(19)
(11)EP 2 779 136 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
24.07.2019 Bulletin 2019/30

(21)Application number: 14158545.5

(22)Date of filing:  10.03.2014
(51)International Patent Classification (IPC): 
G08C 15/00(2006.01)
H04Q 9/00(2006.01)

(54)

Method and apparatus for multiplexed time aligned analog input sampling

Verfahren und Vorrichtung für multiplexierte, zeitlich abgestimmte Analogeingangsabtastung

Procédé et appareil échantillonnage d'entrée analogique à alignement temporel multiplexé


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 12.03.2013 US 201313795815

(43)Date of publication of application:
17.09.2014 Bulletin 2014/38

(73)Proprietor: Hamilton Sundstrand Corporation
Charlotte, NC 28217 (US)

(72)Inventors:
  • Hess, Gary L.
    Enfield, Connecticut 06082 (US)
  • Saloio, James
    Ludlow, Massachusetts 01056 (US)

(74)Representative: Dehns 
St. Bride's House 10 Salisbury Square
London EC4Y 8JD
London EC4Y 8JD (GB)


(56)References cited: : 
US-A- 5 005 142
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    TECHNICAL FIELD



    [0001] The present disclosure relates generally to multiplexed sensor arrangements, and more particularly to a multiplexed sensor arrangement for time aligned sensor readings.

    BACKGROUND OF THE INVENTION



    [0002] Aircraft engine systems, such as those used in commercial aircraft, utilize multiple sensors to check engine properties during operation. The sensors transmit corresponding sensor readings to a signal processor/controller that interprets the sensor signal and determines how to respond. The signal processors/controllers are often located remote from the engine in which the sensors are located, and the sensor signals are transmitted over lengthy signal wires to reach the signal processor/controller.

    [0003] In order to reduce weight and costs of the aircraft, the signals of analog sensors are multiplexed together at the engine itself and converted to digital signals. By multiplexing the signals together, only a single signal wire is required to carry the sensor signals from multiple sensors to the signal processor/controller. The multiplexing is performed by a multiplexor located in local proximity to the sensors.

    [0004] Such a multiplexing system is for example described in publication US 5,005,142.

    [0005] In some engines, sensor readings are required to be time correlated with each other. In such a case, the signal processor/controller needs simultaneous information from each sensor. Due to the nature of multiplexing, however, a multiplexed signal alternates between each of the sensor signals that have been multiplexed together, such that the signal processor/controller only receives a single sensor signal value at any given time. As a result, time correlated sensor signals are not transmitted over multiplexed sensor transmissions lines.

    SUMMARY OF THE INVENTION



    [0006] Disclosed is a sensor system including a first sensor and a second sensor, a multiplexor having at least two multiplexer inputs, wherein a first multiplexer input is connected to an output of the first sensor and the second multiplexer input is connected to an output of the second sensor, wherein an output of the multiplexor is connected to a time correlation logic circuit via at least a signal conditioning and anti-aliasing filter, wherein an output of the time correlation logic circuit is connected to an input of a signal processor and wherein said output of said time correlation logic is a time correlated sensor reading of said first and second sensor.

    [0007] Also disclosed is a method for time correlating a multiplexed signal including the steps of: receiving a multiplexed signal including at least two sensor signals, determining a value representative of a currently passed value of the multiplexed signal at time t, determining an average value representative of a non-currently passed value of the multiplexed signal at time t, combining the currently passed value and the average value representative of the non-currently passed value at time t, thereby determining a time correlated sensor value at time t.

    [0008] Also disclosed is a time correlated multiplexed sensor arrangement for an aircraft comprising including a first sensor and a second sensor, a multiplexor having at least two multiplexer inputs, wherein a first multiplexer input is connected to an output of the first sensor and the second multiplexer input is connected to an output of the second sensor, wherein an output of the multiplexor is connected to a time correlation logic circuit via at least a signal conditioning and anti-aliasing filter, wherein an output of the time correlation logic circuit is connected to an input of a signal processor and wherein said output of said time correlation logic is a time correlated sensor reading of said first and second sensor.

    [0009] These and other features of the present invention can be best understood from the following specification and drawings, the following of which is a brief description.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0010] 

    Figure 1 schematically illustrates an aircraft including a time correlated multiplexed sensor arrangement.

