobei ein jeweiliger Abtastschritt sich von einer Startposition zu einer Endposition bewegt, und die Endposition eines Abtastschritts in der Abtastreihenfolge die Startposition des nächsten Abtastschritts in der Abtastreihenfolge ist,

die Startposition des ersten Abtastschritts eine Position oben links in der Matrix ist,

die Endposition des ersten Abtastschritts eine Position unmittelbar unter der Position oben links ist,

der vorletzte Abtastschritt ein Abtastschritt von unten nach oben rechts ist,

die Endposition des letzten Abtastschritts die Position in der Matrix ist, die sich unten rechts befindet,

die Startposition des letzten Abtastschritts die Position unmittelbar über der Position unten rechts ist,

wobei für eine jeweilige Sequenz gilt:

(i) Starten an einer Position entlang einer linken oder unteren Kante der Matrix und

(ii) Beenden an einer Position fallweise unmittelbar unter der Startposition oder unmittelbar rechts der Startposition, und

(iii) sie weist auch eine Umkehrposition zwischen den Start- und Endpositionen auf, wobei die Umkehrposition sich entlang einer oberen Kante der Matrix befindet, falls sich die Startposition entlang der linken Kante befindet, oder entlang einer rechten Kante der Matrix, falls sich die Startposition entlang der unteren Kante befindet, und

(iv) sie ist gebildet aus einem oder mehr Abtastschritten von unten nach oben rechts zwischen der Startposition und der Umkehrposition der betroffenen Sequenz, gefolgt von einem einzelnen Abtastschritt von oben nach unten links zwischen der Umkehrposition und der Endposition der betroffenen Sequenz,

wobei die Endposition eines jeweiligen Abtastschritts von unten nach oben rechts eine Position ist, die sich unmittelbar über und unmittelbar rechts der Startposition des betroffenen Abtastschritts von unten nach oben rechts befindet, und

die Quantisierungsmatrixkodiereinrichtung (107, 109) konfiguriert ist zum Berechnen von N Differenzwerten, wobei ein erster Differenzwert eine Differenz zwischen dem Matrixelement an der Position oben links der Quantisierungsmatrix und einem vorbestimmten Anfangswert ist, und einem n-ten Differenzwert, der eine Differenz zwischen dem Matrixelement an der Endposition des (n-1)ten Abtastschritts und dem Matrixelement an der Startposition des (n-1)ten Abtastschritts ist, wobei n eine ganze Zahl von 2 bis N ist, und die Quantisierungsmatrixkodiereinrichtung ferner konfiguriert ist zum Kodieren der N berechneten Differenzwerte.


 
2. Dekodiervorrichtung zum Dekodieren eines Bitstroms, der kodierte Daten eines Bilds enthält, wobei die Dekodiervorrichtung umfasst:

eine Dekodier-/Trennungseinrichtung (201), die konfiguriert ist zum Dekodieren von Headerinformation des Bitstroms und zum Trennen von erforderlichen kodierten Daten vom Bitstrom;

eine Koeffizientendekodiereinrichtung (202), die konfiguriert ist zum Dekodieren von quantisierten Koeffizienten von kodierten Quantisierungskoeffizientendaten, die in den getrennten kodierten Daten enthalten sind;

eine Quantisierungsmatrixdekodiereinrichtung (206) zum Dekodieren von kodierten Quantisierungsmatrixdaten, die in den getrennten kodierten Daten enthalten sind, zum Erzeugen mehrerer Differenzwerte, wobei ein jeweiliger Differenzwert eine Differenz darstellt zwischen einem Paar Elemente, das in einer zweidimensionalen Quantisierungsmatrix der Größe 4 x 4 enthalten ist, die verwendet wird zum Quantisieren eines zweidimensionalen Blocks des Bilds, wobei die Elemente in der zweidimensionalen Quantisierungsmatrix in einer Abtastreihenfolge angeordnet sind, die gebildet ist aus einem ersten Abtastschritt, gefolgt von zwei oder mehr aufeinanderfolgenden Sequenzen von Abtastschritten, gefolgt von einem vorletzten Abtastschritt, gefolgt von einem letzten Abtastschritt, wobei ein jeweiliger Abtastschritt sich von einer Startposition zu einer Endposition bewegt, und die Endposition eines Abtastschritts in der Abtastreihenfolge die Startposition des nächsten Abtastschritts in der Abtastreihenfolge ist,

