(19)
(11)EP 2 777 507 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
09.09.2020 Bulletin 2020/37

(21)Application number: 14156153.0

(22)Date of filing:  21.02.2014
(51)International Patent Classification (IPC): 
A61B 10/00(2006.01)
A61H 19/00(2006.01)
A61F 5/453(2006.01)

(54)

Systems and methods related to collection of biological fluids

Systeme und Verfahren im Zusammenhang mit der Entnahme biologischer Flüssigkeiten

Systèmes et procédés liés à la collecte de fluides biologiques


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 12.03.2013 US 201313796223

(43)Date of publication of application:
17.09.2014 Bulletin 2014/38

(73)Proprietor: Shubin, Sr., Steven, A.
Dripping Springs, TX 78620 (US)

(72)Inventors:
  • Shubin Sr., Steven A.
    Dripping Springs, TX Texas 78620 (US)
  • Shubin Jr., Steven A.
    Santa Fe, NM New Mexico 87508 (US)

(74)Representative: Molnia, David 
Df-mp Dörries Frank-Molnia & Pohlman Patentanwälte Rechtsanwälte PartG mbB Theatinerstrasse 16
80333 München
80333 München (DE)


(56)References cited: : 
EP-A1- 1 716 813
US-A- 5 370 131
WO-A1-2011/145580
US-A1- 2008 004 577
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description


    [0001] The present invention pertains to a system for stimulation and collection of seminal fluids. In particular the invention concerns a system with a polymeric sleeve comprising:
    • an elongate body (202) that defines a first end (106), a second end (204) opposite the first end (106), and a longitudinal central axis (118);
    • a main passageway (208) through the elongate body (202) parallel to the central axis (118), the main passageway (208) extends from the first end (106) to the second end (204), and the main passageway (208) defines a first aperture (112) on the first end (106) and a second aperture (210) on the second end (204);
    • a first member (114) suspended over the first aperture (112) on the first end (106), the first member (114) defines a first initial passageway (116) parallel to the main passageway (208), and the first member (114) and first end (106) define an interior volume (122); and
    • one or more first vent openings (124) defined in part by the first member (114), the first vent opening (124) distinct from the passageways (208; 116), and the first vent opening (124) fluidly couples the interior volume (122) to atmosphere pressure.


    [0002] Furthermore the invention is directed to a method for making a sleeve to be used in connection with the aforementioned system and to a mold system for carrying out this method.

    BACKGROUND OF THE INVENTION



    [0003] In recent years there have many advancements in devices for stimulation and collection of biological fluids, particularly seminal fluids. For example, FLESHLIGHT® brand products are devices that aid in stimulation and collection of seminal fluids through ejaculation. Many such products visually mimic genitalia, and also attempt to simulate the feel of copulation.

    [0004] Recent studies have found that prostate health in human males may be related to frequency of ejaculation. In particular, infrequent ejaculation can lead to swelling of the prostate, known as congestive prostatitis, and may also increase the cancer risk in human males. Some medical sources suggest an ejaculation frequency of three to four times per week ensures good prostate health and reduces cancer risk. One study found a 14% lower lifetime prostate cancer rate for men who ejaculate between 13 and 20 times per month, and an upwards of 33% lower lifetime prostate cancer risk for men who ejaculate 21 times or more each month. Devices for stimulation and collection of seminal fluids may aid in achieving higher ejaculations rates among men, particularly the unmarried and long-married.

    [0005] Beyond the prostate health effects of ejaculation, devices for stimulation and collection of seminal fluids through ejaculation may also assist in reversing desensitization issues. That is, repeated masturbatory stimulation of the penis using the hand or rough cloth can lead to desensitization of the penis, particularly in the absence of lubrication. Desensitization can then result in erectile dysfunction during copulation. Use of properly lubricated devices designed specifically for the stimulation and collection of seminal fluid may help reverse the desensitization issues, and thus reduce the occurrence of erectile dysfunction related to desensitization issues.

    [0006] A Sperm collecting apparatus is disclosed in US 20080004577A1. A system for making a sperm collector is known from WO 2011145580A1, which represents the closest prior art.

    [0007] With respect to the above mentioned drawbacks of the prior art it is one object of the invention to improve the devices for stimulation and collection of seminal fluid, in view of the positive health benefits. Further objects are to provide a method for making a polymeric sleeve for use in connection with a system for stimulation and collection of seminal fluid and to provide a mold system for creating the polymeric sleeve.
    With regard to the device, this object is achieved by a device according to claim 1. With respect to the method for making the polymeric sleeve and the mold system the respective objects are achieved by a sleeve according to claim 8 and a mold system according to claim 11. Preferred embodiments are defined in the dependent claims.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0008] For a detailed description of exemplary embodiments, reference will now be made to the accompanying drawings in which:

    Figure 1 shows a perspective view of system in accordance with at least some embodiments;

    Figure 2 shows a cross-sectional elevation view in accordance with at least some embodiments;

    Figure 3 shows a perspective, partial cut-away view, in accordance with at least some embodiments;

    Figure 4 shows a cross-sectional elevation view in accordance with at least some embodiments;

    Figure 5 shows a perspective view of a mold assembly in accordance with at least some embodiments;

    Figure 6 shows a perspective view of lower mold component in accordance with at least some embodiments;

    Figure 7 shows a perspective view of an upper side of a first disk member in accordance with at least some embodiments;

    Figure 8 shows a perspective view of a lower side of a first disk member in accordance with at least some embodiments;

    Figure 9 shows a perspective view of an upper side of a second disk member in accordance with at least some embodiments;

    Figure 10 shows a perspective view of a lower side of the second disk member in accordance with at least some embodiments;

    Figure 11 shows a perspective view of a mold system in accordance with at least some embodiments;

    Figure 12 shows a cross-sectional elevation view of a mold assembly in accordance with at least some embodiments;

    Figure 13 shows a perspective view of a system in accordance with at least some embodiments; and

    Figure 14 shows a method in accordance with at least some embodiments.


    NOTATION AND NOMENCLATURE



    [0009] Certain terms are used throughout the following description and claims to refer to particular system components. As one skilled in the art will appreciate, different companies may refer to a component by different names. This document does not intend to distinguish between components that differ in name but not function.

    [0010] In the following discussion and in the claims, the terms "including" and "comprising" are used in an open-ended fashion, and thus should be interpreted to mean "including, but not limited to...." Also, the term "couple" or "couples" is intended to mean either an indirect or direct connection. Thus, if a first device couples to a second device, that connection may be through a direct connection or through an indirect connection.

    [0011] "Bifurcate" shall mean that an area or volume is divided, but shall not speak to relative sizes of the divided areas or volumes.

    [0012] "Removably coupled" shall mean that a first device couples to second device in such a way that the first device can be mechanically separated from the first device without the use of tools, without cutting either the first device or the second device, and without full or partial destruction of either the first device or the second device.

    [0013] "Mold surface" shall mean any exposed surface area within the lower mold component (which lower mold component may be referred as a tool or tooling), whether or not the exposed surface directly abuts a disk member or defines a cavity or channel.

    [0014] "Over," "above," and "below" are relative terms related to the various devices described herein. In relation to a seminal fluid collection device, the terms "over," "above," and "below" shall be in reference to a seminal fluid collection device with the insertion end held upwardly for viewing. In relation to a mold system, the terms "above" and "below" shall be in reference to mold components stacked in relation to gravity.

    DETAILED DESCRIPTION



    [0015] The following discussion is directed to various embodiments of the invention. Although one or more of these embodiments may be preferred, the embodiments disclosed should not be interpreted, or otherwise used, as limiting the scope of the present invention, which is solely defined by the claims. In addition, one skilled in the art will understand that the following description has broad application, and the discussion of any embodiment is meant only to be exemplary of that embodiment, and not intended to intimate that the scope of the disclosure, including the claims, is limited to that embodiment.

    [0016] The various embodiments are directed to systems, and related methods, of stimulation of and collection of biological fluids, particularly seminal fluid. The various example systems were developed in the context of devices for use by human males, and thus the description that follows is based on the developmental context; however, the systems and methods may find other uses, such as veterinary uses (e.g., horses, dogs), and thus the developmental context shall not be viewed as a limitation as to the scope of the applicability of the devices.
    Figure 1 shows a perspective view of system 100 in accordance with at least some embodiments. The system comprises an outer cover of rigid material that defines an interior volume, wherein the elongate body is at least partially disposed within the outer cover. In particular, the system 100 comprises a polymeric sleeve 102 at least partially disposed within an interior volume of an outer cover 104 of rigid material, such as plastic. In the view of Figure 1, only the insertion end 106 of the polymeric sleeve 102 is visible, as the balance of the polymeric sleeve resides within the outer cover 104. The polymeric sleeve 102 may be made of a thermoplastic elastomer gel (TPE) of low durometer rating, or other material, such as silicon, polyvinyl chloride (PVC), or elastomeric rubber. The system 100 may further comprise a cover or lid 108 that defines an inside diameter D2 slightly larger than the outside diameter of the D1 of the insertion end 106 of the polymeric sleeve 102 such that, when not in use, the lid 108 may be telescoped over the insertion end 106 and couple to the outer cover 104. The lid 108 may, for example, protect the insertion end 106 from damage when not in use. The system 100 may further comprise a second cap or lid 110 that couples to the outer cover 104 opposite the lid 108. The lid 110 may act, in some cases and in conjunction with other features of the outer cover 104, as a controllable vent mechanism during use (discussed more below). In a preferred embodiment the system therefore comprises: a first cap member 108 configured to telescope over the first member 114 and to removably couple the outer cover 104; and a second cap member configured to removably couple to the outer cover opposite the first cap member.