    Figure 2 schematically illustrates the sensor arrangement of Figure 1.

    Figure 3 is a graph of analog sensor information and multiplexed data.

    Figure 4 is a flowchart of a general process for operating the sensor arrangement of Figure 2.

    Figure 5 is a flowchart of a first time correlation process for use in the process of Figure 4.

    Figure 6 is a flowchart of an alternate time correlation process for use in the process of Figure 4.


    DETAILED DESCRIPTION OF AN EMBODIMENT



    [0011] Figure 1 illustrates an aircraft 10 including turbine engines 20. Included within the turbine engines 20 are multiple sensors 22, 24. Although only two sensors are illustrated for explanatory purposes, it is understood that many additional sensors are included in practical applications of turbine engines 20 and aircraft 10 designs. Each of the sensors 22, 24 output a sensor signal to a multiplexor 30 that is located in close proximity to the sensors 22, 24.

    [0012] The multiplexor 30 combines the sensor signals into a single signal using known multiplexing techniques, and transmits the signal to a signal processor 50, such as a controller via a multiplexed signal transmission line 32. The multiplexed signal transmission line 32 connects to the signal processor 50 via a signal conditioning block 40. In some examples the signal conditioning block 40 also includes an analog to digital converter, ensuring that the signal processor 50 receives digital signals that can be properly interpreted.

    [0013] In some sensor systems, the readings from the sensors 22, 24 need to be time correlated for proper operation of the controller. In such systems a time correlation logic circuit is utilized to time correlate the multiplexed data received by the signal processor 50. The time correlation logic circuit is located between the signal conditioning block 40 and the signal processor 50 and utilizes digital logic to time correlate the sensor signals. The time correlation circuit can be either a hardware based digital logic circuit, or a software based digital logic signal processing program.

    [0014] Figure 2 illustrates a sensor arrangement 100 for sensors 112, 114 where the sensors 112, 114 are sensing time correlated data. Each of the sensors 112, 114 transmits an independent sensor signal to a multiplexer 120. The multiplexer 120 multiplexes the sensor signals into a single signal using known multiplexor techniques, and transmits the multiplexed signal to a signal conditioner 130. Once conditioned the signal is converted into a digital signal in an analog to digital converter 140 and passed to a time correlation logic circuit 150.

    [0015] The time correlation logic circuit 150 reads the multiplexed sensor signals and determines a time correlated sensor signal including time correlated sensor information from both sensors 112, 114. The time correlation logic circuit 150 utilizes known logic circuits to time correlate the sensor data according to the method described below with regards to Figures 4-6.

    [0016] Once the multiplexed sensor signal has been time correlated, the time correlation logic circuit 150 passes the time correlated sensor signal to a signal processor 160, such as a controller, which then interprets the sensed data and causes the engine to respond appropriately. In some examples, such as the example illustrated in Figure 1, the signal conditioner 130 is located at the signal processor 160.

    [0017] Figure 3 is a graph 200 illustrating analog sensor signals 210, 220 on an analog graph portion 202 and multiplexed sensor signals 212, 222 on an analog to digital converter output graph portion 204. In order to multiplex the signals 210, 220, the multiplexor 120 alternates which signal is passed at each time period t1-t8. Each of the time periods t1-t8 is the same length of time with the length being determined based on the needs and specification of the multiplexor 120. In the illustrated example, the analog sensor signal 210 from the first sensor 112 is passed as a multiplexed sensor value 212 at t1, t3, t5, and t7. Similarly, the analog sensor value from the second sensor 114 is passed as a multiplexed sensor value 214 at t2, t4, t6, and t8.

    [0018] As can be seen from the multiplexor output signal, shown on the analog to digital output graph 204 only one analog sensor signal 210, 220 is passed to the signal processor 160 any given time t1-t8, absent time correlation. The time correlation circuit 150 introduces a time delay and combines past and future values of the sensor signal 210, 220 that is not currently being passed by the multiplexed signal to determine a time correlated non-passed sensor value. The time correlated non-passed sensor value is combined with the passed sensor value to determine time correlated sensor signal. The time correlated sensor signal is then passed to the signal processor 160.