die Startposition des ersten Abtastschritts eine Position in der Matrix ist, die sich oben links befindet,

die Endposition des ersten Abtastschritts eine Position unmittelbar unter der Position oben links ist,

der vorletzte Abtastschritt ein Abtastschritt von unten nach oben rechts ist,

die Endposition des letzten Abtastschritts die Position in der Matrix ist, die sich unten rechts befindet,

die Startposition des letzten Abtastschritts die Position unmittelbar über der Position unten rechts ist,

wobei für eine jeweilige Sequenz gilt:

(i) Starten an einer Position entlang einer linken oder unteren Kante der Matrix und

(ii) Beenden an einer Position unmittelbar unter der Startposition, oder unmittelbar rechts der Startposition, falls dies der Fall ist, und

(iii) sie weist auch eine Umkehrposition zwischen den Start- und Endpositionen auf, wobei die Umkehrposition sich entlang einer oberen Kante der Matrix befindet, falls sich die Startposition entlang der linken Kante oder entlang einer rechten Kante der Matrix befindet, falls sich die Startposition entlang der unteren Kante befindet, und

(iv) sie ist gebildet aus einem oder mehr Abtastschritten von unten nach oben rechts zwischen der Startposition und der Umkehrposition der betroffenen Sequenz, gefolgt von einem einzelnen Abtastschritt von oben nach unten links zwischen der Umkehrposition und der Endposition der betroffenen Sequenz,
wobei die Endposition eines jeweiligen Abtastschritts von unten nach oben rechts eine Position ist, die sich unmittelbar über und unmittelbar rechts der Startposition des betroffenen Abtastschritts von unten nach oben rechts befindet,

wobei die Dekodiervorrichtung weiterhin eine Rekonstruktionseinrichtung (208) umfasst, zum Rekonstruieren der zweidimensionalen Quantisierungsmatrix aus den Differenzwerten, die durch die Quantisierungsmatrixdekodiereinrichtung erzeugt wurden, wobei die rekonstruierte Quantisierungsmatrix zur Verwendung bei der Durchführung einer inversen Quantisierung an einem Block des Bildes dient;

wobei die Rekonstruktionseinrichtung konfiguriert ist zum Berechnen von Elementen der rekonstruierten Quantisierungsmatrix und Anordnen dieser gemäß der Abtastreihenfolge, sodass:

ein erstes Element berechnet wird durch Hinzufügen eines vorbestimmten Anfangswerts und eines ersten Differenzwertes und an der Startposition des ersten Abtastschritts in der Abtastreihenfolge angeordnet ist,

ein n-tes Element berechnet wird durch Hinzufügen eines n-ten Differenzwertes und eines (n-1)ten Elements der rekonstruierten Matrix, wobei n eine ganze Zahl von 2 bis N ist, wobei N die Anzahl der Differenzwerte ist, und an der Endposition des (n-1)ten Abtastschritts in der Abtastreihenfolge angeordnet ist; und

die Dekodiervorrichtung ferner eine inverse Quantisierungseinrichtung (203) umfasst, die konfiguriert ist zum Erzeugen von Umwandlungskoeffizienten im zweidimensionalen Block durch Durchführen einer inversen Quantisierung an den quantisierten Koeffizienten unter Verwendung der rekonstruierten Quantisierungsmatrix.