    [0017] The insertion end 106 of the example system of Figure 1 comprises a main aperture 112 which leads to a main passageway (the main passageway not visible in Figure 1, but discussed more below). Suspended over the main aperture 112 is a first flange member 114 that defines an initial passageway 116. In the example system, the initial passageway 116 is coaxial with the main passageway, and both the initial passageway 116 and main passageway are coaxial with the longitudinal central axis 118 of the polymeric sleeve 102. In other systems, however, the initial passageway 116 may be offset from the main passageway, and one or both the initial passageway 116 and the main passageway may be offset (and/or non-parallel) to the longitudinal central axis 118 of the polymeric sleeve 102. Typically, the main passage 208 way is coaxial with the longitudinal central axis 118 of the elongate body. Preferably the system comprises at least one selected from the group consisting of: the second initial passageway 316 is coaxial with the first initial passageway 116; the second initial passageway 316 is coaxial with the main passageway 208; and the passageways are coaxial.

    [0018] Still referring to Figure 1, the flange member 114 is supported in the example system by three stanchion portions 120A, 120B, and 120C. As will be discussed more thoroughly below, the entire polymeric sleeve 102 (including the flange member and stanchion portions) may be created from a single molding of polymeric material, and thus while the flange member 114 and the stanchion portions 120 are separately named for ease of discussion, the separate naming convention shall not obviate that the separately named components are actually a single, continuous piece of polymeric material. The stanchion portions 120 extend from near an outer diameter of the insertion end 106 toward the longitudinal central axis 118 to suspend the flange member 114 over the main aperture 112. Though Figure 1 shows an example system with three stanchion portions 120, in other cases as few as two stanchion portions 120 may be used (e.g., disposed on opposite sides of the flange portion 114), or greater than three stanchion portions may be used (e.g., four or more).

    [0019] The flange member 114 and stanchion portions 120 protrude outwardly from the main aperture 112. Moreover, in some example systems, and as shown, the main aperture 112 is formed in a basin-like area such that there is an interior volume 122 defined between the flange member 114 and the polymeric material defining the main aperture 112. Rather than being a sealed interior volume, however, the interior volume 122 is vented to atmospheric pressure by way of openings defined between the stanchion portions 120. In particular, in the example system three vent openings 124A, 124B, 124C are defined by the stanchion portions 120. During certain portions of use of the system 100 the flange portion 114 may collapse toward the main aperture 112, and in some cases the bottom side of the flange member 114 may abut the polymeric material that forms the main aperture 112. At least some of the air displaced by the collapse of the flange member 114 toward the main aperture 112 may escape the interior volume 122 through the vent openings 124. Likewise, air that flows back in as the flange member 114 is pulled away from the main aperture 112 flows through the vent openings 124. By comparison, air displaced from the main passageway, such as by insertion of the penis into the main aperture 112, moves along the main passageway and vents at the outer cover 104 at or near the lid 110 on the vent end. Likewise, air the flows back in the main passageway, such as during withdrawal of the penis out of the main passageway, moves in through the outer cover 104 at or near the lid 110 and then along the main passageway.

    [0020] Figure 2 shows a cross-sectional elevation view of the system 100 of Figure 1, taken substantially along line 2-2 of Figure 1. In particular, Figure 2 shows a portion of the outer cover 104 and the polymeric sleeve 102. The outer cover 104 defines an internal volume 200 as well as the longitudinal central axis 118. The polymeric sleeve 102 is partially disposed within the internal volume 200, and in the example system shown, the insertion end 106 resides at least partially outside the internal volume 200 of the outer cover 104. The polymeric sleeve 102 defines an elongate body 202 and a vent end 204 opposite the insertion end 106. In some example systems, the overall length L is at least two times the diameter D1, but other proportions may be equivalently used. In the view of Figure 2, the initial passageway 116 is shown, along with the flange member 114, and stanchion portion 120. Moreover, the basin-like structure 206 is visible, within which the main aperture 112 is formed, along with the interior volume 122 and vent opening 124.

    [0021] Figure 2 further shows, in cross-sectional view, the main passageway 208. The main passageway 208 spans from the main aperture 112 on the insertion end 106 to a vent aperture 210 on the vent end 204. In some example systems, the main passageway 208 defines a constant internal diameter from the main aperture 112 to the vent aperture 210; however, in other cases, and as shown, the main passageway 208 has one or more features thought to enhance the stimulation characteristics. In the example of Figure 2, the main passageway 208 defines an increased internal diameter annular area 212. Other features are possible, including inward projecting features, such as "rifling", or various tabs or protrusions. Note, however, that the internal volume created by the annular area 212 vents along the main passageway 208. That is, during insertion of the penis, air displaced from the annular area 212 travels along the main passageway 208 and out the vent aperture 210. Likewise, during withdrawal of the penis, air drawn back in the annular area 212 will enter the vent aperture 210 and travel along the main passageway 208.

    [0022] In some cases, the polymeric sleeve 102 may define an annular groove 214 on an outer diameter thereof. Likewise, the outer cover 104 may define a corresponding annular ring 216 such that, when the polymeric sleeve is telescoped within the internal volume 200, the annular ring 216 may couple within the annular groove 214. The ring/groove combination may help hold the polymeric sleeve 102 in place during use, and in particular the ring/groove combination may reduce reciprocatory movement of the polymeric sleeve during use of the device 100.

    [0023] In one example system, such as shown in Figures 1 and 2, the diameter D1 may be about 7.6 cm (3 inch), the diameter D2 may be about 5.7 cm (2.25 inch), and the length L may be about 22.9 cm (9 inch). The thickness T of the flange member 114 may be about 1.3 cm (0.5 inch), but a thicker flange member may be molded if the durometer rating of the cured polymeric material is lower. Likewise, a thinner flange member may be molded if the durometer rating of the cured polymeric material is higher. Inasmuch as the flange member 114 and stanchion portion 120 are a contiguous structure, the stanchion portion 120 may likewise have a thickness of about 0.5 inches at its thinnest portion. It follows from the example thickness of the flange member 114 that the length of the initial passageway 116 may be about 1.3 cm (0.5 inch). The diameter D3 of the initial passageway 116 may be about 1.3 cm (0.5 inch), and likewise the diameter of the main passageway 208 at the main aperture 112 may be about 1.3 cm (0.5 inch). In other cases, however, the diameter of the initial passageway D3 may be larger or smaller than the diameter of the main passageway 208 at the main aperture 112. Finally, the height H that the flange member 114 is suspended over the main aperture 112 defined in the bottom of the basin-like structure 206 may be about 2.5 cm (1 inch) in some embodiments. As discussed immediately below, however, additional flange members may also be present.

    [0024] Figure 3 shows a perspective, partial cut-away, view of a system 100 in accordance with other example embodiments. In particular, the system 100 comprises a polymeric sleeve 102 at least partially disposed within an interior volume of an outer cover 104 of rigid material, such as plastic. In the view of Figure 3, only the insertion end 106 of the polymeric sleeve 102 is visible, as the balance of the polymeric sleeve resides within the outer cover 104. The system 100 may further comprise a cover or lid (not specifically shown) that telescopes over the insertion end 106 and couples to the outer cover 104. Likewise, the system 100 may further comprise a second cap or lid (again not specifically shown) that couples to the outer cover 104 opposite the insertion end 106.

    [0025] The insertion end 106 in the example system of Figure 3 comprises a main aperture which leads to a main passageway, but neither the main aperture nor the main passageway are visible in Figure 3. Suspended over the main aperture is a first flange member 114 that defines an initial passageway 116, and also suspended over the main aperture is a second flange member 314 that defines a second initial passageway 316. In the example system, the passageway 116 is coaxial with the passageway 316, and the passageway 316 is coaxial with the main passageway. Moreover, in the example system, the passageway 116, passageway 316, and main passageway are coaxial with the longitudinal central axis 118 of the polymeric sleeve 102. In other systems, however, the passageways 116 and 118 may be offset from each other, as well as offset from the main passageway.