    [0019] Figure 4 illustrates the time correlation process performed by the time correlation logic circuit 150 illustrated in figure 2. Initially, the signals from the sensors 112, 114 are received at the multiplexer 120 in a "receive sensor signals" step 310. The multiplexer 120 multiplexes the two sensor signals 210, 220 into a single multiplexed signal in a "multiplex sensor signals" step 320. The sensor signals 210, 220 are multiplexed together using standard multiplexer techniques. While the above described example utilizes only two sensors, it is understood that additional sensors could be multiplexed into the same signal and achieve the same benefits.

    [0020] Once the signal has been multiplexed, it is passed through a signal conditioner 130 and an analog to digital converter 140 that converts the multiplexed signal into a digital signal that is readable by a signal processor 160, such as an engine controller. The digital multiplexed signal is time correlated in a time correlation logic circuit 150, prior to being passed to the signal processor 160, in a "time correlate multiplexed signal" step 330. An example process for performing the time correlate multiplexed signal step 330 is illustrated in Figure 5 and described below. Once time correlated, the time correlated multiplexed signal is output from the time correlation circuit 150 and provided to the signal processor 160 in a "Process signal" step 340.

    [0021] With continued reference to Figures 2 and 3, Figure 5 illustrates a process by which the multiplexed sensor signals are time correlated to generate time correlated sensor information. Initially, the instantaneous value of the currently passed sensor for the time period is determined in a "determine currently passed signal" step 432. For example, if the current time frame is t5, the instantaneous value of the currently passed sensor signal 210, 222 is the actual value of the multiplexed signal, and corresponds to the actual value of the analog sensor signal 210 for the first analog sensor 112.

    [0022] Once the currently passed value is determined, the time correlation logic circuit 150 determines an average value of the non-passed sensor signal 220 in a "determine average value of non-passed sensor signal" step 434. To determine the average value of the non-passed sensor signal, the time correlation circuit 150 sums the value of the multiplexed signal from the previous time period (t4) and the next time period (t6) and divides the sum by 2. Utilization of the average value of the non-passed sensor signal 210, 220 necessarily introduces a time delay between the sensors and the receipt of the time correlated sensor signal at the signal processor.

    [0023] In alternate configurations, additional time steps can be utilized. In one example, the time correlation logic circuit 150 extends two time periods from the current time period (t5), and the average value of the non-currently passed signal is the sum of t2, t4, t6, and t8 divided by four. The number of time periods utilized to determine the average of the non-currently passed value can be increased beyond four in a similar manner with the number of adjacent values to be utilized being determined based on the specifications of the particular implementation.

    [0024] Once the average value of the non-passed sensor signal is determined, the process combines the currently passed signal and the average value signal in a "combine currently passed signal and average value signal" step 436. The summation combines the two values, resulting in a single time correlated sensor output that can be received by the signal processor 160. The time correlation process illustrated In Figure 5, and described above, results in time correlated signal according to the following equation: Cn = (A(n-1) + A(n+1))/2 + Bn. Where Cn is the time correlated signal value, Bn is the currently passed value of the multiplexed signal, and (A(n-1) + A(n+1))/2 is the average value of the non-currently passed sensor signal.

    [0025] While the above described time correlation works well for linear sensed values, it is understood that sensor signals during acceleration or deceleration can include non-linear slopes requiring an alternate time correlation logic circuit 150.

    [0026] Figure 6 illustrates a process by which the time correlation logic circuit 150 compensates for acceleration or deceleration. Initially, the process determines the instantaneous slope of the currently passed sensor signal on the multiplexed signal in a "determine instantaneous slope of current signal" step 532. Once the instantaneous slope has been determined, the process determines an average slope value of non-currently passed signals in a "determine average slope value of non-currently passed signals" step 534. The average slope value is determined in a similar manner to the determination made in the "determine average value of non-currently passed signal" step 434 described above with regards to Figure 5, with the rate of change of the non currently passed signal replacing the actual value of the non-currently passed signal. Similarly, once the average value has been determined, the process combines the instantaneous slope and average slope values from the previous steps 532, 534 to form a single combined time correlated output value in a "combine instantaneous slope and average slope" step 536.