 
3. Kodierverfahren zum Kodieren eines Bilds in Einheiten von zweidimensionalen Blöcken, umfassend:

Aufteilen eines Eingabebilds in mehrere zweidimensionale Blöcke;

Durchführen einer Vorhersage basierend auf einem kodierten Pixel, um Vorhersagefehler zu erzeugen;

Durchführen orthogonaler Umwandlung an den Vorhersagefehlern, um Umwandlungskoeffizienten zu erzeugen;

Erzeugen (S901) einer zweidimensional dargestellten Quantisierungsmatrix der Größe 4 x 4, die zum Quantisieren eines solchen zweidimensionalen Blocks verwendet wird;

Abtasten (S902) von Elementen der Matrix in einer Abtastreihenfolge, die gebildet ist aus einem ersten Abtastschritt, gefolgt von zwei oder mehr aufeinanderfolgenden Sequenzen von Abtastschritten, gefolgt von einem vorletzten Abtastschritt, gefolgt von einem letzten Abtastschritt, wobei ein jeweiliger Abtastschritt sich von einer Startposition zu einer Endposition bewegt, und die Endposition eines Abtastschritts in der Abtastreihenfolge die Startposition des nächsten Abtastschritts in der Abtastreihenfolge ist,

und die Startposition des ersten Abtastschritts eine Position in der Matrix ist, die sich oben links befindet,

die Endposition des ersten Abtastschritts eine Position unmittelbar unter der Position oben links ist,

der vorletzte Abtastschritt ein Abtastschritt von unten nach oben rechts ist,

die Endposition des letzten Abtastschritts die Position in der Matrix ist, die sich unten rechts befindet,

die Startposition des letzten Abtastschritts die Position unmittelbar über der Position unten rechts ist,

wobei für eine jeweilige Sequenz gilt:

(i) Starten an einer Position entlang einer linken oder unteren Kante der Matrix und

(ii) Beenden an einer Position fallweise unmittelbar unter der Startposition oder unmittelbar rechts der Startposition, und

(iii) sie weist auch eine Umkehrposition zwischen den Start- und Endpositionen auf, wobei die Umkehrposition sich entlang einer oberen Kante der Matrix befindet, falls sich die Startposition entlang der linken Kante befindet, oder entlang einer rechten Kante der Matrix, falls sich die Startposition entlang der unteren Kante befindet, und

(iv) sie ist gebildet aus einem oder mehr Abtastschritten von unten nach oben rechts zwischen der Startposition und der Umkehrposition der betroffenen Sequenz, gefolgt von einem einzelnen Abtastschritt von oben nach unten links zwischen der Umkehrposition und der Endposition der betroffenen Sequenz,
wobei die Endposition eines jeweiligen Abtastschritts von unten nach oben rechts eine Position ist, die sich unmittelbar über und unmittelbar rechts der Startposition des betroffenen Abtastschritts von unten nach oben rechts befindet, und wobei das Kodierverfahren weiterhin umfasst:

Berechnen (S902) von N Differenzwerten, wobei ein erster Differenzwert eine Differenz zwischen dem Matrixelement an der Position oben links der Quantisierungsmatrix und einem vorbestimmten Anfangswert ist, und einem n-ten Differenzwert, der eine Differenz zwischen dem Matrixelement an der Endposition des (n-1)ten Abtastschritts und dem Matrixelement an der Startposition des (n-1)ten Abtastschritts ist, wobei n eine ganze Zahl von 2 bis N ist, und

Kodieren (S903) der N berechneten Differenzwerte.


 
4. Dekodierverfahren zum Dekodieren eines Bitstroms, der kodierte Daten eines Bilds enthält, wobei das Dekodierverfahren umfasst:

Dekodieren (S1001) von Headerinformation des Bitstroms und Trennen von erforderlichen kodierten Daten vom Bitstrom;

Dekodieren (S1004) von quantisierten Koeffizienten von kodierten Quantisierungskoeffizientendaten, die in den getrennten kodierten Daten enthalten sind;