    [0026] Still referring to Figure 3, the flange member 114 is supported in the example system by three stanchion portions 120A, 120B, and 120C, but in the view of Figure 3 the stanchion portion 120B has been removed to provide better visibility to the flange member 314 below. The flange member 314 is supported in the example system by three stanchion portions 320, though only stanchion portions 320A and 320B are visible in Figure 3. As with the flange member 114 and stanchion portions 120, the entire polymeric sleeve 102 (including the flange members and stanchion portions) may be created from a single molding of polymeric material, and thus while the flange member 314 and the stanchion portions 320 are separately named for ease of discussion, the separate naming convention shall not obviate that the separately named components are actually a single, continuous piece of polymeric material. The stanchion portions 320 extend from the basin-like-structure 206 (near an outer diameter of the insertion end 106) toward the longitudinal central axis 118 to suspend the flange member 314 over the main aperture. In the example system of Figure 3, the stanchion portions 320 are radially aligned with the stanchion portions 120; however, radial alignment is not required, and in other cases the radial direction in which the stanchion portions 320 extend may be different, and in some cases non-overlapping with the radial direction in which the stanchion portions 120 extend.

    [0027] As with the flange member 114, the flange portion 314 may both collapse or translate toward the main aperture during certain portions of use, and may also be stretched away from the main aperture during other portions of use. Though three stanchion portions 320 are discussed in reference to Figure 3, in other cases as few as two stanchion portions 320 may be used (e.g., disposed on opposite sides of the flange portion 314), or greater than three stanchion portions may be used (e.g., four or more). Moreover, the number of stanchion portions 320 need not be the same as the number of stanchion portions 120. For example, operable systems may comprise three stanchion portions 120 and two stanchion portions 320, or vice-versa.

    [0028] The flange member 314 and stanchion portions 320 may protrude outward from the main aperture 112, or as shown the upper surfaces of the flange member 314 and stanchion portions 320 may define and reside within a plane. Moreover, the interior volume 122 defined between the flange member 114 and the basin-like structure 206 may be bifurcated by the flange member 314 and stanchion portions 320. The portion of the interior volume 122 defined between the basin-like structure 206 and the flange member 314 may be vented to atmospheric pressure by way of three vent openings 324 (only vent openings 324A and 324B are visible in Figure 3), which vent openings are defined by the stanchion portions 320. During certain portions of use of the system 100, the flange member 314 may collapse toward the main aperture, and in some cases the bottom side of the flange member 314 may abut the basin-like structure 206. At least some of the air displaced by the collapse of the flange member 314 toward the main aperture may escape the interior volume 122 through the vent openings 324 (and 124). Likewise, air that flows back in as the flange member 314 is pulled away from the main aperture flows through the vent openings 324 (and 124).

    [0029] Figure 4 shows a cross-sectional elevation view of the system 100 of Figure 3, taken substantially along line 4-4 of Figure 3. In particular, Figure 4 shows a portion of the outer cover 104 and the polymeric sleeve 102. As before, the outer cover 104 defines an internal volume 200 as well as the longitudinal central axis 118. The polymeric sleeve 102 is partially disposed within the internal volume 200, and in the example system shown the insertion end 106 resides at least partially outside the internal volume 200 of the outer cover 104. The polymeric sleeve 102 defines an elongate body 202 and a vent end 204 opposite the insertion end 106. In some example systems, the overall length L is at least two times the diameter D1, but other proportions may be equivalently used. In the view of Figure 4, the initial passageway 116 is shown, along with the flange member 114, and stanchion portion 120. Moreover, the basin-like structure 206 is visible, within which the main aperture 112 is formed, along with the interior volume 122 and vent opening 124.

    [0030] Figure 4 further shows the passageway 316, along with the flange member 314, and stanchion portion 320. The flange member 314 is disposed between the first flange member 114 and the main aperture 112 within the interior volume 122. Moreover, the flange member 314 and stanchion portions 320 bifurcate the interior volume 122 into an anterior volume 400 (between the flange member 114 and the flange member 314) and a posterior volume 402 (between the flange member 314 and the main aperture 112). Also visible in Figure 4 is the vent opening 324. The second vent opening 324 fluidly couples the posterior volume 402 to the anterior volume 400. The remaining portions of the polymeric sleeve (e.g., the main passageway 208) may be the same as discussed with respect to Figure 2, and thus the discussion will not be repeated here.

    [0031] In the example system of Figure 4, the vent openings 124 vent the anterior volume 400 to atmospheric pressure. The vent openings 324 likewise vent the posterior volume 402 to atmospheric pressure. In the case of Figure 4, the posterior volume 402 vents through the anterior volume 400, but in other cases a separate flow path to a point outside the polymeric sleeve 102 could be used.

    [0032] In one example system, such as shown in Figures 3 and 4, the various diameters, thicknesses and lengths discussed with respect to Figure 2 likewise apply. The thickness T of the flange member 314 may be about 1.3 cm (0.5 inch), but a thicker flange member may be molded if the durometer rating of the cured polymeric material is lower. Likewise, a thinner flange member may be molded if the durometer rating of the cured polymeric material is higher. Inasmuch as the flange member 314 and stanchion portion 320 are a contiguous structure, the stanchion portion 320 may likewise have a thickness of about 1.3 cm (0.5 inch) at its thinnest portion. While the flange member 114 and flange member 314 are discussed to have the same thicknesses, in other cases the thicknesses may vary as between the flange members. It follows from the example thickness of the flange member 314 that the length of the second initial passageway 316 may be about cm (0.5 inch). The diameter D4 of the passageway 316 may be about 1.3 cm (0.5 inch), but in other cases the diameter of the passageways may be larger or smaller than each other, and larger or smaller than the diameter of the main passageway 208 at the main aperture 112. The height H1 that the flange member 114 is suspended over the flange member 314 (measured from the underside of the flange member 114 to the top side of the flange member 314) may be about 0.5 inch in some embodiments. Moreover, the height H2 that the flange member 314 is suspended over bottom portion of the basin-like structure 206 (measured from the underside of the flange member 314 to the top side of the basin-like structure at or near the main aperture 112) may be about 1.3 cm (0.5 inch) in some embodiments.

    [0033] The specification now turns to example methods of creating the polymeric sleeves. Figure 5 shows a perspective view of a mold system 500 in accordance with at least some embodiments. In particular, Figure 5 shows an outer mold assembly 502 comprising first mold member 504 and second mold member 506. Each mold member 504 and 506 defines an interior surface, but in the view of Figure 5 only the interior surface 508 of mold member 506 is visible. The interior surface 508 of mold member 506 forms half a negative image of the exterior surface of the polymeric sleeve 102 spanning from the annular groove 214 to the vent end 204. Likewise, the interior surface of the mold member 504 forms the other half of the negative image of the exterior surface of the polymeric sleeve 102 from the annular groove 214 to the vent end 204.

    [0034] The mold system 500 further comprises a lower mold component 510 placed in operational relationship to the interior surfaces defined by the outer mold assembly 502. The lower mold component structurally defines a negative image of the outer portions of the insertion end 106 of the polymeric sleeve 102. An example lower mold component 510 is discussed in greater detail with respect to Figure 6. Suffice it to say, for now, that the lower mold component 510 defines a negative image of at least a portion of the flange member 114 and stanchions 120. In some example systems, the various mold components, lower mold component, and disk members (discussed more below) may be milled from metallic material, such as aluminum. However, other materials (e.g., high density plastics) may also be used. Stacked on the lower mold component 510 is a disk member 512. In systems having only a single interior volume 122, the disk member 512 defines a negative image of the interior volume (e.g., Figures 1 and 2). Stated otherwise, during the injection molding process the disk member 512 resides within a volume such that no polymeric material may fill and/or occupy the volume, and thus the single interior volume is created based on presence of the disk member 512 during the injection and curing process. In systems having only a single interior volume, the disk member 512 couples to a rod member 514. An exterior surface of the rod member 514 defines the negative image of the interior surface of the main passageway through the polymeric sleeve.

    [0035] In systems defining both an anterior volume and a posterior volume (e.g., Figures 3 and 4), stacked on the disk member 512 is another disk member 516. The disk member 516 defines a negative image of the posterior volume. Stated otherwise, during the injecting molding process the disk member 516 resides within a volume such that no polymeric material may fill and/or occupy the volume, thus creating the posterior volume based on presence of the disk member 516 during the injection and curing process. In systems having both the anterior and posterior volumes, the rod member 514 couples to the disk member 516, with the rod member 514 again creating the main passageway in the injection molding process.