    [0027] Thus, in order to compensate for the changing values during acceleration or deceleration, the process described in Figure 6 utilizes the first derivative of each of the sensor signals 210, 212 in place of the actual values. Similarly, if the acceleration or deceleration are changing in a non-linear fashion, the second derivative of each value can be utilized in the above process. By utilizing the slope during acceleration or deceleration, the time correlated sensor value output by the time correlation logic is based on a linear value and avoids undesirable distortions.

    [0028] It is further understood that any of the above described concepts can be used alone or in combination with any or all of the other above described concepts. Although an embodiment of this invention has been disclosed, a worker of ordinary skill in this art would recognize that certain modifications would come within the scope of this invention. The scope of the invention is defined by the following claims.


    Claims

    1. A method for time correlating a multiplexed signal comprising the steps of:

    receiving a multiplexed signal including at least two sensor signals;

    determining a value representative of a first of the at least two sensor signals, where the first of the at least two sensor signals is a currently passed value of the multiplexed signal at time t;

    determining an average value representative of a second of the at least two sensor signals, where the second of the at least two sensor signals is a non-currently passed value of the multiplexed signal at time t the average value being an average of the value of the second of the at least two sensor signals at times t-1 and t+1;

    combining said value representative of the first of the at least two sensor signals and said average value representative of the second of the at least two sensor signals at time t, thereby determining a time correlated sensor value at time t.


     
    2. The method of claim 1, wherein said step of determining an average value further comprises dividing said intermediate sum value by the number of summed values, thereby determining the average value representative of said non-currently passed multiplexed signal for time t.
     
    3. The method of claim 1, wherein said step of determining an average value further comprises summing at least a slope of an immediately prior passed value of said non-currently passed multiplexed signal at time t-1 and a slope of an immediately post passed value of said non-currently passed multiplexed signal at time t+1, thereby determining an intermediate sum value.
     
    4. The method of claim 3, wherein said step of determining an average value further comprises dividing said intermediate sum value by the number of summed values, thereby determining the average value representative of said non-currently passed multiplexed signal for time t.
     
    5. The method of claim 3, wherein average value representative of a non-currently passed multiplexed signal at time t is a derivative with respect to time of the non-currently passed multiplexed signal.
     
    6. The method of claim 5, wherein said value representative of a currently passed value of the multiplexed signal at time t is an instantaneous derivative of the currently passed value of the multiplexed signal.
     
    7. A sensor system comprising:

    a first sensor (112) and a second sensor (114);

    a multiplexor (120) having at least two multiplexer inputs, wherein a first multiplexer input is connected to an output of said first sensor and said second multiplexer input is connected to an output of said second sensor;

    wherein an output of said multiplexor is connected to a time correlation logic circuit (150) via at least a signal conditioning and anti-aliasing filter (130);

    wherein an output of said time correlation logic circuit is connected to an input of a signal processor (160); and

    wherein said output of said time correlation logic is a time correlated sensor reading of said first and second sensor; wherein said time correlation logic circuit includes logic circuitry configured to perform the method of any preceding claim.


     
    8. The sensor system of claim 7, wherein said first sensor and said second sensor are analog sensors.
     
    9. The sensor system of claim 7, wherein said time correlation logic circuit is hardware based.
     
    10. The sensor system of claim 8, wherein said output of said multiplexor is connected to said time correlation logic circuit via a signal conditioning and anti-aliasing filter in series with an analog to digital converter (140).
     
    11. The sensor system of claim 7, wherein said time correlation logic circuit includes an acceleration compensation logic circuit.
     


    Ansprüche

    1. Verfahren zum Zeitkorrelieren eines multiplexierten Signals, das die folgenden Schritte umfasst:

    Empfangen eines multiplexierten Signals, das mindestens zwei Sensorsignale beinhaltet;

    Bestimmen eines Werts, der einen ersten der mindestens zwei Sensorsignale darstellt, wobei das erste der mindestens zwei Signale ein in Stromrichtung weitergeleiteter Wert des multiplexierten Signals zur Zeit t ist;

    Bestimmen eines Mittelwerts, der einen zweiten der mindestens zwei Sensorsignale darstellt, wobei das zweite der mindestens zwei Sensorsignale ein nicht in Stromrichtung weitergeleiteter Wert des multipexierten Signals zur Zeit t ist, wobei der Mittelwert ein Durchschnitt des Werts des zweiten der mindestens zwei Sensorsignale zu den Zeiten t-1 und t+1 ist;

    Kombinieren des Werts, der das erste der mindestens zwei Sensorsignale darstellt, und des Werts, der den zweiten der mindestens zwei Sensorsignale darstellt, zur Zeit t, wodurch ein zeitkorrelierter Sensorwert zur Zeit t bestimmt wird.