Dekodieren (S1002) von kodierten Quantisierungsmatrixdaten, die in den getrennten kodierten Daten enthalten sind, um mehrere Differenzwerte zu erzeugen, wobei ein jeweiliger Differenzwert eine Differenz zwischen einem Paar Elemente darstellt, das in einer zweidimensionaler Quantisierungsmatrix der Größe 4 x 4 enthalten ist, die verwendet wird zum Quantisieren eines zweidimensionalen Blocks des Bilds, wobei die quantisierten Umwandlungskoeffizienten in der zweidimensionalen Quantisierungsmatrix in einer Abtastreihenfolge angeordnet sind, die gebildet ist aus einem ersten Abtastschritt, gefolgt von zwei oder mehr aufeinanderfolgenden Sequenzen von Abtastschritten, gefolgt von einem vorletzten Abtastschritt, gefolgt von einem letzten Abtastschritt,

wobei ein jeweiliger Abtastschritt sich von einer Startposition zu einer Endposition bewegt, und die Endposition eines Abtastschritts in der Abtastreihenfolge die Startposition des nächsten Abtastschritts in der Abtastreihenfolge ist,
und die Startposition des ersten Abtastschritts eine Position in der Matrix ist, die sich oben links befindet,

die Endposition des ersten Abtastschritts eine Position unmittelbar unter der Position oben links ist,

der vorletzte Abtastschritt ein Abtastschritt von unten nach oben rechts ist,

die Endposition des letzten Abtastschritts die Position in der Matrix ist, die sich unten rechts befindet,

die Startposition des letzten Abtastschritts die Position unmittelbar über der Position unten rechts ist,

wobei für eine jeweilige Sequenz gilt:

(i) Starten an einer Position entlang einer linken oder unteren Kante der Matrix und

(ii) Beenden an einer Position unmittelbar unter der Startposition, oder unmittelbar rechts der Startposition, falls dies der Fall ist, und

(iii) sie weist auch eine Umkehrposition zwischen den Start- und Endpositionen auf, wobei die Umkehrposition sich entlang einer oberen Kante der Matrix befindet, falls sich die Startposition entlang der linken Kante oder entlang einer rechten Kante der Matrix befindet, falls sich die Startposition entlang der unteren Kante befindet, und

(iv) sie ist gebildet aus einem oder mehr Abtastschritten von unten nach oben rechts zwischen der Startposition und der Umkehrposition der betroffenen Sequenz, gefolgt von einem einzelnen Abtastschritt von oben nach unten links zwischen der Umkehrposition und der Endposition der betroffenen Sequenz,
wobei die Endposition eines jeweiligen Abtastschritts von unten nach oben rechts eine Position ist, die sich unmittelbar über und unmittelbar rechts der Startposition des betroffenen Abtastschritts von unten nach oben rechts befindet,

wobei das Dekodierverfahren weiterhin Rekonstruieren (S1003) der zweidimensionalen Quantisierungsmatrix aus den Differenzwerten umfasst, wobei die rekonstruierte Quantisierungsmatrix zur Verwendung der Durchführung einer inversen Quantisierung an einem Block des Bildes dient; und

wobei die Rekonstruktion das Berechnen von Elementen der rekonstruierten Quantisierungsmatrix involviert sowie Anordnung dieser gemäß der Abtastreihenfolge, sodass:

ein erstes Element berechnet wird durch Hinzufügen eines vorbestimmten Anfangswerts und eines ersten Differenzwertes und an der Startposition des ersten Abtastschritts in der Abtastreihenfolge angeordnet ist,

ein n-tes Element berechnet wird durch Hinzufügen eines n-ten Differenzwertes und eines (n-1)ten Elements der rekonstruierten Matrix, wobei n eine ganze Zahl von 2 bis N ist, wobei N die Anzahl der Differenzwerte ist und an der Endposition des (n-1)ten Abtastschritts in der Abtastreihenfolge angeordnet ist;

das Dekodierverfahren ferner Erzeugen von Umwandlungskoeffizienten im zweidimensionalen Block durch Durchführen einer inversen Quantisierung (S1005) an den quantisierten Koeffizienten unter Verwendung der rekonstruierten Quantisierungsmatrix umfasst.


 
5. Computerlesbares Speichermedium, das computerausführbare Anweisungen speichert, die bei Laden in und bei Ausführung durch einen Computer diesen dazu veranlassen, ein Kodierverfahren nach Anspruch 3 durchzuführen.
 
