(19)
(11)EP 2 784 113 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
29.11.2017 Bulletin 2017/48

(21)Application number: 13846049.8

(22)Date of filing:  21.05.2013
(51)Int. Cl.: 
C08K 5/10  (2006.01)
C07C 67/62  (2006.01)
C08J 5/00  (2006.01)
C08K 5/12  (2006.01)
C07C 69/80  (2006.01)
C08L 101/00  (2006.01)
C07C 69/82  (2006.01)
(86)International application number:
PCT/KR2013/004433
(87)International publication number:
WO 2014/058122 (17.04.2014 Gazette  2014/16)

(54)

PLASTICIZER, PLASTICIZER COMPOSITION, HEAT-RESISTANT RESIN COMPOSITION AND METHOD FOR PREPARING SAME

WEICHMACHER, WEICHMACHERZUSAMMENSETZUNG, WÄRMEFESTE HARZZUSAMMENSETZUNG UND VERFAHREN ZU IHRER HERSTELLUNG

PLASTIFIANT, COMPOSITION DE PLASTIFIANT, COMPOSITION DE RÉSINE RÉSISTANTE À LA CHALEUR ET LEUR PROCÉDÉ DE PRÉPARATION


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 10.10.2012 KR 20120112401
10.10.2012 KR 20120112406

(43)Date of publication of application:
01.10.2014 Bulletin 2014/40

(73)Proprietor: LG Chem, Ltd.
Seoul 150-721 (KR)

(72)Inventors:
  • LEE, Mi Yeon
    Daejeon 305-738 (KR)
  • KO, Dong Hyun
    Daejeon 305-738 (KR)
  • KIM, Hyun Kyu
    Daejeon 305-738 (KR)
  • JUNG, Da Won
    Daejeon 305-738 (KR)
  • LEE, Gyu Il
    Daejeon 305-738 (KR)

(74)Representative: Goddar, Heinz J. 
Boehmert & Boehmert Anwaltspartnerschaft mbB Pettenkoferstrasse 22
80336 München
80336 München (DE)


(56)References cited: : 
US-A- 5 624 987
US-A1- 2007 038 001
US-A1- 2010 120 910
US-A1- 2003 014 948
US-A1- 2008 058 450
US-A1- 2010 310 891
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    [Technical Field]



    [0001] The present invention relates to a plasticizer, a plasticizer composition, a heat-resistant resin composition and a method for preparing the same. More specifically, the present invention relates to a plasticizer that, when used for a heat-resistant resin composition, improves elongation retention, enhances aging resistance and heat resistance, and exhibits superior tensile strength, tensile strength retention, heating loss or the like before and after heating, thus contributing to enhancement in physical properties of the heat-resistant resin, a plasticizer composition and a heat-resistant resin composition and a method for preparing the same.

    [Background Art]



    [0002] In general, plasticizers are based on corresponding esters produced through reaction of alcohols with polycarboxylic acids such as phthalic acid or adipic acid. Examples of commercially essential plasticizers include adipates of C8, C9 and C10 alcohols such as di(2-ethylhexyl) adipate, diisononyl adipate and diisodecyl adipate; and phthalates of C8, C9 and C10 alcohols such as di (2-ethylhexyl) phthalate, diisononyl phthalate and diisodecyl phthalate.

    [0003] Meanwhile, plasticizers should be suitably selected according to UL (Underwriters Laboratories) heat resistance grade in order to produce wires (cables), automobile sheets and the like requiring heat resistance as a physical property.

    [0004] For example, in case of PVC compounds for UL cables, a plasticizer, a filler, a flame retardant, a heat stabilizer or the like is blended with a PVC resin according to tensile strength, elongation, cold resistance and the like which are properties required to meet UL cable standards (grades).

    [0005] The type of plasticizer used depends on heat-resistance grade. Specifically, plasticizers such as dioctyl phthalate (DOP), diisodecyl phthalate (DIDP) and diisononyl phthalate (DIP) are commonly used for 80 to 90°C heat-resistance grade, and plasticizers such as trioctyl trimellitate (TOTM) and triisononyl trimellitate (TINTM) are used for 105°C heat-resistance grade.

    [0006] However, these plasticizers have superior heat resistance, but have a disadvantage of poor compatability.

    [0007] In addition, a resin used also depends on heat-resistance grade of cables. More specifically, inexpensive PVC is generally used for products requiring heat resistance of 105°C or less, and polyolefins such as polyethylene (PE) and thermoplastic elastomers (TPE) are generally used for products requiring heat resistance of 105 to 150°C.

    [0008] In particular, for preparation of a polyethylene compound, unlike PVC, addition of a flame retardant is required, since polyethylene does not have flame retardancy, and a cross-linking agent is required for irradiation. That is, the polyethylene compound is prepared by adding carbon black to polyethylene and adding a plasticizer, a cross-linking agent, a flame retardant or the like thereto, followed by stirring and injection molding.

    [0009] US2007/038001 A1 discloses a process for preparing di-(2-ethylhexyl)terephthalate and its use as plasticizer.

    [0010] US2003/014948 A1 discloses dioctyl terephthalate plasticizers.

    [0011] US2008/058450 A1 discloses terephthalate plasticizers of alcohols having from 4 to 8 carbon atoms.

    [0012] Accordingly, there is still a need for a plasticizer having heat resistance and superior compatability (workability) and a heat-resistant resin composition comprising the same.

    [Disclosure]


    [Technical Problem]



    [0013] Through extensive and repeated research into heat-resistant plasticizers, the present inventors discovered that a plasticizer composition capable of solving low compatability caused by structural limitations can be obtained by blending a terephthalate compound containing an alkyl group having 10 carbon atoms (hereinafter, referred to as "C10" in order to solve low heat resistance of terephthalate plasticizers containing an alkyl group having 8 carbon atoms (hereinafter, referred to as "C8"). The present invention has been completed based on this discovery.

    [0014] That is, it is one object of the present invention to provide a plasticizer capable of improving physical properties such as heat resistance and compatability required for heat-resistant compounds, when used for a heat-resistant resin composition, a plasticizer composition, a heat-resistant resin composition comprising the same and a method for preparing the same.

    [0015] It is another object of the present invention to provide a plasticizer composition wherein a C10 terephthalate compound is incorporated in order to solve low heat resistance of C8 terephthalate plasticizers and the C10 terephthalate compound is used in combination with dipropyl heptyl phthalate in order to solve low compatability caused by structural limitations during blending, and a method for preparing the same.

    [Technical Solution]



    [0016] In accordance with one aspect of the present invention, the above and other objects can be accomplished by the provision of a terephthalate plasticizer represented by the following Formula 1.



    [0017] The present invention also provides a heat-resistant resin composition according to claim 17 or 18.

    [0018] Preferred embodiments are disclosed in the sub-claims.