    [0036] The molding process may involve stacking the various disks in the lower mold component, and coupling the rod member 514 to the upper-most disk member 512 or 516. The outer mold assembly 502 is closed around the various components and held in place in some fashion. The polymeric material in liquid form is injected through an injection port into the volume defined by the interior surface 508, such as injection through injection aperture 518. The polymeric material in liquid form fills the volume defined by the interior surface 508, displacing the air, and then the polymeric material is allowed to cure. Once cured, the outer mold assembly 502 is again opened, the rod member 514 withdrawn from the main passageway, the disk member 512 is removed from its respective volume (e.g., interior volume 122, or anterior volume 400), and if used the disk member 516 removed from the posterior volume 400. Either before or after removing the rod member and disk member(s), the polymeric sleeve 102 may be removed from the lower mold component 510. Trimming of the polymeric sleeve 102 may be performed, such as to remove the polymeric material that cured inside the injection aperture, and any mold seams or marks formed by the interface of the outer mold assembly. In some cases, the polymeric sleeve 102 created may be treated with compound to reduce surface tension (such as by application of talcum powder). The specification now turns to a more detailed description of example lower mold component and example disk members.

    [0037] Figure 6 shows a perspective view of a lower mold component in accordance with an example system, where the lower mold component may be used to create an insertion end 106 of a polymeric sleeve similar to those shown in Figures 1 and 3. In particular, the lower mold component 510 defines an exterior surface 600 and a mold surface 602 defined on an interior surface of the lower mold component 510. In the example lower mold component 510 of Figure 6, the mold surface 602 defines three channels 604A, 604B, and 604C. The channels 604 extend from the largest inside diameter of the lower mold component 510 to a central area 608. Defined within the central area 608 is a protrusion or butte 610, which butte 610 may be centered within the mold surface 602 along the longitudinal central axis 612.

    [0038] The mold surface 602 of the lower mold component 510 defines a negative image of the outer-most portions of the insertion-end 106 of the polymeric sleeve 102. For example, the channels 604 are the negative image of the stanchion portions 120. This means the method of making the polymeric sleeve 102 comprises placing the lower mold component comprising at least two channels that structurally define a negative image of stanchions coupled of the polymeric sleeve. The central area 608 is the negative image of the flange member 114. The butte 610 is the negative image of at least a portion of the initial passageway 116. Stated otherwise, during the injection molding process the polymeric material, in liquid form, is forced into the channels 604 and central area 608. After curing of the polymeric material, the polymeric sleeve may be removed from the lower mold assembly 510, and thus the outer surface of the insertion end 106 of the polymeric sleeve 102 is formed.

    [0039] Still referring to Figure 6, a few additional features are discussed as a precursor to discussion of the first disk member. In particular, in some cases a particular rotational alignment of the first disk member with the lower mold component 510 is used, and thus the lower mold component 510 may have one or more features that assist in the alignment process. For example, the lower mold component 510 of Figure 6 has an alignment feature 614 defined in butte 610. The example alignment feature 614 is an aperture defining a triangular cross-section, though other cross-sectional shapes may be used (e.g., square, rectangle, hexagon). A corresponding feature of the first disk member (discussed more below) has a shape that telescopes into the example alignment feature, thus ensuring proper rotational alignment. In other example cases, the lower mold component 510 may define a dimple feature 616 at any convenient location, and as shown in shoulder region 618. The dimple feature as shown is a concave dimple or divot into the material of the lower mold component 510, but convex features are likewise contemplated. The first disk member may have a corresponding feature (e.g., a convex feature if dimple feature 616 is concave, or a concave feature of dimple feature 616 is convex).

    [0040] Finally, the example lower mold component 510 of Figure 6 defines a series of shoulder regions. Shoulder region 618 was discussed with respect to dimple feature 616, but additional shoulder regions 620 and 622 are also present. Shoulder regions are formed, in part, by creation of the channels 604. The shoulder regions 618, 620, and 622 may also be created, in part, by milling or otherwise removing portions of the lower mold component 510 to form the corner regions, such as corner 624. However, in other cases the lower mold component may define a more smoothly varying shoulder region between the central area 608 and the inside diameter of the lower mold component 510, such as illustrated by dashed line 626. The specification now turns to the first disk member.

    [0041] Figure 7 shows a perspective view of an upper portion of the disk member 512. In particular, disk member 512 is configured to telescope into and abut a portion of the mold surface 602 defined by the lower mold component 510. In the view of Figure 7, the disk member 512 defines three channels 700A, 700B, and 700C on a lower surface of the disk member 512 (however, only channels 700B and 700C are visible in view of Figure 7). When the disk member 512 is in the abutting configuration with the lower mold component 510, the channels 700 are aligned with the channels 604 of the lower mold component 510, and the channels define respective passageways from the central area 608 to the inside diameter of the lower mold component 510. There are additional features defined on the upper portion of the disk member 512, but a discussion of those additional features is presented after discussion of the features that abut or interact with the lower mold component 510.

    [0042] Figure 8 shows a perspective view of a lower portion of the disk member 512. In the view of Figure 8, all three channels 700A, 700B, and 700C are visible. Moreover, the disk member 512 defines a central area 808 that corresponds to the central area 608 of the lower mold component 510 (i.e., the central area 808 and central area 608 have the same inside diameter). Also defined with the central area 800 is a protrusion or butte 810, which butte 810 may be centered along the longitudinal central axis 812, and further which butte 810 defines an alignment feature 814, illustrative shown as a triangular feature. Also visible in the view of Figure 8 is an alternate alignment feature in the form a dimple feature 816, illustratively shown as a protruding out of the disk member 512.

    [0043] Referring simultaneously to Figures 7 and 8, when the disk member 512 is in the abutting configuration with the lower mold component 510 (not shown in Figure 7 or 8), the central axis 812 is coaxial with the central axis 612 of the lower mold component 510. Further, central area 808 of the first disk member 512 aligns with the central area 608 in the lower mold component. The central areas thus define a negative image of the flange member 114. Moreover, when the disk member 512 is in the abutting configuration with the lower mold component 510, the channels 700 are aligned with the channels 604 of the lower mold component 510, and the channels define respective passageways from the central area 800/608 to the inside diameter of the lower mold component 510. Stated otherwise, the channels define negative images of the stanchions 120. Further still, in the abutting configuration, the example alignment feature 814 of the disk member 512 telescopes into the alignment feature 614 defined in the butte 610 of the lower mold component 510, thus ensuring proper rotational alignment between the disk member 512 and the lower mold component 510. Moreover, in the abutting configuration of the disk member 512 with the lower mold component 510 the buttes 610/810 align and abut to define the negative image of the initial passageway 116. During the injection molding process the polymeric material in liquid form is forced into the channels and central area. After curing of the polymeric material, the polymeric sleeve may be removed from the lower mold component 510, the disk member 512 removed from beneath the flange member 114, and thus the flange member 114 and stanchion portions 120 of the polymeric sleeve 102 are formed.

    [0044] Referring again to Figure 7, a few additional features are discussed as a precursor to discussion of the second disk member 516. In particular, the disk member 512 defines a central area 708 on the upper portion. Also defined within the central area 708 is a protrusion or butte 710, which butte 710 may be centered along the longitudinal central axis 812, and further which butte 710 defines an alignment feature 714, illustrative shown as a triangular feature. A corresponding feature of the second disk member (discussed more below) has a shape that telescopes into the example alignment feature, thus ensuring proper rotational alignment. The location of the "male" alignment feature and the "female" alignment feature associated with the buttes may be equivalently reversed. Moreover, other alignment features may be used, such as dimple features as shown with respect to the lower mold component 510 and underside of the first disk member 512, but the various dimple features are not shown on the upper surface of the first disk member 512 (i.e., the view of Figure 7) so as not to further complicate the drawings. The upper portion of the disk member 512 in Figure 7 further shows a channels 702A, 702B, and 702C, wherein the channels extend from the central area 708 radially outward. In the example shown, the channels 702 align with the channels 700, but such alignment is not strictly required.

    [0045] Finally, the example lower disk member 512 of Figure 7 defines a series of lower shoulder regions 718, 720 and 722, which shoulder regions abut respective shoulder regions 618, 620, and 622 of the lower mold component 510 when the disk member 512 is stacked into an abutting relationship with the lower mold component 510. However, in other cases the lower mold component may define a more smoothly varying shoulder region, and thus the shoulder regions may be more smoothly varying (as shown by dashed line 726). The specification now turns to the second disk member.

    [0046] Figure 9 shows a perspective view of an upper portion of the second disk member 516. In particular, disk member 516 is configured to stack into the lower mold component and abut a portion of the first disk member 512. In the view of Figure 9, the second disk member 516 defines three channels 900A, 900B, and 900C on the underside (however, only channels 900B and 900C are visible in view of Figure 9). When the second disk member 516 is in the abutting configuration with the first disk member 512, the channels 900 align with the channels 702 on the upper surface of the first disk member 512, and the channels define respective passageways from the central area 708 radially toward the inside diameter of the lower mold component 510. There are additional features defined on the upper portion of the disk member 516, but a discussion of those additional features is presented after discussion of the features that abut or interact with the first disk member 512.

