(19)
(11)EP 2 778 665 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
08.05.2019 Bulletin 2019/19

(21)Application number: 13159569.6

(22)Date of filing:  15.03.2013
(51)Int. Cl.: 
G01N 23/201  (2018.01)
G21K 1/04  (2006.01)
G21K 1/02  (2006.01)

(54)

X-ray analyzing system for x-ray scattering analysis

Röntgenstrahl-Analysesystem für eine Röntgenstrahlstreuungsanalyse

Système d'analyse à rayons x pour l'analyse de diffusion de rayons x


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(43)Date of publication of application:
17.09.2014 Bulletin 2014/38

(73)Proprietor: Bruker AXS GmbH
76187 Karlsruhe (DE)

(72)Inventor:
  • Skov Pedersen, Jan
    8000 Aarhus (DK)

(74)Representative: Kohler Schmid Möbus Patentanwälte 
Partnerschaftsgesellschaft mbB Gropiusplatz 10
70563 Stuttgart
70563 Stuttgart (DE)


(56)References cited: : 
EP-A1- 2 778 665
WO-A1-2011/086191
  
  • LI YOULI; BECK ROY; HUANG TUO ET AL.: "Scatterless hybrid metal- single-crystal slit for small angle x-ray scattering and high resolution x-ray diffraction", JOURNAL OF APPLIED CRYSTALLOGRAPHY, vol. 41, 2008, pages 1134-1139, XP002594567,
 
Remarks:
The file contains technical information submitted after the application was filed and not included in this specification
 
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description


[0001] The invention relates to an x-ray analyzing system for x-ray scattering analysis comprising: an x-ray source for generating a beam of x-rays propagating along a transmission axis, at least one hybrid slit with an aperture which defines the shape of the cross-section of the x-ray beam, a sample on which the x-ray beam shaped by the hybrid slit is directed, and an x-ray detector for detecting x-rays originating from the sample, wherein the hybrid slit comprises at least three hybrid slit elements, each hybrid slit element comprising a single crystal substrate bonded to a base with a taper angel α≠0, the single crystal substrates of the hybrid slit elements limiting the aperture.

[0002] Such an x-ray analyzing system is known from WO 2011 086 191 A1.

[0003] X-ray measurements, in particular x-ray diffraction (XRD) and small angel x-ray scattering (SAXS) measurements are used for chemical analysis and structural analysis of samples in a variety of applications.

[0004] In particular in SAXS measurements using laboratory sources it is important to have a high photon flux and a low background. The photon flux is important to have short data acquisition times and the low background is important since the scattering signal is often very low. The aperture of the slit defines the size and shape of the beam cross-section and the divergence of the beam which are important parameters for the achievable resolution.

[0005] By directing x-rays to an aperture of a slit of polycrystalline material parasitic diffraction can happen, which results in a decreased signal to noise ratio. In order to limit the divergence of the x-ray beam it is known to use three aperture slits within the optical path of the x-ray beam. However, this results in a reduction of the photon flux and therefore in an increased measurement time.

[0006] Li Youli; Beck Roy; Huang Tuo; et al. (Scatterless hybrid metal-single-crystal slit for small angle x-ray scattering and high resolution x-ray diffraction; JOURNAL OF APPLIED CRYSTALLOGRAPHY Volume: 41 Pages: 1134-1139 (2008)) suggested the use of hybrid slits where the edges are made of single crystals such as Germanium or Silicon. The hybrid slits comprise a metal base on which a rectangular single crystal substrate is mounted, wherein the single crystal substrates of the hybrid slit elements limiting the aperture. Parasitic scattering due to total reflection and scattering at grain boundaries can be avoided. The introduction of hybrid slits has made it possible to use only two slits (square pinholes) and still have a low background.

[0007] WO 2011 086 191 A1 discloses an x-ray analyzing system for SAXS measurements using hybrid slits comprising two sets of two hybrid slit elements being arranged opposite with respect to each other to form a rectangular or square aperture. In SAXS measurements the resolution is determined by the smallest achievable scattering angle which in turn depends on the size of the cross-section of the direct beam which is blocked by an appropriate beamstop. Since the minimal beamstop size is determined by the distance from the center to the outermost point of the beam cross-section, the resolution of the x-ray analyzing system known from WO 2011 086 191 A1 is limited by the dimensions of the hybrid slit elements.