6. Computerlesbares Speichermedium, das computerausführbare Anweisungen speichert, die bei Laden in und bei Ausführung durch einen Computer diesen dazu veranlassen, ein Dekodierverfahren nach Anspruch 4 durchzuführen.
 
7. Computerlesbares Speichermedium, das ein Programm speichert, das bei Laden in und bei Ausführung durch einen Computer diesen dazu veranlasst, als die Kodiervorrichtung nach Anspruch 1 zu funktionieren.
 
8. Computerlesbares Speichermedium, das ein Programm speichert, das bei Laden in und bei Ausführung durch einen Computer diesen dazu veranlasst, als die Dekodiervorrichtung nach Anspruch 2 zu funktionieren.
 


Revendications

1. Appareil de codage pour coder une image en unités de blocs bidimensionnels, comprenant :

un moyen de division en blocs (101) configuré pour diviser une image d'entrée en une pluralité de blocs bidimensionnels ;

un moyen de prédiction (102) configuré pour effectuer une prédiction sur la base d'un pixel codé pour générer des erreurs de prédiction ;

un moyen de transformation (103) configuré pour appliquer une transformée orthogonale aux erreurs de prédiction pour générer des coefficients de transformée ;

un moyen de génération de matrice de quantification (104, 106) configuré pour générer une matrice de quantification à expression bidimensionnelle d'une taille 4 x 4 qui sert à quantifier les coefficients de transformée dans un tel bloc bidimensionnel ;

un moyen de quantification (104) configuré pour générer des coefficients quantifiés par une quantification des coefficients de transformée générés au moyen de la matrice de quantification ;

un moyen de codage de coefficients (105) configuré pour coder les coefficients quantifiés ; et

un moyen de codage de matrice de quantification (107, 109) configuré pour balayer des éléments de la matrice dans un ordre de balayage constitué d'une première étape de balayage suivie par deux ou plus de deux séquences successives d'étapes de balayage suivies par une avant-dernière étape de balayage suivie par une dernière étape de balayage, chaquedite étape de balayage allant d'une position de début à une position de fin, et la position de fin d'une étape de balayage dans l'ordre de balayage correspondant à la position de début de l'étape de balayage suivante dans l'ordre de balayage, la position de début de la première étape de balayage correspondant à une position supérieure gauche de la matrice,

la position de fin de la première étape de balayage correspondant à une position immédiatement au-dessous de la position supérieure gauche,

l'avant-dernière étape de balayage étant une étape de balayage vers le haut à droite,

la position de fin de la dernière étape de balayage correspondant à la position inférieure droite de la matrice,

la position de début de la dernière étape de balayage correspondant à la position immédiatement au-dessus de la position inférieure droite,

chaquedite séquence :

(i) commençant à une position située le long d'un bord gauche ou inférieur de la matrice et

(ii) se terminant à une position immédiatement au-dessous de la position de début, ou immédiatement à la droite de la position de début, selon le cas, et

(iii) comportant également une position d'inversion entre les positions de début et de fin, la position d'inversion étant située le long d'un bord supérieur de la matrice dans le cas dans lequel la position de début est située le long du bord gauche, ou étant située le long d'un bord droit de la matrice dans le cas dans lequel la position de début est située le long du bord inférieur, et

(iv) étant constituée d'une ou plusieurs étapes de balayage vers le haut à droite entre la position de début et la position d'inversion de la séquence concernée, suivies par une unique étape de balayage vers le bas à gauche entre la position d'inversion et la position de fin de la séquence concernée,
la position de fin de chaquedite étape de balayage vers le haut à droite correspondant à une position immédiatement au-dessus et immédiatement à la droite de la position de début de l'étape de balayage vers le haut à droite concernée, et

le moyen de codage de matrice de quantification (107, 109) étant configuré pour calculer N valeurs de différence, une première valeur de différence correspondant à une différence entre l'élément de matrice situé à la position supérieure gauche de la matrice de quantification et une valeur initiale prédéterminée, et une nième valeur de différence correspondant à une différence entre l'élément de matrice situé à la position de fin de la (n-1)ième étape de balayage et l'élément de matrice situé à la position de début de la (n-1)ième étape de balayage, n étant un nombre entier allant de 2 à N, et le moyen de codage de matrice de quantification étant en outre configuré pour coder les N valeurs de différence calculées.