    [0047] Figure 10 shows a perspective view of a bottom side of the disk member 516. In the view of Figure 10, all three channels 900A, 900B, and 900C are visible. Moreover, the disk member 516 defines a central area 1008 that corresponds to the central area 708 of the first disk member 512 (i.e., the central area 1008 and central area 708 have the same inside diameter). Also defined with the central area 1008 is a protrusion or butte 1010, which butte 1010 may be centered along the longitudinal central axis 1012, and further which butte 1010 defines an alignment feature 1014, illustrative shown as a triangular feature. Other alignment features (such as the dimple features) may be used to rotationally align the second disk 516 and the first disk 512. However, those dimple features are not shown in in Figures 9 and 10 so as not to further complicate the figures.

    [0048] Referring simultaneously to Figures 9 and 10, when the second disk member 516 is in the abutting configuration with the first disk member 512, the central axis 1012 is coaxial with the central axis 812 of the first disk member 512. Further, central area 1008 of the second disk member 516 aligns with the central area 708 in the second disk member 512. The central areas thus define a negative image of the flange member 314. Moreover, when the disk member 516 is in the abutting configuration with the first disk member 512, the channels 900 are aligned with the channels 702 of the second disk member, and the channels define respective passageways from the central area 1008/708 toward the inside diameter of the lower mold component 510. Stated otherwise, the channels define negative image of the stanchions 320. Further still, in the abutting configuration the example alignment feature 1014 of the second disk member 516 telescopes into the alignment feature 714 defined in the butte 710 of the first disk member 512, thus ensuring proper rotational alignment between the first disk member 516 and the second disk member 512. The location of the "male" alignment feature and the "female" alignment feature associated with the buttes may be equivalently reversed. Moreover, in the abutting configuration of the second disk member 516 with the first disk member 512 the buttes 1010/710 align and abut to define the negative image of the second initial passageway 316. During the injection molding process the polymeric material in liquid form is forced into the channels and central area. After curing of the polymeric material, the polymeric sleeve may be removed from the lower mold assembly 510, the disk member 512 removed from beneath the flange member 114, the disk member 516 removed from beneath the flange member 314, and thus the flange members 114, 314 and stanchion portions 120, 320 of the polymeric sleeve 102 are formed.

    [0049] Referring again to Figure 9, a few additional features are discussed. The upper portion of the second disk member 516 defines a protrusion or butte 1016, which butte 1016 may be centered along the longitudinal central axis 812. During stacking of the various components into the lower mold component 510, once the second disk member 516 is in place, the rod member 514 may couple to the butte 1016. Thus, the butte 1016 forms the negative image of the main aperture 112 into the elongate body 202.

    [0050] Figure 11 shows a perspective view of the various components that form the insertion end of the polymeric sleeve 102 stacked together in an abutting relationship (i.e., the mold system 1100). In particular, the lower mold component 510 is shown. Stacked within the lower mold component 510 is the first disk member 512. Stacked on top of the first disk member 512 is the second disk member 516. For the example system, notice how all the various channels align. As discussed above, the channels in the mold system form the stanchions that support the various flange members, and the central areas (none of which are visible in Figure 11) form the flange members.

    [0051] Figure 12 shows a cross-sectional, elevation view of the mold system 1100 of Figure 11 taken substantially along lines 12-12 of Figure 11. In particular, shown in Figure 12 is the lower mold component 510, including the central area 608, butte 610, and channel 604. Further, the first disk member 512 is shown in a stacked and abutting relationship with the lower mold component 510. For example, the butte 810 is shown abutting the butte 610, and shoulder region 1200 of the first disk member 512 (which shoulder area 1200 could be any of the shoulder regions 718, 720, and 722) is shown abutting shoulder area 1202 of the lower mold component 510 (which shoulder area 1202 could be any of the should areas 618, 620, 622). Moreover, central area 808 is shown, along with channel 700.

    [0052] Figure 12 further shows the second disk member 516 in a stacked and abutting relationship with the first disk member 516. For example, the butte 710 is shown abutting the butte 1010. Moreover, central areas 708 and 1008 are shown, along with channels 702 and 900. Finally, butte 1016 is shown. In the stacked configuration, the central axis of each individual components are coaxial, as shown by dashed line 1204.

    [0053] The insertion end 116 shown in Figure 1 is merely an example. Now understanding how to create such an insertion end using an injection molding process based on reading this specification, one of ordinary skill in the art could see that many variations in the outward appearance of the insertion end 116 could be made without departing from the scope and spirit of the various embodiments. For example, Figure 13 shows a perspective view of an example insertion end 116 in accordance with other systems. In the example system, the stanchion portions 1320 extend from the outer perimeter of the insertion end 116 to the flange member 114, but in this case the stanchion portions are curved or arched such that the cardinal orientation of the location where each stanchion portion 1320 intersects the outer perimeter is different than the cardinal orientation where the stanchion portion 1320 intersects the flange member 114. For example, if the arrow 1350 represents a zero degree cardinal direction in relation to the insertion end 116, the intersection location 1352 where stanchion portion 1320A meets the flange member 114 may be considered to be at the zero degree cardinal direction, but the corresponding location 1354 where the stanchion portion 1320A meets the outer perimeter may be shifted between 10 and 45 degrees (in this case, clockwise when viewing the insertion end 116 from the view of Figure 13). The corresponding locations 1356 and 1358 may likewise be shifted between 10 and 45 degrees. Some or all the stanchions portions may have the cardinal direction shift.

    [0054] The "swirl" pattern of the insertion end 116 in Figure 13 may result in an operational characteristic not present in other cases (such as Figure 1). In particular, as mentioned above, during insertion of the penis into the aperture 116 the flange member tends to collapse toward the main aperture 112. However, during withdrawal of the penis, the flange member 114 tends to be not only pulled away from the main aperture 112, but also pulled further away from the main aperture than the resting position (shown in Figure 13). The shifting in cardinal direction of the intersection locations of the stanchions portions between the flange member 114 and outer perimeter may result in a rotational aspect during withdrawal of the penis. In particular, during withdrawal, as the stanchion portions 1320 stretch, the offset in cardinal orientation may result in a rotational movement of the flange portion 114, the rotational movement illustrated by arrow 1360. The rotational movement is cause by the tangential component of the tension placed on the flange member 114 during periods when the flange member is stretched away from the (un-stretched) rest orientation (i.e., during withdrawal of the penis). As the tension in the stanchion portions is released, the loss of the tangential component of the tension may enable the flange member 114 to rotate back to its rest configuration (the rotation shown by arrow 1362).

    [0055] Although several parameters of the example systems affect the stimulation provided by the polymeric sleeve 102 (e.g., elasticity of the polymeric material, diameter of the apertures defining the passageways, etc.), the various embodiments comprising at least one flange member are believed to better simulate the physical feel of fellatio.

    [0056] Figure 14 shows, in block diagram form, a method in accordance with at least some embodiments. In particular, the method starts (block 1400) and comprises: placing a lower mold component, the lower mold component structurally defines a negative image an insertion end of a polymeric sleeve (block 1402); stacking into mating relationship a first disk member, the first disk member structural defines a negative image of an anterior volume vented to atmosphere on the insertion end of the polymeric sleeve (block 1404); stacking a second disk member into mating relationship with the first disk member, the second disk member structural defines a negative image of a posterior volume vented to atmospheric pressure (block 1406); coupling a rod member to the disk members, an exterior surface of the rod member defines a negative image of a main passageway through the polymeric sleeve (block 1408); closing an outer mold assembly around the lower mold component, the disk member, and the rod member, an interior surface of the outer mold assembly structurally defines a negative image of an outer surface of the polymeric sleeve (block 1410); and injecting a polymeric compound in a liquid state into the outer mold assembly (block 1412). Thereafter, the method ends (block 1414), likely to be repeated again with the same mold assembly.

    [0057] References to "one embodiment," "an embodiment," "some embodiments," "example embodiments," or the like indicate that a particular element or characteristic is included in at least one embodiment of the invention. Although the phrases may appear in various places, the phrases do not necessarily refer to the same embodiment.

    [0058] The above discussion is meant to be illustrative of the principles and various embodiments of the present invention. Numerous variations and modifications will become apparent to those skilled in the art once the above disclosure is fully appreciated. For example, an outer cover is not strictly required to use the polymeric sleeve. It is intended that the following claims be interpreted to embrace all such variations and modifications.