Object of the invention



[0008] It is the object of the invention to suggest an x-ray analyzing system with improved resolution and signal to noise ratio.

Short description of the invention



[0009] This object is achieved with the X-ray analyzing system claimed in claim 1. According to the invention the hybrid slit elements are staggered with an offset along the transmission axis.

[0010] The x-ray beam is directed on the sample, whereby the edges of the single crystal substrates of the hybrid slit limits the cross-section of the x-ray beam generated by the x-ray source. Therefore the hybrid slit elements are positioned circumferential around the transmission axis with their basis facing away from the transmission axis and their single crystal substrates facing towards the transmission axis.

[0011] Due to the inventive staggered arrangement of the hybrid slit elements the single crystal substrates are positioned at different positions along the transmission axis (offset in z-direction), in which the single crystal substrates may overlap (seen in projection along the transmission axis) without obstructing each other. Thus the size of the aperture of the hybrid slit can be chosen independently of the size of the hybrid slit elements and the shape of the aperture can be chosen independently of the size if the aperture by selecting an appropriate number of hybrid slit elements. Preferably the offset between corresponding parts of the single crystal substrates complies with the dimension of the single crystal substrates in direction of the transmission axis. The offset of the hybrid slit elements then depends on the thickness of the single crystal substrates.

[0012] By staggering the hybrid slit elements a polygonal cross-section with a high number of edges can be realized which - in spite of the high number of edges - shows a small size. The bases of the hybrid slit elements are preferably made of high density metal; the single crystal substrates are of high quality in order to ensure a minimum number of material defects (perfect single crystal), preferably the single crystal substrates made of Ge, Si are used.

[0013] The hybrid slit, the sample and the detector are preferably positioned along the transmission axis, whereby the sample is positioned between the hybrid slit and the detector. The hybrid slit is positioned within the optical path of the beam between the x-ray source and the sample. It is also possible to displace the detector perpendicular to the optical path in order to measure a wider angular range. In this case the direct beam (beam passing the hybrid slit without being scattered) is directed to the edge of the detector.

Preferred embodiments of the invention



[0014] In a preferred embodiment the hybrid slit elements are arranged to form a polygon with n edges viewed in projection along the transmission axis, with n ≥ 8.

[0015] Preferably the shape of the cross-section of the beam defined by the aperture is a regular polygon. The higher the number of edges in the polygon, the better it approximates a circle and, thus, the higher the photon flux that will pass it. Due to the increased photon flux the number of slits and thus the size of the analyzing system can be reduced. For a negligible offset of the single crystal substrates the shape of the aperture of the hybrid slit is also a regular polygon and the distances of the single crystal substrates to the transmission axis is the same for all single crystal substrates. With regard of a non-negligible offset the distances d of the single crystal substrates vary in dependence of the position of the single crystal substrates along the transmission axis (Δd=OS tan(2θ) with Δd=difference of distances to transmission axis, 2θ=divergence angle, OS=offset between neighboring single crystal substrates).

[0016] In a special embodiment of the inventive x-ray analyzing system the hybrid slit elements are movable radially to the transmission axis. The size and/or shape of the aperture of the hybrid slit can be varied by varying the radial position of the hybrid slit elements.

[0017] Since opposing hybrid slit elements do not obstruct each other opposing hybrid slit elements can form a pair and the hybrid slit elements are staggered pairwise. I.e. opposing hybrid slit elements are positioned at the same z-position. Thereby the dimension of the hybrid slit can be reduced.

[0018] In a preferred embodiment the x-ray analyzing system is a small angle x-ray diffraction analyzing system comprising a beamstop which is positioned between the hybrid slit and the detector for blocking incident x-rays. For SAXS measurements the detector is positioned close to the transmission axis of the x-ray source in order to detect signals of big nanoparticles. The beamstop is positioned between the sample under investigation and the detector. The beamstop prevents any portion of the direct beam from hitting the detector, which could otherwise saturate the detector and make measurements of the diffracted x-ray energy more difficult. Therefore the beamstop has to be large enough to cover the area that can be hit by the direct beam. On the other hand the scattering angle should be as small as possible and therefore the beamstop is chosen as small as possible.