 
2. Appareil de décodage pour décoder un flux binaire comprenant des données codées d'une image, l'appareil de décodage comprenant :

un moyen de décodage/séparation (201) configuré pour décoder des informations d'en-tête du flux binaire et pour séparer des données codées nécessaires du flux binaire ;

un moyen de décodage de coefficients (202) configuré pour décoder des coefficients quantifiés à partir de données codées de coefficients de quantification comprises dans les données codées séparées ;

un moyen de décodage de matrice de quantification (206) destiné à décoder des données codées de matrice de quantification comprises dans les données codées séparées pour générer une pluralité de valeurs de différence, chaquedite valeur de différence représentant une différence entre une paire d'éléments compris dans une matrice de quantification bidimensionnelle d'une taille 4 x 4 servant à quantifier un bloc bidimensionnel de l'image, les éléments étant disposés dans la matrice de quantification bidimensionnelle dans un ordre de balayage constitué d'une première étape de balayage suivie par deux ou plus de deux séquences successives d'étapes de balayage suivies par une avant-dernière étape de balayage suivie par une dernière étape de balayage, chaquedite étape de balayage allant d'une position de début à une position de fin, et la position de fin d'une étape de balayage dans l'ordre de balayage correspondant à la position de début de l'étape de balayage suivante dans l'ordre de balayage,

la position de début de la première étape de balayage correspondant à une position supérieure gauche de la matrice,

la position de fin de la première étape de balayage correspondant à une position immédiatement au-dessous de la position supérieure gauche,

l'avant-dernière étape de balayage étant une étape de balayage vers le haut à droite,

la position de fin de la dernière étape de balayage correspondant à la position inférieure droite de la matrice,

la position de début de la dernière étape de balayage correspondant à la position immédiatement au-dessus de la position inférieure droite,

chaquedite séquence :

(i) commençant à une position située le long d'un bord gauche ou inférieur de la matrice et

(ii) se terminant à une position immédiatement au-dessous de la position de début, ou immédiatement à la droite de la position de début, selon le cas, et

(iii) comportant également une position d'inversion entre les positions de début et de fin, la position d'inversion étant située le long d'un bord supérieur de la matrice dans le cas dans lequel la position de début est située le long du bord gauche, ou étant située le long d'un bord droit de la matrice dans le cas dans lequel la position de début est située le long du bord inférieur, et

(iv) étant constituée d'une ou plusieurs étapes de balayage vers le haut à droite entre la position de début et la position d'inversion de la séquence concernée, suivies par une unique étape de balayage vers le bas à gauche entre la position d'inversion et la position de fin de la séquence concernée,
la position de fin de chaquedite étape de balayage vers le haut à droite correspondant à une position immédiatement au-dessus et immédiatement à la droite de la position de début de l'étape de balayage vers le haut à droite concernée ; et

un moyen de reconstruction (208) destiné à reconstruire la matrice de quantification bidimensionnelle à partir des valeurs de différence générées par le moyen de décodage de matrice de quantification, la matrice de quantification reconstruite étant destinée à être utilisée pour appliquer une quantification inverse à un bloc de l'image ;

dans lequel le moyen de reconstruction est configuré pour calculer des éléments de la matrice de quantification reconstruite et pour les disposer conformément à l'ordre de balayage de sorte que :

un premier élément soit calculé par une addition d'une valeur initiale prédéterminée et d'une premièredite valeur de différence et soit disposé à la position de début de la première étape de balayage dans l'ordre de balayage,

un nième élément soit calculé par une addition d'une nième-dite valeur de différence et d'un (n-1)ième élément de la matrice reconstruite, n étant un nombre entier allant de 2 à N, N étant le nombre desdites valeurs de différence, et soit disposé à la position de fin de la (n-1)ième étape de balayage dans l'ordre de balayage ;

l'appareil de décodage comprenant en outre un moyen de quantification inverse (203) configuré pour générer des coefficients de transformée dans le bloc bidimensionnel par une application d'une quantification inverse aux coefficients quantifiés au moyen de la matrice de quantification reconstruite.