    [0019] In accordance with another aspect of the present invention, provided is a plasticizer composition comprising: 5 to 60% by weight of the plasticizer of Formula 1; 0.1 to 50% by weight of a terephthalate compound represented by the following Formula 2; and 30 to 85% by weight of a terephthalate compound represented by the following Formula 3.





    [0020] In accordance with another aspect of the present invention, provided is a plasticizer composition comprising: 0.1 to 50% by weight of the plasticizer of Formula 1; 0.1 to 50% by weight of a terephthalate compound represented by the following Formula 2; and 30 to 85% by weight of the terephthalate compound represented by the following Formula 3, wherein the total weight of the plasticizer, the terephthalate compound of Formula 2 and the terephthalate compound of Formula 3 is 100% by weight, the plasticizer composition further comprising 0.1 to 50% by weight of a phthalate compound represented by the following Formula 4.





    [0021] In accordance with another aspect of the present invention, provided is a method for preparing a plasticizer composition comprising:

    mixing terephthalic acid with a solvent composed of a mixture of alcohols;

    adding a catalyst obtained mixing material, followed by reacting under a nitrogen atmosphere;

    removing the unreacted alcohol and neutralizing the unreacted acid; and

    dehydrating the resulting substance by distillation under reduced pressure, followed by filtering, to obtain a terephthalate composition comprising the terephthalate compound of Formula 1, the terephthalate compound of Formula 2, and the terephthalate compound of Formula 3.



    [0022] In accordance with another aspect of the present invention, provided is a heat-resistant resin composition comprising 5 to 100 parts by weight of the plasticizer or the plasticizer composition, with respect to 100 parts by weight of a resin selected from ethylene vinyl acetate, polyethylene, polypropylene, polyvinyl chloride, polystyrene, polyurethane and a thermoplastic elastomer.

    [0023] Hereinafter, the present invention will be described in detail.

    [0024] First, in one aspect, the present invention provides a terephthalate plasticizer represented by the following Formula 1 as a plasticizer:



    [0025] It can be seen that physical properties such as aging resistance, heat resistance, tensile strength, tensile strength retention, elongation retention and heating loss are poor, when the numbers of carbon atoms constituting the plasticizer are 8 and 9, rather than 8 and 10.

    [0026] In addition, the plasticizer composition of the present invention comprises:

    5 to 60% by weight of the plasticizer;

    0.1 to 50% by weight of a terephthalate compound represented by the following Formula 2; and

    30 to 85% by weight of a terephthalate compound represented by the following Formula 3.







    [0027] It can be seen that physical properties such as aging resistance, heat resistance, tensile strength, tensile strength retention, elongation retention and heating loss are poor, when the numbers of carbon atoms constituting the plasticizer composition are 8 and 9, rather than 8 and 10. When a content of the terephthalate compound represented by Formula 1 is lower than 5% by weight, based on the total weight of the composition, absorption speed of the resin is low and hardness thereof increases, and when the content thereof exceeds 60% by weight, elongation retention and heating loss are not preferred. For example, the content of the terephthalate compound may range from 1 to 35% by weight.

    [0028] In addition, when the content of the terephthalate represented by Formula 2 is lower than 0.1% by weight, based on the total weight of the composition, absorption speed of the resin is low, and when the content thereof exceeds 50% by weight, migration loss is not preferred. For example, the content of the terephthalate may range from 1 to 35% by weight.

    [0029] In addition, when the content of the terephthalate represented by Formula 3 is lower than 30% by weight, based on the total weight of the composition, improvement in heat resistance is unsatisfactory, and when the content thereof exceeds 85% by weight, migration loss is not preferred. For example, the content of the terephthalate may range from 64 to 80% by weight.

    [0030] These plasticizer compositions may be obtained by preparing and blending respective components, or using a mixture blended through esterification of a suitable alcohol mixture with terephthalic acid.

    [0031] For example, the plasticizer compositions can be simply and efficiently obtained by the following method:

    First, terephthalic acid is mixed with a solvent composed of a mixture of alcohols (first step).



    [0032] Then, a catalyst is added to the resulting mixture, followed by reacting under a nitrogen atmosphere (second step). Then, unreacted alcohol is removed and unreacted acid is neutralized (third step).

    [0033] Then, the resulting substance is dehydrated by distillation under reduced pressure, followed by filtration, to obtain a terephthalate composition (fourth step).

    [0034] The solvent composed of a mixture of alcohols used in the first step is a mixture of a C10 alcohol selected from 2-propylheptyl alcohol, 4-methyl-2-propyl-1-hexyl alcohol, 5-methyl-2-propyl-1-hexyl alcohol, normaldecyl alcohol and isodecyl alcohol, and a C8 alcohol selected from 2-ethylhexyl alcohol and normaloctyl alcohol. The solvent composed of a mixture of alcohols enables a terephthalate-based composition obtained by adding a C10 alcohol having a high molecular weight to exhibit synergetic effect of improved compatability, while taking into consideration the fact that heat resistance is low when a terephthalate-based plasticizer obtained by using C8 alcohol which imparts suitable molecular weight and physical properties to the plasticizer is used as a plasticizer for heat-resistant resins.

    [0035] Specifically, it is preferable that the solvent composed of a mixture of alcohols comprises 10 to 90% by weight of a C10 alcohol such as 2-propylheptyl alcohol and 10 to 90% by weight of a C8 alcohol such as 2-ethylhexyl alcohol, since the terephthalate-based composition satisfies a compositional ratio of 5 to 60% by weight of the terephthalate compound represented by Formula 1, 0.1 to 50% by weight of the terephthalate compound represented by Formula 2 and 30 to 85% by weight of the terephthalate compound represented by Formula 3.

    [0036] The terephthalic acid may be used in conjunction with a carboxylic acid, a polycarboxylic acid or an anhydride thereof. In particular, a terephthalic acid having a mean particle diameter of 30 to 100 µm, obtained by wet grinding, can reduce reaction time. A desired mean particle diameter distribution can be rapidly obtained by using a high-rate rotation wet grinder.

    [0037] A content ratio of products can be controlled by controlling a molar ratio of alcohols as starting materials.

    [0038] In addition, the catalyst used is a titanate-based catalyst such as tetraisopropyl titanate or tetranormal butyl titanate. For reference, an acid catalyst causes generation of more by-products, easier product discoloration and equipment corrosion, as compared to an organometallic catalyst.

    [0039] The reaction temperature may range from 180 to 280°C.

    [0040] The terephthalate composition obtained by the method comprises: 5 to 60% by weight of the terephthalate compound represented by Formula 1; 0.1 to 50% by weight of the terephthalate compound represented by Formula 2; and 30 to 85% by weight of the terephthalate compound represented by Formula 3.

    [0041] Specifically, the terephthalate composition comprises: 1 to 35% by weight of the terephthalate compound represented by Formula 1; 1 to 35% by weight of the terephthalate compound represented by Formula 2; and 64 to 80% by weight of the terephthalate compound represented by Formula 3.