[0019] Preferably the radial positions and the positions along the transmission axis of the hybrid slit elements are chosen to optimize the photon flux of the detected scattered x-rays. Because of the divergence of the x-ray-beam the radial positions of the single hybrid slit elements depend on their respective positions along the transmission axis. In order to optimize the photon flux, the cross-section of the x-ray beam passing the hybrid slit should resemble the shape and size of the beamstop (usually circular).

[0020] Most preferably the x-ray source is a laboratory source, e.g. a sealed tube, a rotating anode, a microsource, or a metal-jet source. Laboratory sources show a large divergence which lead to flux losses. In combination with a laboratory source the inventive x-ray analyzing system leads to significant photon flux increase (compared to state of the art x-ray analyzing systems) while the background is still low.

[0021] The taper angle is preferably larger than the beam divergence, in particular α>10°. The beam defining single crystal substrate is oriented far from any Bragg peak position with respect to the incident beam in order to inhibit abnormal transmission. In addition the taper angle should be chosen wide enough in order to inhibit surface scattering from the slit.

[0022] In a highly preferred embodiment two hybrid slits are provided, wherein the slits are positioned and spaced apart from each other along the transmission axis. Additionally a further slit can be provided, in particular a circular pinhole. The two hybrid slits are preferably separately adjustable in order to adapt the beam cross-section to the requirements of the sample.

[0023] The present invention also relates to the use of an inventive apparatus as described above, for optimizing the photon flux in SAXS measurements, in particular using a laboratory source.

[0024] Further advantages can be extracted from the description and the enclosed drawing. The features mentioned above and below can be used in accordance with the invention either individually or collectively in any combination. The embodiments mentioned are not to be understood as exhaustive enumeration but rather have exemplary character for the description of the invention.

Drawing



[0025] The invention is shown in the drawing.
Fig. 1
shows a preferred setup of an inventive x-ray analyzing system;
Fig. 2a
shows a front view (along transmission axis) of an inventive hybrid slit with an octagonal configuration;
Fig. 2b
shows a front view of a single hybrid slit element;
Fig. 2c
shows a side view (perpendicular to transmission axis) of a hybrid slit element;
Fig. 3
shows a cross-section of the beam passing an octagonal hybrid slit;


[0026] Fig. 1 shows an embodiment of an inventive x-ray analyzing system 1, e.g. for SAXS measurements. The x-ray analyzing system 1 comprises an x-ray source 2, in particular a laboratory source, emitting an x-ray beam XB along a transmission axis 3. The x-ray beam XB may be prepared by a beam forming element 4 which collects the emitted x-rays, generates a beam of a defined divergence and mono-chromatism which is then directed to two aperture slits 5a, 5b. The aperture slits 5a, 5b are arranged at a distance along the transmission axis 3 and limit the size of the cross-section of the x-ray beam XB which is directed to a sample 6.

[0027] The aperture slit 5b (hybrid slit) which is positioned near the sample 6 comprises several hybrid slit elements 7, which are arranged circumferentially around the transmission axis 3. Each hybrid slit element 7 comprises a single crystal substrate 8 bonded to a base 9 (fig. 2b). The single crystal substrate 8 is inclined with a taper angel α with respect to the x-ray beam XB (see fig. 2c). Due to the tilted arrangement of the single crystal substrates 8 the size and shape of the cross-section of the beam XB is defined by sharp edges 12 of the single crystal substrates 8 facing the transmission axis 3. By using hybrid slit elements 7 with single crystal substrates 8 parasitic scattering due to grain boundaries and defects can be avoided. In addition, parasitic scattering due to total reflection can be reduced by choosing the taper angle α of the single crystal substrates 8 wider than the angle of total reflection.