 
3. Procédé de codage pour coder une image en unités de blocs bidimensionnels, comprenant les étapes consistant à :

diviser une image d'entrée en une pluralité de blocs bidimensionnels ;

effectuer une prédiction sur la base d'un pixel codé pour générer des erreurs de prédiction ;

appliquer une transformée orthogonale aux erreurs de prédiction pour générer des coefficients de transformée ;

générer (S901) une matrice de quantification à expression bidimensionnelle d'une taille 4 x 4 qui sert à quantifier un tel bloc bidimensionnel ;

balayer (S902) des éléments de la matrice dans un ordre de balayage constitué d'une première étape de balayage suivie par deux ou plus de deux séquences successives d'étapes de balayage suivies par une avant-dernière étape de balayage suivie par une dernière étape de balayage,

chaquedite étape de balayage allant d'une position de début à une position de fin, et la position de fin d'une étape de balayage dans l'ordre de balayage correspondant à la position de début de l'étape de balayage suivante dans l'ordre de balayage,

la position de début de la première étape de balayage correspondant à une position supérieure gauche de la matrice,

la position de fin de la première étape de balayage correspondant à une position immédiatement au-dessous de la position supérieure gauche,

l'avant-dernière étape de balayage étant une étape de balayage vers le haut à droite,

la position de fin de la dernière étape de balayage correspondant à la position inférieure droite de la matrice,

la position de début de la dernière étape de balayage correspondant à la position immédiatement au-dessus de la position inférieure droite,

chaquedite séquence :

(i) commençant à une position située le long d'un bord gauche ou inférieur de la matrice et

(ii) se terminant à une position immédiatement au-dessous de la position de début, ou immédiatement à la droite de la position de début, selon le cas, et

(iii) comportant également une position d'inversion entre les positions de début et de fin, la position d'inversion étant située le long d'un bord supérieur de la matrice dans le cas dans lequel la position de début est située le long du bord gauche, ou étant située le long d'un bord droit de la matrice dans le cas dans lequel la position de début est située le long du bord inférieur, et

(iv) étant constituée d'une ou plusieurs étapes de balayage vers le haut à droite entre la position de début et la position d'inversion de la séquence concernée, suivies par une unique étape de balayage vers le bas à gauche entre la position d'inversion et la position de fin de la séquence concernée,
la position de fin de chaquedite étape de balayage vers le haut à droite correspondant à une position immédiatement au-dessus et immédiatement à la droite de la position de début de l'étape de balayage vers le haut à droite concernée, et

calculer (S902) N valeurs de différence, une première valeur de différence correspondant à une différence entre l'élément de matrice situé à la position supérieure gauche de la matrice de quantification et une valeur initiale prédéterminée, et une nième valeur de différence correspondant à une différence entre l'élément de matrice situé à la position de fin de la (n-1)ième étape de balayage et l'élément de matrice situé à la position de début de la (n-1)ième étape de balayage, n étant un nombre entier allant de 2 à N, et

coder (S903) les N valeurs de différence calculées.


 
4. Procédé de décodage pour décoder un flux binaire comprenant des données codées d'une image, le procédé de décodage comprenant les étapes consistant à :

décoder (S1001) des informations d'en-tête du flux binaire et séparer des données codées nécessaires du flux binaire ;

décoder (S1004) des coefficients quantifiés à partir des données codées de coefficients de quantification comprises dans les données codées séparées ;

décoder (S1002) des données codées de matrice de quantification comprises dans les données codées séparées pour générer une pluralité de valeurs de différence, chaquedite valeur de différence représentant une différence entre une paire d'éléments compris dans une matrice de quantification bidimensionnelle d'une taille 4 x 4 servant à quantifier un bloc bidimensionnel de l'image, les éléments étant disposés dans la matrice de quantification bidimensionnelle dans un ordre de balayage constitué d'une première étape de balayage suivie par deux ou plus de deux séquences successives d'étapes de balayage suivies par une avant-dernière étape de balayage suivie par une dernière étape de balayage,