    [0042] Furthermore, the plasticizer composition of the present invention comprises: 0.1 to 50% by weight of the plasticizer represented by Formula 1; 0.1 to 50% by weight of the terephthalate compound represented by Formula 2; and 30 to 85% by weight of the terephthalate compound represented by Formula 3,
    wherein the total weight of the plasticizer, the terephthalate compound of Formula 2 and the terephthalate compound of Formula 3 is 100% by weight, aaaaa
    wherein the plasticizer composition further comprises 0.1 to 50% by weight of a phthalate compound represented by the following Formula 4.



    [0043] Preferably, the plasticizer composition comprises 10 to 40% by weight of the plasticizer represented by Formula 1, 0.1 to 25% by weight of the terephthalate compound of the Formula 2, and 40 to 70% by weight of the terephthalate compound of Formula 3, wherein the total weight of the plasticizer, the terephthalate compound of Formula 2 and the terephthalate compound of Formula 3 is 100% by weight, and the plasticizer composition further comprises 10 to 30% by weight of the phthalate compound represented by Formula 4.

    [0044] The plasticizer composition may be prepared by mixing the phthalate compound of Formula 4 with the terephthalate composition obtained by the preparation method described above.

    [0045] The plasticizer composition obtained by the method comprises: 100% by weight of the total weight of a terephthalate composition comprising 0.1 to 50% by weight of the terephthalate compound represented by Formula 1, 0.1 to 50% by weight of the terephthalate compound represented by Formula 2, and 30 to 85% by weight of the terephthalate compound represented by Formula 3; and 0.1 to 50% by weight of dipropyl heptyl phthalate.

    [0046] Specifically, the plasticizer composition obtained by the method comprises: 100% by weight of the total weight of a terephthalate composition comprising 10 to 40% by weight of the terephthalate compound represented by Formula 1, 0.1 to 25% by weight of the terephthalate compound represented by Formula 2, and 40 to 70% by weight of the terephthalate compound represented by Formula 3; and 10 to 30% by weight of dipropyl heptyl phthalate.

    [0047] That is, it can be seen that physical properties such as aging resistance, heat resistance and heating loss are poor, when the numbers of carbon atoms constituting the plasticizer composition are 8 and 9, rather than 8 and 10.

    [0048] When the content of the terephtalate compound represented by Formula 1 is lower than 0.1% by weight, based on the total weight of the composition, tensile strength and elongation retention are poor, and when the content thereof exceeds 50% by weight, migration resistance and heating loss are poor. For example, the content of the terephthalate compound ranges from 10 to 40% by weight.

    [0049] In addition, when the content of the terephthalate represented by Formula 2 is lower than 0.1% by weight, based on the total weight of the composition, physical properties associated with workability such as absorption speed and melt speed are poor, and when the content thereof exceeds 50% by weight, physical properties associated with heat resistance such as migration resistance and heating loss are considerably low. For example, the content of the terephthalate may range from 0.1 to 25% by weight.

    [0050] In addition, when the content of the terephthalate represented by Formula 3 is lower than 30% by weight, based on the total weight of the composition, physical properties associated with heat resistance such as migration resistance and heating loss are poor, and when the content thereof exceeds 85% by weight, hardness increases and physical properties associated with workability such as absorption speed and melt speed are considerably deteriorated. For example, the content of the terephthalate ranges from 40 to 70% by weight.

    [0051] Furthermore, dioctyl phthalate, diethylhexyl phthalate or diisononyl phthalate may be used, instead of the phthalate compound represented by Formula 4. As can be seen from the following examples, physical properties associated with heat resistance such as migration resistance or heating loss are disadvantageously poor when the phthalate compound represented by Formula 4 is used alone, but heat resistance and compatability are improved when the phthalate compound represented by Formula 4 is used in conjunction with the terephthalate compounds of Formulae 1, 2 and 3 described above.

    [0052] The content of the phthalate compound of Formula 4 is 0.1 to 50% by weight, with respect to 100% by weight of the total weight of the terephthalate compounds represented by Formulae 1, 2 and 3. When the content of the phthalate compound of Formula 4 is lower than 0.1% by weight, the effect of compatability improvement is unsatisfactory and when the content thereof exceeds 50% by weight, the effect of compatability improvement is not potent with respect to the amount of used phthalate compound. For example, the content of the phthalate compound may range from 10 to 30% by weight.

    [0053] An application example of the plasticizer composition includes, but is not limited to, a heat-resistant resin composition comprising 5 to 100 parts by weight of the plasticizer composition with respect to 100 parts by weight of a resin selected from ethylene vinyl acetate, polyethylene, polypropylene, polyvinyl chloride, polystyrene, polyurethane and a thermoplastic elastomer.

    [0054] Meanwhile, only the terephthalate compound of Formula 1 separated from the terephthalate composition may be applied to a plasticizer.

    [0055] Specifically, the present invention also provides a heat-resistant resin composition comprising 5 to 100 parts by weight of the plasticizer of Formula 1 with respect to 100 parts by weight of a resin selected from ethylene vinyl acetate, polyethylene, polypropylene, polyvinyl chloride, polystyrene, polyurethane and a thermoplastic elastomer.

    [0056] The heat-resistant resin composition may further comprise 0.5 to 7 parts by weight of a stabilizer, 0.5 to 3 parts by weight of a lubricant, and at least one additive such as other plasticizer, a flame retardant, a cross-linking agent or a filler, for example, carbon black.

    [0057] The heat-resistant resin composition may be applied to compound prescription (treatment) or sheet prescription (treatment). As can be seen from the following examples, the heat-resistant resin composition provides heating loss, heat resistance and compatability enabling application to production of heat-resistant products such as cables (electric wires), automobile interior materials, films, sheets or tubes.

    [Advantageous Effects]



    [0058] Advantageously, the present invention provides a plasticizer that, when used for a heat-resistant resin composition, improves elongation retention, enhances aging resistance and heat resistance, and exhibits superior tensile strength, tensile strength retention, heating loss or the like before and after heating, thus contributing to enhancement in physical properties of the heat-resistant resin, a plasticizer composition, a heat-resistant resin composition and a method for preparing the same.

    [Best Mode]


    <Example>



    [0059] Now, the present invention will be described in more detail with reference to the following examples. These examples are provided only to illustrate the present invention and should not be construed as limiting the scope and spirit of the present invention.

    <Example 1>



    [0060] A reaction mixture of 2.65 mol of terephthalic acid, 1.59 mol of 2-ethyl hexanol and 6.36 mol of 2-propyl heptanol was added to 0.0056 mol of tetraisopropyl titanate as a catalyst in a five-neck round-bottom flask equipped with a temperature sensor, a mechanical stirrer, a condenser, a decanter and a nitrogen purger, followed by reaction at 235°C for 4 hours.