[0028] The x-ray beam XB is directed to the sample 6 which is positioned at a distance from the hybrid slit 5b in direction of the transmission axis 3. Scattered x-rays are detected by an x-ray detector 10 (here: position-sensitive area detector) positioned at a distance from the sample 6 in direction of the transmission axis 3. In order to prevent the detector 10 of being saturated, the direct beam XB is blocked by a beamstop 11 positioned between the sample 6 and the detector 10, wherein the transmission axis 3 hits the beamstop 11 at its center. The size of the polygonal hybrid slit 5b and the size of the beamstop 11 are chosen such, that the most divergent rays 13 (indicated by thin black lines in fig. 2) of the direct beam XB pass the hybrid slit 5b and the sample 6 is blocked by the beamstop 11. Usually one wants to have the scattering angle as small as possible and therefore the beamstop 11 should be chosen as small as possible.

[0029] Fig. 2a shows a preferred embodiment of the hybrid slit 5b with eight hybrid slit elements 4. The single crystal substrates 8 of the hybrid slit elements 7 form an octagonal inner contour. Generally for a hybrid slit 5b with a polygonal aperture with n edges at least n hybrid slit elements 7 are required.

[0030] According to the invention the hybrid slit elements 7 are staggered with an offset along the transmission axis 3. The staggered arrangement of the hybrid slit elements 7 enables an overlapping arrangement of the hybrid slit elements 7. Thus, small aperture slit sizes can be achieved independently of the size of the single crystal substrates 8 (length I of the aperture edges are not limited to the length L of the single crystal substrates 8 - see fig. 2b, 2c). The offset between two neighboring hybrid slit elements 7 preferably corresponds to the thickness (dimension in direction of the transmission axis 3) of the according single crystal substrate 8 (neighboring single crystal substrates 8 are in contact or nearly in contact with each other). In contrast to the known hybrid slits, an increased number of hybrid slit elements 7 can be provided to form the aperture slit 5b by staggering the hybrid slit elements 7. Thus, the photon flux can be increased by approximating a circular shape, wherein at the same time parasitic scattering can be reduced by using tilted single crystal substrates 8. Yet, the number of hybrid slit elements is limited by the maximal length of the hybrid slit 5b which can be integrated in the x-ray analyzing system.

[0031] The aperture slit 5a which is positioned between the source 2 and the hybrid slit 5b can be a circular pinhole, since this increases the total area of the slits and therefore also increases the photon flux. It is almost entirely the hybrid slit 5b that determines the background and therefore only hybrid slit 5b needs to be polygonal, however, both aperture slits 5a, 5b can be polygonal hybrid slits as it will in all cases increase the photon flux, as shown in the following:
For a given size of the beamstop 11 with radius R the maximum diameter of the polygonal hybrid slit 5b is pre-determined, since the beamstop 11 has to be able to stop all x-rays that pass the hybrid slit 5b. Fig. 3 shows the cross-section of an x-ray beam that has passed an octagonal hybrid slit configuration 5b. The maximum diameter of the cross-section is 2R.

[0032] The higher the number of edges in the polygonal hybrid slit, the better it approximates a circle and, thus, the higher the photon flux that will pass it. The area of a polygon with n sides is:

for a square, n = 4 the equation gives A = 2 R2 and for an octagon A = 2.82843 R2. For n infinitely large, the polygon approaches a circle for which A = R2π. The gain factor in photon flux for using a circular slit for aperture slit 5a and an octagonal hybrid slit for aperture slit 5b is 1.414 and thus 41.4% compared to using a circular slit for aperture slit 5a and a square hybrid slit for aperture slit 5b. The gain factor in photon flux for using a circular slit for aperture slit 5a and an octagonal hybrid slit for aperture slit 5b compared to using two square hybrid slits is 2.221 and thus 122.1 %. In experiments gain factors very close to the predicted values have been determined.

[0033] The hybrid slit elements 7 are movable along the direction of the transmission axis 3 and/or along a direction perpendicular to the transmission axis. The latter enables to create different sized and/or shaped hybrid slits 5b in order to adapt the hybrid slit 5b to different applications with different sized beamstops 11. Please note that in order to produce a symmetric cross-section of the x-ray beam different hybrid slit elements 7 have to be arranged at different distances to the transmission axis 3 due to the divergence of the x-ray beam XB and the staggered arrangement of the hybrid slit elements 7. Since the hybrid slit elements 7 are preferable staggered close to each other, the differences of the distances of the hybrid slit elements 7 to the transmission axis 3 are small and not shown in fig. 2a. Correspondingly, for changing the size but keeping the shape of the aperture of the hybrid slit 5b, the different hybrid slit elements 7 have to be moved by different distances depending on their position along the transmission axis 3, i.e. the further the hybrid slit element 7 are away from the x-ray source 2, the further it has to be moved radially.