     
    2. Verfahren nach Anspruch 1, wobei der Schritt des Bestimmens eines Mittelwerts ferner das Teilen des Zwischensummenwerts durch die Anzahl der summierten Werte umfasst, wodurch der Mittelwert bestimmt wird, der das nicht in Stromrichtung weitergeleitete Signal für die Zeit t darstellt.
     
    3. Verfahren nach Anspruch 1, wobei der Schritt des Bestimmens eines Mittelwerts ferner das Summieren mindestens eines Anstiegs eines unmittelbar zuvor weitergeleiteten Werts des nicht in Stromrichtung weitergeleiteten multiplexierten Signals zur Zeit t-1 und eines Anstiegs eines unmittelbar danach weitergeleiteten Werts des nicht in Stromrichtung weitergeleiteten multiplexierten Signals zur Zeit t+1 umfasst, wodurch ein Zwischensummenwert bestimmt wird.
     
    4. Verfahren nach Anspruch 3, wobei der Schritt des Bestimmens eines Mittelwerts ferner das Teilen des Zwischensummenwerts durch die Anzahl der summierten Werte umfasst, wodurch der Mittelwert bestimmt wird, der das nicht in Stromrichtung weitergeleitete multiplexierte Signal für die Zeit t darstellt.
     
    5. Verfahren nach Anspruch 3, wobei ein Mittelwert, der ein nicht in Stromrichtung weitergeleitetes Signal zur Zeit t darstellt, eine Ableitung in Bezug auf eine Zeit des nicht in Stromrichtung weitergeleiteten multiplexierten Signals ist.
     
    6. Verfahren nach Anspruch 5, wobei der Wert, der einen in Stromrichtung weitergeleiteten Wert des multiplexierten Signals zur Zeit t darstellt, eine sofortige Ableitung des in Stromrichtung weitergeleiteten Werts des multiplexierten Signals ist.
     
    7. Sensorsystem, umfassend:

    einen ersten Sensor (112) und einen zweiten Sensor (114);

    einen Multiplexer (120), der mindestens zwei Multiplexereingänge aufweist, wobei ein erster Multiplexereingang mit einem Ausgang des ersten Sensors verbunden ist und der zweite Multiplexereingang mit einem Ausgang des zweiten Sensors verbunden ist;

    wobei ein Ausgang des Multiplexers über mindestens einen Signalaufbereitungs- und Anti-Aliasing-Filter (130) mit einer Zeitkorrelationslogikschaltung (150) verbunden ist;

    wobei ein Ausgang der Zeitkorrelationslogikschaltung mit einem Eingang eines Signalprozessors (160) verbunden ist; und

    wobei der Ausgang der Zeitkorrelationslogik eine zeitkorrelierte Sensorauslesung des ersten und des zweiten Sensors ist; wobei die Zeitkorrelationslogikschaltung einen Logikschaltkreis beinhaltet, der dazu konfiguriert ist, das Verfahren nach einem der vorhergehenden Ansprüche durchzuführen.


     
    8. Sensorsystem nach Anspruch 7, wobei der erste Sensor und der zweite Sensor analoge Sensoren sind.
     
    9. Sensorsystem nach Anspruch 7, wobei die Zeitkorrelationslogikschaltung hardwarebasiert ist.
     
    10. Sensorsystem nach Anspruch 8, wobei der Ausgang des Multiplexers über einen Signalaufbereitungs- und Anti-Aliasing-Filter, der mit einem Analog-Digital-Wandler (140) in Reihe geschaltet ist, mit der Zeitkorrelationslogikschaltung verbunden ist.
     
    11. Sensorsystem nach Anspruch 7, wobei die Zeitkorrelationslogikschaltung eine Beschleunigungskompensationslogikschaltung ist.
     