chaquedite étape de balayage allant d'une position de début à une position de fin, et la position de fin d'une étape de balayage dans l'ordre de balayage correspondant à la position de début de l'étape de balayage suivante dans l'ordre de balayage,

la position de début de la première étape de balayage correspondant à une position supérieure gauche de la matrice,

la position de fin de la première étape de balayage correspondant à une position immédiatement au-dessous de la position supérieure gauche,

l'avant-dernière étape de balayage étant une étape de balayage vers le haut à droite,

la position de fin de la dernière étape de balayage correspondant à la position inférieure droite de la matrice,

la position de début de la dernière étape de balayage correspondant à la position immédiatement au-dessus de la position inférieure droite,

chaquedite séquence :

(i) commençant à une position située le long d'un bord gauche ou inférieur de la matrice et

(ii) se terminant à une position immédiatement au-dessous de la position de début, ou immédiatement à la droite de la position de début, selon le cas, et

(iii) comportant également une position d'inversion entre les positions de début et de fin, la position d'inversion étant située le long d'un bord supérieur de la matrice dans le cas dans lequel la position de début est située le long du bord gauche, ou étant située le long d'un bord droit de la matrice dans le cas dans lequel la position de début est située le long du bord inférieur, et

(iv) étant constituée d'une ou plusieurs étapes de balayage vers le haut à droite entre la position de début et la position d'inversion de la séquence concernée, suivies par une unique étape de balayage vers le bas à gauche entre la position d'inversion et la position de fin de la séquence concernée,
la position de fin de chaquedite étape de balayage vers le haut à droite correspondant à une position immédiatement au-dessus et immédiatement à la droite de la position de début de l'étape de balayage vers le haut à droite concernée ;

reconstruire (S1003) la matrice de quantification bidimensionnelle à partir desdites valeurs de différence, la matrice de quantification reconstruite étant destinée à être utilisée pour appliquer une quantification inverse à un bloc de l'image ; et

dans lequel la reconstruction consiste à calculer des éléments de la matrice de quantification reconstruite et à les disposer conformément à l'ordre de balayage de sorte que :

un premier élément soit calculé par une addition d'une valeur initiale prédéterminée et d'une premièredite valeur de différence et soit disposé à la position de début de la première étape de balayage dans l'ordre de balayage,

un nième élément soit calculé par une addition d'une nième-dite valeur de différence et d'un (n-1)ième élément de la matrice reconstruite, n étant un nombre entier allant de 2 à N, N étant le nombre desdites valeurs de différence, et soit disposé à la position de fin de la (n-1)ième étape de balayage dans l'ordre de balayage ;

le procédé de décodage comprenant en outre l'étape consistant à générer des coefficients de transformée dans le bloc bidimensionnel par une application d'une quantification inverse (S1005) aux coefficients quantifiés au moyen de la matrice de quantification reconstruite.


 
5. Support d'informations lisible par ordinateur contenant en mémoire des instructions exécutables par ordinateur qui, lorsqu'elles sont chargées et exécutées par un ordinateur, amènent l'ordinateur à mettre en œuvre un procédé de codage selon la revendication 3.
 
6. Support d'informations lisible par ordinateur contenant en mémoire des instructions exécutables par ordinateur qui, lorsqu'elles sont chargées et exécutées par un ordinateur, amènent l'ordinateur à mettre en œuvre un procédé de décodage selon la revendication 4.
 
7. Support d'informations lisible par ordinateur contenant en mémoire un programme qui, lorsqu'il est chargé et exécuté par un ordinateur, amène l'ordinateur à fonctionner en tant que l'appareil de codage selon la revendication 1.
 
8. Support d'informations lisible par ordinateur contenant en mémoire un programme qui, lorsqu'il est chargé et exécuté par un ordinateur, amène l'ordinateur à fonctionner en tant que l'appareil de décodage selon la revendication 2.
 




Drawing





























































































































Cited references

REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description




Non-patent literature cited in the description