[0034] The inventive staggered arrangement of hybrid slit elements 7 provides more flexibility concerning size and shape of the aperture of the hybrid slit 5b. A multitude of hybrid slit elements 7 can be used to form a polygonal aperture with a high number of edges, in particular with more than four edges, wherein the length of the edges of the aperture is smaller than the length of the single crystal substrates 8. Thus, the photon flux for a given beamstop size can be increased or the beamstop size can be reduced and the resolution of the x-ray analyzing system 1 can be increased for a given photon flux.

List of reference numbers



[0035] 
1
x-ray analyzing system
2
x-ray source
3
transmission axis
4
beam forming element
5a
aperture slit
5b
aperture slit /hybrid slit
6
sample
7
hybrid slit elements
8
single crystal substrate
9
base
10
x-ray detector
11
beamstop
12
sharp edges of the single crystal substrates
13
most divergent x-rays of the x-ray beam
scattering angle
α
taper angle
XB
x-ray beam



Claims

1. X-ray analyzing system (1) for x-ray scattering analysis comprising:

- an x-ray source (2) for generating a beam (XB) of x-rays propagating along a transmission axis (3),

- at least one hybrid slit (5b) with an aperture which defines the shape of the cross section of the beam (XB),

- a sample (6) on which the beam (XB) shaped by the hybrid slit (5b) is directed, and

- an x-ray detector (10) for detecting x-rays originating from the sample (6),

wherein the hybrid slit (5b) comprises n hybrid slit elements (7), each hybrid slit element (7) comprising a single crystal substrate (8) bonded to a base (9) with a taper angel α≠0, the single crystal substrates (8) of the hybrid slit elements (7) limiting the aperture, wherein the hybrid slit elements (7) are arranged to form a polygon with n edges viewed in projection along the transmission axis (3),
with n>4
characterized in
that the hybrid slit elements (7) are staggered with an offset along the transmission axis (3), and
that the hybrid slit elements (7) are movable along the direction of the transmission axis (3) and/or perpendicularly to the transmission axis (3), wherein hybrid slit elements (7) are movable perpendicularly to the transmission axis over different distances, depending on their position along the transmission axis.
 
2. X-ray analyzing system (1) according to claim 1, characterized in that the number of hybrid slit elements (7) n≥8.
 
3. X-ray analyzing system (1) according to claim 2, characterized in that the shape of the cross section of the beam (XB) defined by the aperture is a regular polygon.
 
4. X-ray analyzing system (1) according to any one of the preceding claims, characterized in that the hybrid slit elements (7) are movable radially to the transmission axis (3).
 
5. X-ray analyzing system (1) according to any one of the preceding claims, characterized in that opposing hybrid slit elements (7) form a pair and that the hybrid slit elements are staggered pairwise.
 
6. X-ray analyzing system (1) according to any one of the preceding claims, characterized in that X-ray analyzing system (1) is a small angle X-ray diffraction analyzing system comprising a beamstop (11) which is positioned between the hybrid slit (5b) and the detector (10) for blocking incident x-rays.
 
7. X-ray analyzing system (1) according to claim 6, characterized in that the radial position and the position along the transmission axis (3) of the hybrid slit elements (7) are chosen to optimize the flux of the detected scattered x-rays.
 
8. X-ray analyzing system (1) according to any one of the preceding claims, characterized in that the X-ray source (2) is a laboratory source.
 
9. X-ray analyzing system (1) according to any one of the preceding claims, characterized in that the taper angle α is larger than the beam divergence 2θ, in particular α>10°.
 