    [0061] After reaction, residual alcohol was extracted under reduced pressure, neutralized with sodium bicarbonate, washed with distilled water and dehydrated by reduced-pressure distillation, followed by passing through a filter, to obtain an ester plasticizer composition as the plasticizer composition of the present invention.

    [0062] GC-mass analysis of the obtained plasticizer demonstrated that the plasticizer comprised the compounds of Formulae 1, 2 and 3 and a weight ratio between the compounds was 25:2:73.

    <Example 2>



    [0063] The same procedure as in Example 1 was repeated, except that a reaction mixture of 2.65 mol of terephthalic acid, 4.11 mol of 2-ethyl hexanol and 3.84 mol of 2-propyl heptanol was used.

    [0064] GC-mass analysis of the obtained plasticizer demonstrated that the plasticizer comprised the compound of Formula 1 as a main component and a weight ratio between the compounds of Formulae 1, 2 and 3 was 52:2:46.

    <Comparative Example 1>



    [0065] The same procedure as in Example 1 was repeated, except that a reaction mixture of 2.65 mol of phthalic acid anhydride, instead of terephthalic acid, and 7.95 mol of isononyl alcohol, instead of 2-ethyl hexanol and 2-propyl heptanol was reacted at 240°C for 5 hours.

    <Comparative Example 2>



    [0066] The same procedure as in Example 1 was repeated, except that a reaction mixture of 2.65 mol of terephthalic acid and 7.95 mol of 2-propyl heptanol, containing no 2-ethyl hexanol, was reacted at 220°C for 5 hours.

    <Comparative Example 3>



    [0067] The same procedure as in Example 1 was repeated, except that a reaction mixture of 2.65 mol of phthalic acid anhydride, instead of terephthalic acid, and 7.95 mol of isodecyl alcohol, instead of 2-ethyl hexanol and propyl heptanol, was reacted at 220°C for 5 hours.

    <Comparative Example 4>



    [0068] The same procedure as in Example 1 was repeated, except that a mixture of 2.65 mol of terephthalic acid, 5.29 mol of 2-ethyl hexanol and 5.29 mol of 2-isononyl alcohol was reacted in the presence of 0.056 mol of tetraisopropyl titanate at 220°C for 9 hours, and residual alcohol was removed by extraction under reduced pressure.

    [0069] The reaction mixture was neutralized with sodium bicarbonate, washed with water once, heated under reduced pressure, dehydrated and filtered through a filter material to obtain a plasticizer composition.

    [0070] GC-mass analysis of the obtained plasticizer demonstrated that the plasticizer comprised 10% of diethylhexyl terephthalate, 54% of ethylhexyl isononyl terephthalate and 36% of diisononyl terephthalate.

    [0071] Specimens of plasticizers obtained in Examples 1 and 2 and Comparative Examples 1 to 4 were produced in accordance with ASTM D 638. Specifically, 50 parts by weight of a plasticizer, 3 parts by weight of a calcium-zinc stabilizer (LTX-620S) and 0.2 parts by weight of stearic acid were mixed with 100 parts by weight of PVC, followed by molding in a roll mill at 165°C for 3 minutes, to produce 5 mm sheets. The sheets were pressed into 1 mm sheets by preheating at 185°C for 3 minutes, heating for 3 minutes and cooling for 3 minutes, to produce type-C dumbbell specimens.

    [0072] Physical properties were tested using the sheets and results are shown in the following Table 1.

    <Test Items>



    [0073] 
    1. 1) Hardness (ASTMD785): a hardness value was read at 10 seconds after a hardness tester (type "C") needle was completely let down. The hardness was determined as an average of values measured at three spots of each specimen.

    2) Tensile strength and elongation [ASTM D638]:



    [0074] Elongation and tensile strength of the specimen on the spot where the specimen was cut were measured using a universal testing machine as a tester after pulling the specimen at a crosshead speed of 200 mm/min. The tensile strength (kgf/cm2) was calculated in accordance with the equation of load (kgf)/ thickness (cm) x width (cm) and the elongation (%) was calculated in accordance with the equation of extension/initial length x 100.

    3) Tensile strength retention:



    [0075] The specimen was allowed to stand in a gear oven at 100°C for 168 hours, was pulled using a universal testing machine at a cross-head speed of 200 mm/min in accordance with ASTM D638, the spot at which the specimen was cut was measured and tensile strength (kgf/cm2) was calculated in accordance with an equation of load(kgf)/thickness(cm)x width(cm). A tensile strength retention (%) was obtained by dividing a tensile strength obtained by the test in accordance with ASTM D638 at room temperature to the tensile strength after heating (100°C).

    4) Elongation retention:



    [0076] The specimen was allowed to stand in a gear oven at 100°C for 168 hours, was pulled using a universal testing machine as a tester at a cross-head speed of 200 mm/min in accordance with ASTM D638, the spot at which the specimen was cut was measured and elongation (%) was calculated in accordance with the equation of extension/initial length x 100. An elongation retention (%) was obtained by dividing an elongation obtained by the test in accordance with ASTM D638 at room temperature by the elongation after heating.

    5) Migration resistance:



    [0077] An initial weight (Wi) of each specimen was measured to 4 decimal places. The sheet (3cm x 3cm) was inserted between polystyrene plates in an oven at 80°C and was allowed to stand for 72 hours while a load of 1 kg was applied thereto, and the specimen was stored in a thermostatic chamber for 4 hours or longer, a weight (Wq) of the specimen was measured and a migration was calculated by the equation (Wi-Wq)/Wi x 100.

    6) Heating loss:



    [0078] An initial weight (Wi) of each specimen was measured to 4 decimal places. The specimen was set using a clamp in an oven at 121°C. After 72 hours, the specimen was maintained in a thermostatic chamber for 4 hours or longer, a weight (Wo) of the specimen was measured, and heating loss was calculated by the equation of (Wi-Wo)/Wi x 100.
    TABLE 1
     ItemsEx. 1.Ex. 2Comp. Ex. 1Comp. Ex. 2Comp. Ex. 3Comp. Ex. 4
    Physical properties Hardness 94.5 93.5 87.5 98.5 89 90
    Room temperature Elongation (%) 200,0 198.6 171.6 215.3 193.5 181.8
    Tensile strength (kg/cm2) 285.7 240.0 256.8 218.9 251.1 275.1
    After heating Elongation (%) 199.7 193.9 177.6 218.4 196.5 179.8
        Tensile strength (kg/cm2) 204.4 182.1 191.8 193.2 196.1 207.8
    Tensile strength retention (%) 100 98 103.4 101 101 98.9
    Elongation retention (%) 84 75 74.6 87 78 75.5
    Migration resistance (%) 0.3 0.2 0.2 0.5 0.2 0.1
    Heating loss (%) 1.4 3.7 5.3 0.5 4.4 3.9


    [0079] As can be seen from the results shown in Table 1 above, Examples 1 and 2 exhibited superior physical properties associated with heat resistance. Specifically, Examples 1 and 2 exhibited superior heating loss among physical properties associated with heat resistance, as compared to Comparative Examples 3 and 4. In addition, as a result of comparison of Examples 1 and 2 with Comparative Examples 1 and 2, it can be seen that Examples 1 and 2 exhibited superior elongation retention, migration resistance and heating loss.