    Revendications

    1. Procédé de corrélation temporelle d'un signal multiplexé comprenant les étapes de :

    réception d'un signal multiplexé incluant au moins deux signaux de capteur ;

    détermination d'une valeur représentative d'un premier des au moins deux signaux de capteur, où le premier des au moins deux signaux de capteur est une valeur actuellement transférée du signal multiplexé au moment t ;

    détermination d'une valeur moyenne représentative d'un second des au moins deux signaux de capteur, où le second des au moins deux signaux de capteur est une valeur non actuellement transférée du signal multiplexé au moment t, la valeur moyenne étant une moyenne de la valeur du second des au moins deux signaux de capteur aux moments t-1 et t+1 ;

    combinaison de ladite valeur représentative du premier des au moins deux signaux de capteur et de ladite valeur moyenne représentative du second des au moins deux signaux de capteur au moment t, déterminant ainsi une valeur de capteur corrélée temporellement au moment t.


     
    2. Procédé selon la revendication 1, dans lequel ladite étape de détermination d'une valeur moyenne comprend en outre la division de ladite valeur de la somme intermédiaire par le nombre de valeurs additionnées, déterminant ainsi la valeur moyenne représentative dudit signal multiplexé non transféré actuellement pour le moment t.
     
    3. Procédé selon la revendication 1, dans lequel ladite étape de détermination d'une valeur moyenne comprend en outre l'addition d'au moins une pente d'une valeur transférée immédiatement antérieure dudit signal multiplexé non actuellement transféré au moment t-1 et d'une pente d'une valeur transférée immédiatement postérieure dudit signal multiplexé non actuellement transféré au moment t+1, déterminant ainsi une valeur de somme intermédiaire.
     
    4. Procédé selon la revendication 3, dans lequel l'étape de détermination d'une valeur moyenne comprend en outre la division de ladite valeur de somme intermédiaire par le nombre de valeurs additionnées, déterminant ainsi la valeur moyenne représentative dudit signal multiplexé non actuellement transféré pour le moment t.
     
    5. Procédé selon la revendication 3, dans lequel la valeur moyenne représentative d'un signal multiplexé non actuellement transféré au moment t est une dérivée par rapport au moment du signal multiplexé non actuellement transféré.
     
    6. Procédé selon la revendication 5, dans lequel ladite valeur représentative d'une valeur actuellement transférée du signal multiplexé au moment t est une dérivée instantanée de la valeur actuellement transférée du signal multiplexé.
     
    7. Système de capteur comprenant :

    un premier capteur (112) et un second capteur (114) ;

    un multiplexeur (120) ayant au moins deux entrées de multiplexeur, dans lequel une première entrée de multiplexeur est connectée à une sortie dudit premier capteur et ladite seconde entrée de multiplexeur est connectée à une sortie dudit second capteur ;

    dans lequel une sortie dudit multiplexeur est connectée à un circuit logique de corrélation temporelle (150) via au moins filtre de conditionnement de signaux et antirepliement (130) ;

    dans lequel une sortie dudit circuit logique de corrélation temporelle est connectée à une entrée d'un processeur de signaux (160) ; et

    dans lequel ladite sortie de ladite logique de corrélation temporelle est une valeur de capteur corrélée temporellement dudit premier et second capteur ; dans lequel ledit circuit logique de corrélation temporelle inclut des circuits logiques configurés pour effectuer le procédé selon une quelconque revendication précédente.


     
    8. Système de capteur selon la revendication 7, dans lequel ledit premier capteur et ledit second capteur sont des capteurs analogiques.
     
    9. Système de capteur selon la revendication 7, dans lequel ledit circuit logique de corrélation temporelle est basé sur le matériel.
     
    10. Système de capteur selon la revendication 8, dans lequel ladite sortie dudit multiplexeur est connectée audit circuit logique de corrélation temporelle via un filtre de conditionnement de signaux et antirepliement en série avec un convertisseur analogique-numérique (140).
     
    11. Système de capteur selon la revendication 7, dans lequel ledit circuit logique de corrélation temporelle inclut un circuit logique de compensation d'accélération.
     




    Drawing




















    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description