    Claims

    1. A system (100) for stimulation and collection of seminal fluids comprising:

    a polymeric sleeve (102) comprising:

    an elongate body (202) that defines a first end (106), a second end (204) opposite the first end (106), and a longitudinal central axis (118);

    a main passageway (208) through the elongate body (202) parallel to the central axis (118), wherein the main passageway (208) extends from the first end (106) to the second end (204), and the main passageway (208) defines a first aperture (112) on the first end (106) and a second aperture (210) on the second end (204);

    a first member (114) suspended over the first aperture (112) on the first end (106), wherein the first member (114) defines a first initial passageway (116) parallel to the main passageway (208), and the first member (114) and first end (106) define an interior volume (122); and

    characterized in that
    the first member (114) is supported by at least two stanchion portions (120A, 120B, 120C) defining in part at least two first vent openings (124A), 124B, 124C) in between them, with the polymeric sleeve (102) having been created from a single molding of polymeric material including the first member (114) and the stanchion portions (120A, 120B, 120C),

    wherein said at least two first vent openings (124A, 124B, 124C) are defined in part by the first member (114), are distinct from the passageways (208; 116) and fluidly couple the interior volume (122) to atmosphere pressure.
     
    2. The system of claim 1 wherein the first initial passageway (116) is coaxial with the main passageway (208).
     
    3. The system of claim 1 or claim 2 wherein the polymeric sleeve (102) further comprises:

    a second member (314) suspended between the first member (114) and the first aperture (112) in the interior volume (122), the second member (314) defining a second initial passageway (316) parallel to the main passageway (208), and the second member (314) bifurcates the interior volume (122) into an anterior volume (400) and a posterior volume (402); and

    a second vent opening (324) defined in part by the second member (314), the second vent opening (324) distinct from the passageways (208; 116; 316), and the second vent opening (324) fluidly couples the posterior volume (402) to atmospheric pressure.


     
    4. A system (100) according to any of the preceding claims, characterized in that it further comprises
    an outer cover (104) of rigid material, the outer cover defines an interior volume (122);
    the polymeric sleeve (102) is at least partially disposed in the interior volume (122) of the outer cover (104),
    wherein the first member (114) resides outside the interior volume (122) of the outer cover (104).
     
    5. The system of claim 3 or claim 4 when depending on claim 3, further comprising the second vent opening fluidly couples the posterior volume (402) to the anterior volume (400).
     
    6. The system of claim 3 or claim 4 when depending on claim 3 or claim 5, further comprising at least one selected from the group consisting of: the second initial passageway is coaxial with the first initial passageway; the second initial passageway is coaxial with the main passageway; and the passageways are coaxial.
     
    7. The system of any of the preceding claims in connection with claim 4, wherein the second end (204) of the elongate body resides within the interior volume (400) of the outer cover (104).
     
    8. A method of making a polymeric sleeve (102) of a system according to any one of the claims 1 through 7 comprising the steps of:

    placing a lower mold component (510), the lower mold component structurally defining a negative image of an insertion end of a polymeric sleeve (102);

    stacking into mating relationship a first disk member (512), the first disk member structurally defining a negative image of an interior volume (122) vented to atmosphere through a vent opening (124) on the insertion end of the polymeric sleeve (102);

    coupling a rod member (514) to the disk member (512), an exterior surface (600) of the rod member defining a negative image of a main passageway (208) through the polymeric sleeve (102);

    closing an outer mold assembly (502) around the rod member (514), an interior surface (508) of the outer mold assembly (502) structurally defining a negative image of an outer surface of the polymeric sleeve (102); and

    injecting a polymeric compound in a liquid state into the outer mold assembly (502);

    characterized in that

    by stacking into mating relationship the first disk member (512) and the lower mold component (510) passageways are created defining negative images of at least two stanchion portions (120A, 120B, 120C) with, at the finished polymeric sleeve, the stanchion portions (120A, 120B, 120C) defining at least two vent openings between them (124A, 124B, 124C) for venting the interior volume (122).


     
    9. The method of claim 8 further comprising, prior to coupling the rod member (514), closing the outer mold assembly (502), and injecting:
    stacking a second disk member (516) into mating relationship with the first disk member (512), the second disk member (516) structurally defining a negative image of a posterior volume (402) vented to atmospheric pressure.
     
    10. The method of claim 9 further comprising:

    wherein placing the lower mold component (510) further comprises placing the lower mold component (510) comprising at least two channels (604) that structurally define, in part, a negative image of a first set of stanchions (120) coupled of the polymeric sleeve (102); and

    wherein placing the second disk member (516) further comprises placing the second disk member (516) comprising at least two channels (900) that structurally define, in part, a negative image of a second set of stanchions (320) coupled of the polymeric sleeve.


     
    11. A mold system (500) suitable for creating a polymeric sleeve (102) of a system according to claims 1 through 7 and suitable for a use in a method according to claims 8 to 10, the mold system (500) comprising:

    a lower mold component (510) that defines an exterior surface (600) and a mold surface (602), the mold surface defining at least two channels (604), each channel extending from an inside diameter of the lower mold component (510) to a first central area (608);

    a first disk member (512) configured to abut the mold surface of the lower mold assembly (502), the first disk member (512) defining at least two channels (700), and wherein in the abutting configuration the channels (700) of the first disk member (512) are aligned with the channels (604) of the lower mold component (510) and define respective passageways from the central area (608, 808) to the inside diameter.


     
    12. The mold system of claim 11 further comprising:

    a first feature (614) defined by the mold surface of the lower mold assembly (502); and

    a second feature (814) defined by an abutting surface of the first disk member (512);

    wherein the first feature (614) and second feature (814) align when the first disk member (512) is in correct abutting relationship with the lower mold assembly (502).


     
    13. The mold system of claim 11 further comprising:
    a second disk member (516) configured to abut the first disk member (512) opposite the abutting relationship of the first disk member to the mold surface, the second disk member (516) defining two channels (900), and wherein in the abutting configuration the two channels (900) of the second disk member (516) define respective passageways from a second central area toward the inside diameter of the lower mold assembly.
     
    14. The mold system of claim 13 further comprising:

    a third feature (714) defined by a second surface of the first disk member (512), the second surface opposing a first surface that abuts the mold surface of the lower mold assembly (502); and

    a fourth feature (1014) defined by an abutting surface of the second disk member (516);

    wherein the third feature (714) and fourth feature (1014) align when the second disk member (516) is in correct abutting relationship with the first disk member (512).


     
    15. The mold system of any of the claims 11 to 14 further comprising:

    a first protrusion (610) defined in the first central area (608), the first protrusion extending toward the first disk member (512) when the first disk member is in the abutting relationship;

    a second protrusion (810) defined by the first disk member (512), the second protrusion abutting the first protrusion (610) and creating a pillar when the first disk member is in the abutting relationship with the lower mold assembly (502).


     


    Ansprüche

    1. Ein System (100) zur Stimulation und Sammlung von Samenflüssigkeiten aufweisend:

    eine polymere Hülse (102) bestehend aus:

    einen länglichen Körper (202), der ein erstes Ende (106), ein zweites Ende (204) gegenüberliegend dem ersten Ende (106) und eine Längsmittelachse (118);

    einen Hauptdurchgang (208) durch den länglichen Körper (202) parallel zur Mittelachse (118), wobei

    der Hauptgang (208) sich von dem ersten Ende (106) zu dem zweiten Ende (204) erstreckt und der Hauptdurchgang (208) eine erste Öffnung (112) an dem ersten Ende (106) und eine zweite Öffnung (210) an dem zweiten Ende (204) definiert;

    ein erstes Element (114), das über der ersten Öffnung (112) an dem ersten Ende (106) aufgehängt ist, wobei

    das erste Element (114) einen ersten initialen Durchgang (116) parallel zu dem Hauptdurchgang (208) definiert und das erste Element (114) und das erste Ende (106) ein Innenvolumen (122) definieren; und

    dadurch gekennzeichnet, dass

    das erste Element (114) von mindestens zwei Rungenabschnitten (120A, 120B, 120C) getragen wird, die teilweise mindestens zwei erste Entlüftungsöffnungen (124A), 124B, 124C) dazwischen definieren, wobei die Polymere Hülse (102) aus einem einzigen Formteil aus Polymermaterial einschließlich des ersten Elements (114) und der Rungenabschnitte (120A, 120B, 120C) hergestellt wurde,

    wobei die mindestens zwei ersten Entlüftungsöffnungen (124A, 124B, 124C) zum Teil durch das erste Element (114) definiert sind, und von den Durchgängen (208; 116) getrennt sind und das Innenvolumen (122) in Fluidverbindung an den Atmosphärendruck koppeln.


     
    2. Das System gemäß Anspruch 1, bei dem der erste Anfangsdurchgang (116) koaxial mit dem Hauptdurchgang (208) ist.
     
    3. Das System gemäß Anspruch 1 oder Anspruch 2, wobei die polymere Hülse (102) ferner umfasst:

    ein zweites Element (314), das zwischen dem ersten Element (114) und der ersten Öffnung (112) in dem Innenvolumen (122) aufgehängt ist, wobei das zweite Element (314) einen zweiten initialen Durchgang (316) parallel zu dem Hauptdurchgang (208) definiert und das zweite Element (314) das Innenvolumen (122) in ein vorderes Volumen (400) und ein hinteres Volumen (402) gabelt; und

    eine zweite Entlüftungsöffnung (324), die zum Teil durch das zweite Element (314) definiert ist, wobei die zweite Entlüftungsöffnung (324) von den Durchgängen (208; 116; 316) getrennt ist und die zweite Entlüftungsöffnung (324) das hintere Volumen (402) mit dem atmosphärischen Druck in Fluidverbindung koppelt.