    <Example 3>



    [0080] The same process as in Example 1 was repeated, except that a compound represented by the following Formula 4 was added to the composition obtained in Example 1 such that a content of the compound of Formula 4 after mixing was 10% by weight.




    <Example 4>



    [0081] The same process as in Example 3 was performed, except that the compound of Formula 4 was added to the composition in Example 3 such that the content of the compound of Formula 4 after mixing was 30% by weight.

    <Comparative Example 5>



    [0082] The same process as in Example 3 was performed, except that the compound of Formula 4 was added to the composition in Example 3 such that the content of the compound of Formula 4 after mixing was 60% by weight.

    <Comparative Example 6>



    [0083] The same process as in Example 3 was performed, except that the compound of Formula 4 was not added to the composition in Example 3.

    <Comparative Example 7>



    [0084] 2.65 mol of phthalic acid anhydride was reacted with 8 mol of 2-propyl heptanol in the presence of 0.056 mol of tetraisopropyl titanate at 220°C for 3.5 hours and residual alcohol was removed by extraction under reduced pressure.

    [0085] The resulting mixture was neutralized with sodium bicarbonate, washed with water once, heated under reduced pressure, dehydrated and filtered through a filtering material to obtain a plasticizer composition.

    <Comparative Example 8>



    [0086] 2.65 mol of terephthalic acid, 4 mol of 2-ethyl hexanol and 4 mol of 2-propyl heptanol were reacted in the presence of 0.056 mol of tetraisopropyl titanate at 220°C for 9 hours and residual alcohol was removed by extraction under reduced pressure.

    [0087] The resulting mixture was neutralized with sodium bicarbonate, washed with water once, heated under reduced pressure, dehydrated and filtered through a filtering material to obtain a plasticizer composition.

    [0088] GC-mass analysis of the obtained plasticizer demonstrated that the plasticizer comprised 10% of diethylhexyl terephthalate, 54% of ethylhexyl isononyl terephthalate and 36% of diisononyl terephthalate.

    <Comparative Example 9>



    [0089] 2.65 mol of phthalic acid anhydride was reacted with 8 mol of isodecanol in the presence of 0.056 mol of tetraisopropyl titanate at 235°C for 5 hours and residual alcohol was removed by extraction under reduced pressure.

    [0090] The resulting mixture was neutralized with sodium bicarbonate, washed with water once, heated under reduced pressure, dehydrated and filtered through a filtering material to obtain a plasticizer composition.

    [0091] Specimens of plasticizers obtained in Examples 3 and 4 and Comparative Examples 5 to 9 were produced in accordance with ASTM D638. Specifically, 50 parts by weight of a plasticizer, 3 parts by weight of an epoxylated soybean oil and 2.5 parts by weight of a Ba-Zn stabilizer were mixed with 100 parts by weight of PVC, followed by molding in a roll mill at 160°C for 4 minutes, to produce 5 mm sheets. The sheets were pressed at 180°C under low pressure for 3 minutes and at 180°C under high pressure for 2.5 minutes to obtain 1 mm sheets.

    [0092] Hardness (ASTM D785), tensile strength, elongation [ASTM D638], migration resistance and heating loss of the respective sheets were measured in the same manner as in Table 1. In addition, plasticizer absorption speed was obtained by measuring a time at which 200 g of a plasticizer was absorbed at 77 °C in 400 g of PVC during rotation at 60 rpm. Results are shown in the following Table 2.
    TABLE 2
     ItemsEx. 3Ex. 4Comp. Ex. 5Comp. Ex. 6Comp. Ex. 7Comp. Ex. 8Comp. Ex. 9
    Physical properties Hardness 74.5 73 72.5 76.5 68 68 71
    Tensile strength (kg/cm2) 159 157 154 160 152 169 152
    Elongation (%) 402 400 398 402 396 403 392
    Migration resistance (%) 0.76 0.78 0.85 0.75 0.88 1.05 0.74
    Heating loss (%) 1.40 1.49 1.89 1.36 2.21 3.23 1.35
    Absorption speed(sec) 610 590 570 740 544 470 525


    [0093] As can be seen from the results shown in Table 2, Examples 3 and 4 exhibited superior physical properties associated with heat resistance as well as compatability. Specifically, Examples 3 and 4 exhibited superior migration resistance and heating loss, as physical properties associated with heat resistance, as compared to Comparative Examples 7 and 8, and exhibited superior tensile strength and elongation, as compared to Comparative Example 9. In addition, as a result of comparison of Examples 3 and 4 with Comparative Example 6, it can be seen that compatability is improved through addition of the compound of Formula 4.


    Claims

    1. A terephthalate plasticizer represented by the following Formula 1.


     
    2. A plasticizer composition comprising:

    5 to 60% by weight of the plasticizer according to claim 1;

    0.1 to 50% by weight of a terephthalate compound represented by the following Formula 2; and

    30 to 85% by weight of a terephthalate compound represented by the following Formula 3.






     
    3. The plasticizer composition according to claim 2, wherein the plasticizer composition comprises:

    1 to 35% by weight of the plasticizer according to claim 1;

    1 to 35% by weight of the terephthalate compound represented by Formula 2; and

    64 to 80% by weight of the terephthalate compound represented by Formula 3.


     
    4. A plasticizer composition comprising:

    0.1 to 50% by weight of the plasticizer according to claim 1;

    0.1 to 50% by weight of a terephthalate compound represented by the following Formula 2; and

    30 to 85% by weight of the terephthalate compound represented by the following Formula 3,

    wherein the total weight of the plasticizer, the terephthalate compound of Formula 2 and the terephthalate compound of Formula 3 is 100% by weight,

    wherein the plasticizer composition further comprises 0.1 to 50% by weight of a phthalate compound represented by the following Formula 4.






     
    5. The plasticizer composition according to claim 4, wherein the plasticizer composition comprises:

    10 to 40% by weight of the plasticizer according to claim 1;

    0.1 to 25% by weight of the terephthalate compound represented by Formula 2; and

    40 to 70% by weight of the terephthalate compound represented by Formula 3,

    wherein the total weight of the plasticizer, the terephthalate compound of Formula 2 and the terephthalate compound of Formula 3 is 100% by weight,

    wherein the plasticizer composition further comprises 10 to 30% by weight of the phthalate compound represented by Formula 4.