10. X-ray analyzing system (1) according to any one of the preceding claims, characterized in that an aperture slit (5a) and a beam forming element (4) for generating a defined divergence and monochromatism of the beam (XB) are provided, wherein the aperture slit (5a) and the hybrid slit (5b) are both positioned between the beam forming element (4) and the sample (6) and are spaced apart from each other along the transmission axis (3).
 
11. X-ray analyzing system (1) according to claim 10, characterized in that the aperture slit is a further hybrid slit (5a).
 


Ansprüche

1. Röntgenanalysesystem (1) für die Röntgenstreuungsanalyse, umfassend:

- eine Röntgenquelle (2) zum Erzeugen eines Strahls (XB) von Röntgenstrahlen, die sich entlang einer Transmissionsachse (3) ausbreiten,

- mindestens eine Hybridblende (5b) mit einer Öffnung, welche die Form des Querschnitts des Strahls (XB) definiert,

- eine Probe (6), auf welche der von der Hybridblende (5b) geformte Strahl (XB) gerichtet wird, und

- einen Röntgendetektor (10) zum Detektieren von Röntgenstrahlen, die von der Probe (6) stammen,

wobei die Hybridblende (5b) n Hybridblendenelemente (7) aufweist, wobei jedes Hybridblendenelement (7) ein Einkristallsubstrat (8) aufweist, das mit einer Basis (9) unter einem spitzen Winkel α≠0 verbunden ist, wobei die Einkristallsubstrate (8) der Hybridblendenelemente (7) die Öffnung begrenzen, wobei die Hybridblendenelemente (7) so angeordnet sind, dass sie, betrachtet in der Projektion entlang der Transmissionsachse (3), ein Polygon mit n Kanten bilden, mit n>4
dadurch gekennzeichnet,
dass die Hybridblendenelemente (7) mit einem Versatz entlang der Transmissionsachse (3) versetzt angeordnet sind, und
dass die Hybridblendenelemente (7) entlang der Richtung der Transmissionsachse (3) und/oder senkrecht zur Transmissionsachse (3) bewegbar sind, wobei Hybridblendenelemente (7) senkrecht zur Transmissionsachse in Abhängigkeit ihrer Position entlang der Transmissionsachse unterschiedlich weit bewegbar sind.
 
2. Röntgenanalysesystem (1) nach Anspruch 1, dadurch gekennzeichnet, dass die Anzahl an Hybridblendenelementen (7) n≥8 ist.
 
3. Röntgenanalysesystem (1) nach Anspruch 2, dadurch gekennzeichnet, dass die durch die Öffnung definierte Form des Querschnitts des Strahls (XB) ein regelmäßiges Polygon ist.
 
4. Röntgenanalysesystem (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Hybridblendenelemente (7) radial zur Transmissionsachse (3) bewegbar sind.
 
5. Röntgenanalysesystem (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass einander gegenüberliegende Hybridblendenelemente (7) ein Paar bilden und dass die Hybridblendenelemente paarweise versetzt angeordnet sind.
 
6. Röntgenanalysesystem (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Röntgenanalysesystem (1) ein Kleinwinkel-Röntgendiffraktionsanalysesystem mit einem Strahlstopper (11) ist, der zwischen der Hybridblende (5b) und dem Detektor (10) zum Blockieren von einfallenden Röntgenstrahlen positioniert ist.
 
7. Röntgenanalysesystem (1) nach Anspruch 6, dadurch gekennzeichnet, dass die radiale Position und die Position entlang der Transmissionsachse (3) der Hybridblendenelemente (7) für die Optimierung des Flusses der detektierten gestreuten Röntgenstrahlen ausgewählt sind.
 
8. Röntgenanalysesystem (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Röntgenquelle (2) eine Laborquelle ist.
 
9. Röntgenanalysesystem (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der spitze Winkel α größer als die Strahldivergenz 2θ ist, insbesondere α>10°.
 
10. Röntgenanalysesystem (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine Spaltblende (5a) und ein Strahlformungselement (4) zum Erzeugen einer definierten Divergenz und Monochromatismus des Strahls (XB) vorgesehen sind, wobei die Spaltblende (5a) und die Hybridblende (5b) beide zwischen dem Strahlformungselement (4) und der Probe (6) angeordnet sind und entlang der Transmissionsachse (3) voneinander beabstandet sind.
 