     
    4. Ein System (100) gemäß einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass es ferner umfasst
    eine äußere Hülle (104) aus starrem Material, wobei die äußere Hülle ein Innenvolumen (122) definiert;
    die polymere Hülse (102) zumindest teilweise im Innenvolumen (122) der äußeren Hülle (104) angeordnet ist,
    wobei das erste Element (114) außerhalb des Innenvolumens (122) der äußeren Hülle (104) liegt.
     
    5. Das System gemäß Anspruch 3 oder Anspruch 4, wenn es von Anspruch 3 abhängt, umfasst ferner die zweite Entlüftungsöffnung, die das hintere Volumen (402) mit dem vorderen Volumen (400) in Fluidverbindung koppelt.
     
    6. Das System gemäß Anspruch 3 oder Anspruch 4, wenn es von Anspruch 3 oder Anspruch 5 abhängt, umfasst ferner mindestens einen, ausgewählt aus der Gruppe bestehend aus: der zweite initiale Durchgang ist koaxial mit dem ersten initialen Durchgang; der zweite initiale Durchgang ist koaxial mit dem Hauptdurchgang; und die Durchgänge sind koaxial.
     
    7. Das System gemäß einem der vorhergehenden Ansprüche in Verbindung mit Anspruch 4, wobei das zweite Ende (204) des länglichen Körpers innerhalb des Innenvolumens (400) der äußeren Hülle (104) liegt.
     
    8. Verfahren zur Herstellung einer polymeren Hülse (102) eines Systems nach einem der Ansprüche 1 bis 7, umfassend die folgenden Schritte:

    Platzieren einer unteren Formkomponente (510), wobei die untere Formkomponente strukturell ein negatives Bild eines Einführungsendes einer polymeren Hülse (102) definiert;

    Stapeln eines ersten Scheibenelements (512) in Eingriffsbeziehung, wobei das erste Scheibenelement strukturell ein negatives Bild eines Innenvolumens definiert, das (122) durch eine Entlüftungsöffnung (124) am Einführungsende der polymeren Hülse (102) in die Atmosphäre entlüftet wird;

    Koppeln eines Stangenelements (514) mit dem Scheibenelement (512), wobei eine Außenfläche (600) des Stangenelements ein negatives Bild eines Hauptdurchgangs (208) durch die polymere Hülse (102) definiert;

    Schließen einer äußeren Formanordnung (502) um das Stangenelement (514), wobei eine innere Oberfläche (508) der äußeren Formanordnung (502) strukturell ein negatives Bild einer äußeren Oberfläche der polymeren Hülse (102) definiert; und

    Einspritzen einer Polymerverbindung in flüssigem Zustand in die äußere Formanordnung (502);

    dadurch gekennzeichnet, dass

    durch Stapeln des ersten Scheibenelements (512) und der unteren Formkomponente (510) in Eingriffsbeziehung das erste Scheibenelement (512) und die Durchgänge der unteren Formkomponente (510) erzeugt werden, die Negativbilder von mindestens zwei Rungenabschnitten (120A, 120B, 120C) definieren, wobei an der fertigen polymeren Hülse die Rungenabschnitte (120A, 120B, 120C) mindestens zwei Entlüftungsöffnungen (124A, 124B, 124C) zum Entlüften des Innenvolumens (122) zwischen sich definieren.


     
    9. Das Verfahren gemäß Anspruch 8 umfasst ferner, vor dem Koppeln des Stangenelements (514), dem Schließen der äußeren Formanordnung (502) und dem Einspritzen:
    Stapeln eines zweiten Scheibenelements (516) in Eingriffsbeziehung mit dem ersten Scheibenelement (512), wobei das zweite Scheibenelement (516) strukturell ein negatives Bild eines hinteren Volumens (402) definiert, das auf atmosphärischen Druck entlüftet wird.
     
    10. Das Verfahren gemäß Anspruch 9 umfasst ferner:

    wobei das Platzieren der unteren Formkomponente (510) ferner das Platzieren der unteren Formkomponente (510) umfasst, die mindestens zwei Kanäle (604) umfasst, die strukturell teilweise ein negatives Bild eines ersten Satzes von Rungen (120) definieren, die mit der polymeren Hülse (102) gekoppelt sind; und

    wobei das Platzieren des zweiten Scheibenelements (516) ferner das Platzieren des zweiten Scheibenelements (516) umfasst, das mindestens zwei Kanäle (900) umfasst, die strukturell teilweise ein negatives Bild eines zweiten Satzes von Rungen (320) definieren, die mit der polymere Hülse gekoppelt sind.


     
    11. Ein Formsystem (500), geeignet zur Herstellung einer polymeren Hülse (102) eines Systems nach den Ansprüchen 1 bis 7 und geeignet zur Verwendung in einem Verfahren nach den Ansprüchen 8 bis 10, wobei das Formsystem (500) umfasst:

    eine untere Formkomponente (510), die eine Außenfläche (600) und eine Formoberfläche (602) definiert, wobei die Formoberfläche mindestens zwei Kanäle (604) definiert, wobei sich jeder Kanal von einem Innendurchmesser der unteren Formkomponente (510) zu einem ersten zentralen Bereich (608) erstreckt;

    ein erstes Scheibenelement (512), das so konfiguriert ist, dass es an der Formoberfläche der unteren Formanordnung (502) anliegt, wobei das erste Scheibenelement (512) mindestens zwei Kanäle (700) definiert, und wobei in der anliegenden Konfiguration die Kanäle (700) des ersten Scheibenelements (512) mit den Kanälen (604) der unteren Formkomponente (510) ausgerichtet sind und entsprechende Durchgänge vom Mittelbereich (608, 808) zum Innendurchmesser definieren.


     
    12. Das Formsystem gemäß Anspruch 11 ferner umfassend:

    ein erstes Merkmal (614), das durch die Formoberfläche der unteren Formanordnung (502) definiert ist; und

    ein zweites Merkmal (814), das durch eine Anschlagfläche des ersten Scheibenelements (512) definiert ist;

    wobei das erste Merkmal (614) und das zweite Merkmal (814) ausgerichtet sind, wenn sich das erste Scheibenelement (512) in korrekter Anlagebeziehung mit der unteren Formanordnung (502) befindet.


     
    13. Das Formsystem gemäß Anspruch 11 ferner umfassend:
    ein zweites Scheibenelement (516), das so konfiguriert ist, dass es an das erste Scheibenelement (512) gegenüber der anliegenden Beziehung des ersten Scheibenelements zu der Formoberfläche anliegt, wobei das zweite Scheibenelement (516) zwei Kanäle (900) definiert, und wobei in der anliegenden Konfiguration die beiden Kanäle (900) des zweiten Scheibenelements (516) entsprechende Durchgänge von einem zweiten zentralen Bereich zum Innendurchmesser der unteren Formanordnung definieren.
     
    14. Das Formsystem gemäß Anspruch 13 ferner umfassend:

    ein drittes Merkmal (714), das durch eine zweite Oberfläche des ersten Scheibenelements (512) definiert ist, wobei die zweite Oberfläche einer ersten Fläche gegenüberliegend, die an die Formfläche der unteren Formbaugruppe (502) anstößt; und

    ein viertes Merkmal (1014), das durch eine Anschlagfläche des zweiten Scheibenelements (516) definiert ist;

    wobei das dritte Merkmal (714) und das vierte Merkmal (1014) ausgerichtet sind, wenn sich das zweite Scheibenelement (516) in korrekter Anlagebeziehung mit dem ersten Scheibenelement (512) befindet.


     
    15. Das Formsystem gemäß eines der Ansprüche 11 bis 14 ferner umfassend:

    einen ersten Vorsprung (610), der im ersten zentralen Bereich (608) definiert ist, wobei sich der erste Vorsprung in Richtung des ersten Scheibenelements (512) erstreckt, wenn sich das erste Scheibenelement in der angrenzenden Beziehung befindet;

    einen zweiten Vorsprung (810), der durch das erste Scheibenelement (512) definiert ist, wobei der zweite Vorsprung an den ersten Vorsprung (610) anliegt und eine Säule erzeugt, wenn das erste Scheibenelement in der anliegenden Beziehung mit der unteren Formanordnung (502) steht.