     
    6. The plasticizer composition according to any one of claims 2 to 5, wherein the composition is applied to a resin selected from ethylene vinyl acetate, polyethylene, polypropylene, polyvinyl chloride, polystyrene, polyurethane and a thermoplastic elastomer and is used for production of cables, automobile interior materials, films, sheets or tubes.
     
    7. A method for preparing a plasticizer composition comprising:

    mixing terephthalic acid with a solvent composed of a mixture of alcohols;

    adding a catalyst to obtained mixing material, followed by reacting under a nitrogen atmosphere;

    removing the unreacted alcohol and neutralizing the unreacted acid; and

    dehydrating the resulting substance by distillation under reduced pressure, followed by filtering, to obtain a terephthalate composition comprising a terephthalate compound represented by the following Formula 1, a terephthalate compound represented by the following Formula 2, and a terephthalate compound represented by the following Formula 3.






     
    8. The method according to claim 7, further comprising:

    mixing the obtained terephthalate composition with a phthalate compound represented by the following Formula 4.


     
    9. The method according to claim 7, wherein the solvent composed of a mixture of alcohols is a mixture of a C10 alcohol selected from 2-propylheptyl alcohol, 4-methyl-2-propyl-1-hexyl alcohol, 5-methyl-2-propyl-1-hexyl- alcohol, normal-decyl alcohol and isodecyl alcohol, and a C8 alcohol selected from 2-ethylhexyl alcohol and normaloctyl alcohol.
     
    10. The method according to claim 9, wherein the solvent composed of a mixture of alcohols comprises 10 to 90% by weight of the C10 alcohol and 90 to 10% by weight of the C8 alcohol.
     
    11. The method according to claim 7, wherein the catalyst is an organometallic catalyst selected from tetraisopropyl titanate and tetra-normalbutyl titanate.
     
    12. The method according to claim 7, wherein the terephthalate composition comprises:

    5 to 60% by weight of the terephthalate compound represented by Formula 1;

    0.1 to 50% by weight of the terephthalate compound represented by Formula 2; and

    30 to 85% by weight of the terephthalate compound represented by Formula 3.


     
    13. The method according to claim 12, wherein the terephthalate composition comprises:

    1 to 35% by weight of the terephthalate compound represented by Formula 1;

    1 to 35% by weight of the terephthalate compound represented by Formula 2; and

    64 to 80% by weight of the terephtalate compound represented by Formula 3.


     
    14. The method according to claim 8, wherein 10 to 30% by weight of the dipropylheptyl phthalate is mixed with 100% by weight of the total weight of the terephtalate composition,
    wherein the terephthalate composition comprises:

    0.1 to 50% by weight of the terephthalate compound represented by Formula 1;

    0.1 to 50% by weight of the terephthalate compound represented by Formula 2, and

    30 to 85% by weight of the terephthalate compound represented by Formula 3.


     
    15. The method according to claim 14, wherein the terephthalate composition comprises:

    10 to 40% by weight of the terephthalate compound represented by Formula 1;

    0.1 to 25% by weight of the terephthalate compound represented by Formula 2; and

    40 to 70% by weight of the terephthalate compound represented by Formula 3.


     
    16. The method according to claim 7, further comprising separating the terephthalate compound of the following Formula 1 from the terephthalate composition.


     
    17. A heat-resistant resin composition comprising 5 to 100 parts by weight of the plasticizer according to claim 1 with respect to 100 parts by weight of a resin selected from ethylene vinyl acetate, polyethylene, polypropylene, polyvinyl chloride, polystyrene, polyurethane and a thermoplastic elastomer.
     
    18. A heat-resistant resin composition comprising 5 to 100 parts by weight of the plasticizer composition according to any one of claims 2 to 5, with respect to 100 parts by weight of a resin selected from ethylene vinyl acetate, polyethylene, polypropylene, polyvinyl chloride, polystyrene, polyurethane and a thermoplastic elastomer.
     
    19. The heat-resistant resin composition according to claim 17, wherein the heat-resistant resin composition is applied to production of cables, automobile interior materials, films, sheets or tubes through compound prescription or sheet prescription.
     
    20. The heat-resistant resin composition according to claim 18, wherein the heat-resistant resin composition is applied to production of cables, automobile interior materials, films, sheets or tubes through compound prescription or sheet prescription.
     


    Ansprüche

    1. Terephthalatweichmacher, dargestellt durch die folgende Formel 1:


     
    2. Weichmacherzusammensetzung, umfassend:

    5 bis 60 Gew.-% des Weichmachers nach Anspruch 1;

    0,1 bis 50 Gew.-% einer Terephthalatverbindung, die durch die folgende Formel 2 dargestellt ist; und

    30 bis 85 Gew.-% einer Terephthalatverbindung, die durch die folgende Formel 3 dargestellt ist:






     
    3. Weichmacherzusammensetzung nach Anspruch 2, wobei die Weichmacherzusammensetzung umfasst:

    1 bis 35 Gew.-% des Weichmachers nach Anspruch 1;

    1 bis 35 Gew.-% der Terephthalatverbindung, die durch Formel 2 dargestellt ist; und

    64 bis 80 Gew.-% der Terephthalatverbindung, die durch Formel 3 dargestellt ist.


     
    4. Weichmacherzusammensetzung, umfassend:

    0,1 bis 50 Gew.-% des Weichmachers nach Anspruch 1;

    0,1 bis 50 Gew.-% einer Terephthalatverbindung, die durch die folgende Formel 2 dargestellt ist; und

    30 bis 85 Gew.-% der Terephthalatverbindung, die durch die folgende Formel 3 dargestellt ist,

    wobei das Gesamtgewicht des Weichmachers, der Terephthalatverbindung nach Formel 2 und der Terephthalatverbindung nach Formel 3 100 Gew.-% ist,

    wobei die Weichmacherzusammensetzung ferner 0,1 bis 50 Gew.-% einer Phthalatverbindung umfasst, die durch die folgende Formel 4 dargestellt ist:






     
    5. Weichmacherzusammensetzung nach Anspruch 4, wobei die Weichmacherzusammensetzung umfasst:

    10 bis 40 Gew.-% des Weichmachers nach Anspruch 1;

    0,1 bis 25 Gew.-% der Terephthalatverbindung, die durch Formel 2 dargestellt ist; und

    40 bis 70 Gew.-% der Terephthalatverbindung, die durch Formel 3 dargestellt ist,

    wobei das Gesamtgewicht des Weichmachers, der Terephthalatverbindung nach Formel 2 und der Terephthalatverbindung nach Formel 3 100 Gew.-% ist,

    wobei die Weichmacherzusammensetzung ferner 10 bis 30 Gew.-% der Phthalatverbindung umfasst, die durch Formel 4 dargestellt ist.