11. Röntgenanalysesystem (1) nach Anspruch 10, dadurch gekennzeichnet, dass die Spaltblende eine weitere Hybridblende (5a) ist.
 


Revendications

1. Système d'analyse par rayons X (1) pour l'analyse de diffusion de rayons X, comprenant :

- une source de rayons X (2) pour générer un faisceau (XB) de rayons X se propageant le long d'un axe de transmission (3),

- au moins une fente hybride (5b) avec une ouverture qui définit la forme de la section transversale du faisceau (XB),

- un échantillon (6) sur lequel le faisceau (XB) mis en forme par la fente hybride (5b) est dirigé et

- un détecteur de rayons X (10) pour détecter des rayons X émanant de l'échantillon (6),

dans lequel la fente hybride (5b) comprend n éléments de fente hybride (7), chaque élément de fente hybride (7) comprenant un substrat monocristallin (8) lié à une base (9) avec un angle d'inclinaison α ≠ 0, les substrats monocristallins (8) des éléments de fente hybride (7) limitant l'ouverture,
dans lequel les éléments de fente hybride (7) sont disposés de manière à former un polygone à n côtés vu en projection le long de l'axe de transmission (3), avec n > 4,
caractérisé en ce
que les éléments de fente hybride (7) sont décalés avec un écart le long de l'axe de transmission (3) et
que les éléments de fente hybride (7) sont mobiles dans la direction de l'axe de transmission (3) et/ou perpendiculairement à l'axe de transmission (3), les éléments de fente hybride (7) étant mobiles perpendiculairement à l'axe de transmission sur différentes distances en fonction de leur position le long de l'axe de transmission.
 
2. Système d'analyse par rayons X (1) selon la revendication 1, caractérisé en ce que le nombre d'éléments de fente hybride (7) n est supérieur ou égal à 8.
 
3. Système d'analyse par rayons X (1) selon la revendication 2, caractérisé en ce que la forme de la section transversale du faisceau (XB) définie par l'ouverture est un polygone régulier.
 
4. Système d'analyse par rayons X (1) selon l'une quelconque des revendications précédentes, caractérisé en ce que les éléments de fente hybride (7) sont mobiles radialement par rapport à l'axe de transmission (3).
 
5. Système d'analyse par rayons X (1) selon l'une quelconque des revendications précédentes, caractérisé en ce que des éléments de fente hybride (7) opposés forment une paire et que les éléments de fente hybride sont décalés par paires.
 
6. Système d'analyse par rayons X (1) selon l'une quelconque des revendications précédentes, caractérisé en ce que le système d'analyse par rayons X (1) est un système d'analyse par diffraction de rayons X aux petits angles comprenant un arrêt de faisceau (11) qui est positionné entre la fente hybride (5b) et le détecteur (10) pour bloquer les rayons X incidents.
 
7. Système d'analyse par rayons X (1) selon la revendication 6, caractérisé en ce que la position radiale et la position le long de l'axe de transmission (3) des éléments de fente hybride (7) sont choisies pour optimiser le flux des rayons X diffusés détectés.
 
8. Système d'analyse par rayons X (1) selon l'une quelconque des revendications précédentes, caractérisé en ce que la source de rayons X (2) est une source de laboratoire.
 
9. Système d'analyse par rayons X (1) selon l'une quelconque des revendications précédentes, caractérisé en ce que l'angle d'inclinaison α est supérieur à la divergence de faisceau 2θ, en particulier a > 10°.
 
10. Système d'analyse par rayons X (1) selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il est prévu une fente d'ouverture (5a) et un élément de mise en forme de faisceau (4) pour générer une divergence et un monochromatisme définis du faisceau (XB), la fente d'ouverture (5a) et la fente hybride (5b) étant positionnées toutes deux entre l'élément de mise en forme de faisceau (4) et l'échantillon (6) et étant espacées l'une de l'autre le long de l'axe de transmission (3).
 
11. Système d'analyse par rayons X (1) selon la revendication 10, caractérisé en ce que la fente d'ouverture est une autre fente hybride (5a).
 




Drawing















REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description




Non-patent literature cited in the description