     


    Revendications

    1. Un système (100) de stimulation et de collecte des fluides séminaux comprenant
    un manchon en polymère (102) comprenant :

    un corps allongé (202) qui définit une première extrémité (106), une deuxième extrémité (204) à l'opposé de la première extrémité (106), et un axe central longitudinal (118);

    un passage principal (208) à travers le corps allongé (202) parallèle à l'axe central (118), dans lequel

    le passage principal (208)

    s'étend de la première extrémité (106) à la deuxième extrémité (204), et le passage principal (208) définit une première ouverture (112) à la première extrémité (106) et une deuxième ouverture (210) à la deuxième extrémité (204);

    un premier élément (114) suspendu au-dessus de la première ouverture (112) à la première extrémité (106), dans lequel

    le premier élément (114) définit un premier passage initial (116) parallèle au passage principal (208), et le premier élément (114) et la première extrémité (106) définissent un volume intérieur (122)
    caractérisé en ce que

    le premier élément (114) est supporté par au moins deux parties de colonne (120A, 120B, 120C) définissant en partie au moins deux premières ouvertures de ventilation (124A, 124B, 124C) entre elles, le manchon en polymère (102) ayant été créé à partir d'un seul moulage de matériau polymère comprenant le premier éléments (114) et les parties de colonne (120A, 120B, 120C), dans lequel lesdites au moins deux premières ouvertures de ventilation (124A, 124B, 124C) sont définies en partie par le premier élément (114), sont distinctes des passages (208 ; 116) et couplent de manière fluide le volume intérieur (122) à la pression atmosphérique.


     
    2. Le système selon la revendication 1 dans lequel le premier passage initial (116) est coaxial avec le passage principal (208).
     
    3. Le système selon la revendication 1 ou de la revendication 2 dans lequel le manchon en polymère (102) comprend en outre :

    un second élément (314) suspendu entre le premier élément (114) et la première ouverture (112) dans le volume intérieur (122), le second élément (314) définissant un second passage initial (316) parallèle au passage principal (208), et le second élément (314) bifurque le volume intérieur (122) en un volume antérieur (400) et un volume postérieur (402)

    une deuxième ouverture de ventilation (324) définie en partie par le deuxième élément (314), la deuxième ouverture de ventilation (324) distincte des passages (208 ; 116 ; 316), et la deuxième ouverture de ventilation (324) couple de manière fluide le volume postérieur (402) à la pression atmosphérique.


     
    4. Un système (100) selon l'une des revendications précédentes, caractérisé en ce qu'il comprend en outre
    une couverture extérieure (104) en matériau rigide, la couverture extérieure définit un volume intérieur (122) ;
    le manchon en polymère (102) est au moins partiellement disposé dans le volume intérieur (122) de la couverture extérieure (104),
    dans lequel le premier élément (114) réside à l'extérieur du volume intérieur (122) de la couverture extérieure (104).
     
    5. Le système de la revendication 3 ou de la revendication 4, selon la revendication 3, comprenant en outre la deuxième ouverture de ventilation, couple de manière fluide le volume postérieur (402) au volume antérieur (400).
     
    6. Le système de la revendication 3 ou de la revendication 4 lorsqu'il dépend de la revendication 3 ou de la revendication 5, comprenant en outre au moins un élément choisi dans le groupe constitué par : le deuxième passage initial est coaxial avec le premier passage initial ; le deuxième passage initial est coaxial avec le passage principal ; et les passages sont coaxiaux.
     
    7. Le système de l'une des revendications précédentes en rapport avec la revendication 4, dans lequel la deuxième extrémité (204) du corps allongé réside dans le volume intérieur (400) de la couverture extérieur (104).
     
    8. Un procédé de fabrication d'un manchon en polymère (102) d'un système selon l'une quelconque des revendications 1 à 7, comprenant les étapes suivantes
    placer un composant inférieur de moule (510), le composant inférieur de moule définissant structurellement une image négative d'une extrémité d'insertion d'un manchon en polymère (102) ;
    l'empilage en relation d'accouplement d'un premier élément de disque (512), le premier élément de disque définissant structurellement une image négative d'un volume intérieur (122) ventilé à l'atmosphère par une ouverture de ventilation (124) sur l'extrémité d'insertion du manchon en polymère (102) ;
    l'accouplement d'un élément en forme de tige (514) à l'élément en forme de disque (512), une surface extérieure (600) de l'élément en forme de tige définissant une image négative d'un passage principal (208) à travers le manchon en polymère (102) ;
    la fermeture d'un ensemble de moule extérieur (502) autour de l'élément de tige (514), une surface intérieure (508) de l'ensemble de moule extérieur (502) définissant structurellement une image négative d'une surface extérieure du manchon en polymère (102) ; et
    l'injection d'un composé polymère à l'état liquide dans l'ensemble du moule extérieur (502) ;
    caractérisé en ce que
    en empilant en relation d'accouplement le premier élément de disque (512) et le composant de moule inférieur (510), des passages sont créés définissant des images négatives d'au moins deux parties de colonne (120A, 120B, 120C) avec, au niveau du manchon polymère fini, les parties de colonne (120A, 120B, 120C) définissant au moins deux ouvertures de ventilation entre elles (124A, 124B, 124C) pour la ventilation du volume intérieur (122).
     
    9. Le procédé selon la revendication 8 comprend en outre, avant d'accoupler l'élément de tige (514), la fermeture de l'ensemble de moule extérieur (502) et l'injection:
    l'empilement d'un second élément de disque (516) en relation d'accouplement avec le premier élément de disque (512), le second élément de disque (516) définissant structurellement une image négative d'un volume postérieur (402) ventilé à la pression atmosphérique.
     
    10. Le procédé selon la revendication 9 comprend en outre :

    dans lequel le placement du composant de moule inférieur (510) comprend en outre le placement du composant de moule inférieur (510) comprenant au moins deux canaux (604) qui définissent structurellement, en partie, une image négative d'un premier ensemble de colonnes (120) couplés au manchon en polymère (102); et

    dans lequel le placement du second élément de disque (516) comprend en outre le placement du second élément de disque (516) comprenant au moins deux canaux (900) qui définissent structurellement, en partie, une image négative d'un second ensemble de colonnes (320) couplés au manchon polymère.


     
    11. Système de moule (500) approprié pour créer un manchon en polymère (102) d'un système selon les revendications 1 à 7 et approprié pour une utilisation dans un procédé selon les revendications 8 à 10, le système de moule (500) comprenant :

    un composant inférieur de moule (510) qui définit une surface extérieure (600) et une surface de moule (602), la surface de moule définissant au moins deux canaux (604), chaque canal s'étendant d'un diamètre intérieur du composant inférieur de moule (510) à une première zone centrale (608) ;

    un premier élément de disque (512) configuré pour venir en butée contre la surface du moule de l'ensemble de moule inférieur (502), le premier élément de disque (512) définissant au moins deux canaux (700), et dans lequel

    dans la configuration en butée, les canaux
    (700) du premier élément de disque (512) sont alignés avec les canaux (604) de l'élément de moule inférieur (510) et définissent des passages respectifs de la zone centrale (608, 808) au diamètre intérieur.


     
    12. Le système de moule selon la revendication 11 comprenant en outre :

    une première caractéristique (614) définie par la surface du moule de l'ensemble inférieur du moule (502)

    une deuxième caractéristique (814) définie par une surface de butée du premier élément du disque (512) ;

    dans lequel la première caractéristique (614) et la deuxième caractéristique (814) s'alignent lorsque le premier élément de disque (512) est en relation de butée correcte avec l'ensemble de moule inférieur (502).


     
    13. Le système de moule selon la revendication 11 comprenant en outre :
    un second élément du disque (516) configuré pour venir en butée contre le premier élément du disque (512) à l'opposé de la relation de butée du premier élément de disque à la surface du moule, le second élément de disque (516) définissant deux canaux (900), et dans lequel dans la configuration en butée, les deux canaux (900) du second élément de disque (516) définissent des passages respectifs depuis une seconde zone centrale vers le diamètre intérieur de l'ensemble de moule inférieur.
     
    14. Le système de moule selon la revendication 13 comprenant en outre :

    une troisième caractéristique (714) définie par une deuxième surface du premier élément du disque (512), dans laquelle la deuxième surface est opposé à une première surface qui vient en butée contre la surface du moule de l'ensemble inférieur (502) ; et une quatrième caractéristique (1014) définie par une surface de butée du deuxième élément de disque (516) ;

    dans lequel la troisième caractéristique (714) et la quatrième caractéristique (1014) s'alignent lorsque le deuxième élément de disque (516) est en relation de buttée correcte avec le premier élément de disque (512).


     
    15. Le système de moule selon l'une des revendications 11 à 14 comprenant en outre:

    une première saillie (610) définie dans la première zone centrale (608), la première saillie s'étendant vers le premier élément de disque (512) lorsque le premier élément de disque est en butée ;

    une deuxième saillie (810) définie par le premier élément de disque (512), la deuxième saillie venant en butée contre la première saillie (610) et créant un pilier lorsque le premier élément de disque est en relation de butée avec l'ensemble de moule inférieur (502).


     




    Drawing












































    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description