     
    6. Weichmacherzusammensetzung nach einem der Ansprüche 2 bis 5, wobei die Zusammensetzung auf ein Harz aufgetragen ist, das ausgewählt ist aus Ethylenvinylacetat, Polyethylen, Polypropylen, Polyvinylchlorid, Polystyrol, Polyurethan und einem thermoplastischen Elastomer und zur Herstellung von Kabeln, Automobilinnenraummaterialien, Filmen, Bögen oder Röhren verwendet wird.
     
    7. Verfahren zum Herstellen einer Weichmacherzusammensetzung, umfassend:

    Mischen von Terephthalsäure mit einem Lösungsmittel, das aus einer Mischung von Alkoholen zusammengesetzt ist;

    Zufügen eines Katalysators zum erhaltenen gemischten Material, gefolgt von einer Umsetzung unter einer Stickstoffatmosphäre;

    Entfernen des nicht umgesetzten Alkohols und Neutralisieren der nicht umgesetzten Säure; und

    Dehydratisieren der resultierenden Substanz durch Destillation unter vermindertem Druck, gefolgt von einem Filtrieren, um eine Terephthalatzusammensetzung zu erhalten, die eine Terephthalatverbindung, die durch die folgende Formel 1 dargestellt ist, eine Terephthalatverbindung, die durch die folgende Formel 2 dargestellt ist, und eine Terephthalatverbindung, die durch die folgende Formel 3 dargestellt ist, zu erhalten:








     
    8. Verfahren nach Anspruch 7, weiter umfassend:

    Mischen der erhaltenen Terephthalatzusammensetzung mit einer Phthalatverbindung, die durch die folgende Formel 4 dargestellt wird:


     
    9. Verfahren nach Anspruch 7, wobei das Lösungsmittel, das aus einer Mischung von Alkoholen zusammengesetzt ist, eine Mischung eines C10-Alkohols ausgewählt aus 2-Propylheptylalkohol, 4-Methyl-2-propyl-1-hexylalkohol, 5-Methyl-2-propyl-1-hexylalkohol, normal-Decylalkohol und Isodecylalkohol und eines C8-Alkohols ausgewählt aus 2-Ethylhexylalkohol und Normaloctylalkohol ist.
     
    10. Verfahren nach Anspruch 9, wobei das Lösungsmittel, das aus einer Mischung von Alkoholen zusammengesetzt ist, 10 bis 90 Gew.-% des C10-Alkohols und 90 bis 10 Gew.-% des C8-Alkohols umfasst.
     
    11. Verfahren nach Anspruch 7, wobei der Katalysator ein organometallischer Katalysator ist, der ausgewählt ist aus Tetraisopropyltitanat und Tetranormalbutyltitanat.
     
    12. Verfahren nach Anspruch 7, wobei die Terephthalatzusammensetzung umfasst:

    5 bis 60 Gew.-% der Terephthalatverbindung, die durch Formel 1 dargestellt ist;

    0,1 bis 50 Gew.-% der Terephthalatverbindung, die durch Formel 2 dargestellt ist; und

    30 bis 85 Gew.-% der Terephthalatverbindung, die durch Formel 3 dargestellt ist.


     
    13. Verfahren nach Anspruch 12, wobei die Terephthalatzusammensetzung umfasst:

    1 bis 35 Gew.-% der Terephthalatverbindung, die durch Formel 1 dargestellt ist;

    1 bis 35 Gew.-% der Terephthalatverbindung, die durch Formel 2 dargestellt ist; und

    64 bis 80 Gew.-% der Terephthalatverbindung, die durch Formel 3 dargestellt ist.


     
    14. Verfahren nach Anspruch 8, wobei 10 bis 30 Gew.-% des Dipropylheptylphthalats mit 100 Gew.-% des Gesamtgewichts der Terephthalatzusammensetzung gemischt werden,
    wobei die Terephthalatzusammensetzung umfasst:

    0,1 bis 50 Gew.-% der Terephthalatverbindung, die durch Formel 1 dargestellt ist;

    0,1 bis 50 Gew.-% der Terephthalatverbindung, die durch Formel 2 dargestellt ist; und

    30 bis 85 Gew.-% der Terephthalatverbindung, die durch Formel 3 dargestellt ist


     
    15. Verfahren nach Anspruch 14, wobei die Terephthalatzusammensetzung umfasst:

    10 bis 40 Gew.-% der Terephthalatverbindung, die durch Formel 1 dargestellt ist;

    0,1 bis 25 Gew.-% der Terephthalatverbindung, die durch Formel 2 dargestellt ist; und

    40 bis 70 Gew.-% der Terephthalatverbindung, die durch Formel 3 dargestellt ist.


     
    16. Verfahren nach Anspruch 7, weiter umfassend ein Abtrennen der Terephthalatverbindung der folgenden Formel 1 aus der Terephthalatzusammensetzung:




     
    17. Wärmeresistente Harzzusammensetzung, umfassend 5 bis 100 Gewichtsteile des Weichmachers nach Anspruch 1 in Bezug auf 100 Gewichtsteile eines Harzes ausgewählt aus Ethylenvinylacetat, Polyethylen, Polypropylen, Polyvinylchlorid, Polystyrol, Polyurethan und einem thermoplastischem Elastomer.
     
    18. Wärmeresistente Harzzusammensetzung, umfassend 5 bis 100 Gewichtsteile der Weichmacherzusammensetzung nach einem der Ansprüche 2 bis 5 in Bezug auf 100 Gewichtsteile eines Harzes ausgewählt aus Ethylenvinylacetat, Polyethylen, Polypropylen, Polyvinylchlorid, Polystyrol, Polyurethan und einem thermoplastischem Elastomer.
     
    19. Wärmeresistente Harzzusammensetzung nach Anspruch 17, wobei die wärmeresistente Harzzusammensetzung für die Herstellung von Kabeln, Automobilinnenraummaterialien, Filmen, Bögen oder Röhren durch Verbundverschreibung oder Bogenverschreibung beaufschlagt wird.
     
    20. Wärmeresistente Harzzusammensetzung nach Anspruch 18, wobei die wärmeresistente Harzzusammensetzung für die Herstellung von Kabeln, Automobilinnenraummaterialien, Filmen, Bögen oder Röhren durch Verbundverschreibung oder Bogenverschreibung beaufschlagt wird.
     


    Revendications

    1. Plastifiant de téréphtalate représenté par la formule 1 suivante


     
    2. Composition de plastifiant comprenant :

    5 à 60 % en poids du plastifiant selon la revendication 1 ;

    0,1 à 50 % en poids d'un composé de téréphtalate représenté par la formule 2 suivante; et

    30 à 85 % en poids d'un composé de téréphtalate représenté par la formule 3 suivante.




     
    3. Composition de plastifiant selon la revendication 2, dans laquelle la composition de plastifiant comprend :

    1 à 35 % en poids du plastifiant selon la revendication 1;

    1 à 35 % en poids du composé de téréphtalate représenté par la formule 2; et

    64 à 80 % en poids du composé de téréphtalate représenté par la formule 3.


     
    4. Composition de plastifiant comprenant :

    0,1 à 50 % en poids du plastifiant selon la revendication 1;

    0,1 à 50 % en poids du composé de téréphtalate représenté par la formule 2 suivante ; et

    30 à 85 % en poids du composé de téréphtalate représenté par la formule 3 suivante,

    dans laquelle le poids total du plastifiant, du composé de téréphtalate de la formule 2 et du composé de téréphtalate de la formule 3 est de 100 % en poids,

    dans laquelle la composition de plastifiant comprend en outre 0,1 à 50 % en poids d'un composé de phthalate représenté par la formule 4 suivante.






     
    5. Composition de plastifiant selon la revendication 4, ladite composition de plastifiant comprenant :

    10 à 40 % en poids du plastifiant selon la revendication 1;

    0,1 à 25 % en poids du composé de téréphtalate représenté par la formule 2 ; et

    40 à 70 % du composé de téréphtalate représenté par la formule 3,

    dans laquelle le poids total du plastifiant, du composé de téréphtalate de la formule 2 et du composé de téréphtalate de la formule 3 est de 100 % en poids,

    la composition de plastifiant comprenant en outre 10 à 30 % en poids du composé de phtalate représenté par la formule 4.


     
    6. Composition de plastifiant selon l'une quelconque des revendications 2 à 5, ladite composition étant appliquée à une résine sélectionnée parmi l'éthylène-acétate de vinyle, le polyéthylène, le polypropylène, le chlorure de polyvinyle, le polystyrène, le polyuréthane et un élastomère thermoplastique et étant utilisée pour la production de câbles, de matériaux utilisés dans l'aménagement intérieur d'automobile, de films, de feuilles ou de tubes.
     
    7. Procédé de préparation d'une composition de plastifiant comprenant les étapes consistant à :

    mélanger un acide téréphtalique avec un solvant composé d'un mélange d'alcools;

    ajouter un catalyseur au matériau de mélange obtenu, faire réagir ensuite sous une atmosphère contenant de l'azote;

    retirer l'alcool non réagi et neutraliser l'acide non réagi ; et

    déshydrater la substance résultante par distillation sous pression réduite, filtrer ensuite afin d'obtenir une composition de téréphtalate comprenant un composé de téréphtalate représenté par la formule 1 suivante, un composé de téréphtalate représenté par la formule 2 suivante, et un composé de téréphtalate représenté par la formule 3 suivante.






     
    8. Procédé selon la revendication 7, comprenant en outre les étapes consistant à :

    mélanger la composition de téréphtalate obtenue avec un composé de phtalate représenté par la formule 4 suivante.


     
    9. Procédé selon la revendication 7, dans lequel le solvant composé d'un mélange d'alcools est un mélange d'un alcool en C10 sélectionné parmi l'alcool 2-propyl heptylique, l'alcool 4-méthyl-2-propyl-1-hexylique, l'alcool 5-méthyl-2-propyl-1-hexylique, l'alcool 5-méthyl-2-propyl-1-hexylique, l'alcool décylique normal et l'alcool isodécylique et un alcool en C8 sélectionné parmi l'alcool 2-éthylhexylique et l'alcool octylique normal.
     
    10. Procédé selon la revendication 9, dans lequel le suivant composé d'un mélange d'alcools comprend 10 à 90 % en poids de l'alcool en C10 et 90 à 10 % en poids de l'alcool en C8.
     
    11. Procédé selon la revendication 7, dans lequel le catalyseur est un catalyseur organométallique sélectionné parmi le titanate de tétra-isopropyle et le titanate de tétra-butyle normal.
     
    12. Procédé selon la revendication 7, dans lequel la composition de téréphtalate comprend :

    5 à 60 % en poids du composé de téréphtalate représenté par la formule 1:

    0,1 à 50 % en poids du composé de téréphtalate représenté par la formule 2 ; et

    30 à 85 % en poids du composé de téréphtalate représenté par la formule 3.


     
    13. Procédé selon la revendication 12, dans lequel la composition de téréphtalate comprend :

    1 à 35 % en poids du composé de téréphtalate représenté par la formule 1;

    1 à 35 % en poids du composé de téréphtalate représenté par la formule 2; et

    64 à 80 % en poids du composé de téréphtalate représenté par la formule 3.


     
    14. Procédé selon la revendication 8, dans lequel 10 à 30 % en poids du phtalate de dipropyl heptyle est avec 100 % en poids du poids total de la composition de téréphtalate.
    dans lequel la composition de téréphtalate comprend:

    0,1 à 50 % en poids du composé de téréphtalate représenté par la formule 1 ;

    0,1 à 50 % en poids du composé de téréphtalate représenté par la formule 2 ; et

    30 à 85 % en poids du composé de téréphtalate représenté par la formule 3.


     
    15. Procédé selon la revendication 14, dans lequel la composition de téréphtalate comprend :

    10 à 40 % en poids du composé de téréphtalate représenté par la formule 1 ;

    0,1 à 25 % en poids du composé de téréphtalate représenté par la formule 2 ; et

    40 à 70 % en poids du composé de téréphtalate représenté par la formule 3.


     
    16. Procédé selon la revendication 7, comprenant en outre la séparation du composé de téréphtalate de la formule 1 suivante de la composition de téréphtalate.


     
    17. Composition de résine résistante à la chaleur comprenant 5 à 100 parties en poids du plastifiant selon la revendication 1 par rapport à 100 parties en poids d'une résine sélectionnée parmi l'éthylène- acétate de vinyle, le polyéthylène, le polypropylène, le chlorure de polyvinyle, le polystyrène, le polyuréthane et un élastomère thermoplastique.
     
    18. Composition de résine résistante à la chaleur comprenant 5 à 100 parties en poids de la composition de plastifiant selon l'une quelconque des revendications 2 à 5, par rapport à 100 parties en poids d'une résine sélectionnée parmi l'éthylène-acétate de vinyle, le polyéthylène, le polypropylène, le chlorure de polyvinyle, le polystyrène, le polyuréthane et un élastomère thermoplastique.
     
    19. Composition de résine résistante à la chaleur selon la revendication 17, ladite composition de résine résistante à la chaleur étant appliquée à la production de câbles, de matériaux utilisés dans l'aménagement intérieur d'automobiles, de films, de feuilles ou de tubes par l'intermédiaire d'une prescription en matière de composants ou d'une prescription en matière de feuilles.
     
    20. Composition de résine résistante à la chaleur selon la revendication 18, ladite composition de résine résistante à la chaleur étant appliquée à la production de câbles, de matériaux utilisés dans l'aménagement intérieur d'automobiles, de films, de feuilles ou de tubes par l'intermédiaire d'une prescription en matière de composants ou d'une prescription en matière de feuilles.
     




    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description