(19)
(11)EP 2 785 940 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
17.02.2016 Bulletin 2016/07

(21)Application number: 13792484.1

(22)Date of filing:  04.10.2013
(51)Int. Cl.: 
E05D 11/06  (2006.01)
E05F 3/20  (2006.01)
E05F 1/12  (2006.01)
E05F 3/12  (2006.01)
(86)International application number:
PCT/IB2013/059121
(87)International publication number:
WO 2014/054029 (10.04.2014 Gazette  2014/15)

(54)

HINGE DEVICE FOR DOORS, SHUTTERS AND THE LIKE

SCHARNIERVORRICHTUNG FÜR TÜREN, BLENDEN UND DERGLEICHEN

DISPOSITIF CHARNIÈRE POUR PORTES, VOLETS ET SIMILAIRES


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 04.10.2012 IT VI20120249
04.10.2012 IT VI20120250

(43)Date of publication of application:
08.10.2014 Bulletin 2014/41

(73)Proprietor: In & Tec S.r.l.
25128 Brescia (IT)

(72)Inventor:
  • BACCHETTI, Luciano
    I-25075 Nave (BS) (IT)

(74)Representative: Autuori, Angelo et al
EUREKA IP Consulting Borgo Santa Lucia, 31
36100 Vicenza
36100 Vicenza (IT)


(56)References cited: : 
WO-A1-01/66894
WO-A1-2006/025663
KR-A- 20060 021 588
US-A- 1 200 538
WO-A1-03/067011
WO-A2-2011/055106
KR-A- 20070 043 283
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    Field of invention



    [0001] The present invention is generally applicable to the technical field of the closing and/or control hinges for doors, shutters or like closing elements, and particularly relates to a hinge device for rotatably moving and/or controlling during closing and/or opening a closing element, such as a door, a shutter or the like, anchored to a stationary support structure, such as a wall or a frame.

    Background of the invention



    [0002] As known, hinges generally include a movable member, usually fixed to a door, a shutter or the like, pivoted onto a fixed member, usually fixed to the support frame thereof, or to a wall and/or to the floor.

    [0003] From documents US7305797, EP1997994 and US2004/206007 hinges are known wherein the action of the closing means that ensure the return of the door in the closed position is not damped. From document EP0407150 is known a door closer which includes hydraulic damping means for damping the action of the closing means.

    [0004] All these known devices are more or less bulky, and consequently they have an unpleasant aesthetic appeal. Moroever, they do not allow for adjustment of the closing speed and/or of the latch action of the door, or in any case they do not allow a simple and quick adjustment.

    [0005] Further, these known devices have a large number of construction parts, being both difficult to manufacture and relatively expensive, and requiring frequent maintenance.

    [0006] Other hinges are known from documents GB19477, US1423784, GB401858, WO03/067011, US2009/241289, EP0255781, WO2008/50989, EP2241708, CN101705775, GB1516622, US20110041285, WO200713776, WO200636044, US20040250377 and WO2006025663.

    [0007] US20040250377 discloses the features of the preamble of claim 1.

    [0008] These known hinges can be improved in terms of size and/or reliability and/or performance.

    Summary of the invention



    [0009] An object of the present invention is to overcome at least partly the above mentioned drawbacks, by providing a hinge device having high functionality, simple construction and low cost.

    [0010] Another object of the invention is to provide a hinge device that allows a simple and quick adjustment of the opening and/or closing angle of the closing element to which it is coupled.

    [0011] Another object of the invention is to provide a hinge device of small bulkiness that allows to automatically close even very heavy doors.

    [0012] Another object of the invention is to provide a hinge device which ensures the controlled movement of the door to which it is coupled, during opening and/or during closing.

    [0013] Another object of the invention is to provide a hinge device which has a minimum number of constituent parts.

    [0014] Another object of the invention is to provide a hinge device capable of maintaining time the exact closing position over time.

    [0015] Another object of the invention is to provide a hinge device extremely safe.

    [0016] Another object of the invention is to provide a hinge device extremely easy to install. These objects, as well as others that will appear more clearly hereinafter, are achieved by a hinge device having the features of claim 1.

    [0017] Advantageous embodiments of the invention are defined in accordance with the dependent claims.

    Brief description of the drawings



    [0018] Further features and advantages of the invention will appear more evident upon reading the detailed description of some preferred, non-exclusive embodiments of a hinge device according to the invention, which are described as non-limiting examples with the help of the annexed drawings, wherein:

    FIG. 1 is an exploded view of a first embodiment of the hinge device 1;

    FIGs. 2a and 2b are respectively axonometric and axially sectioned views of the first embodiment of the hinge device 1 of FIG. 1, wherein the second tubular half-shell 13 is in the closed position;

    FIGs. 3a and 3b are respectively axonometric and axially sectioned views of the first embodiment of the hinge device 1 of FIG. 1, wherein the second tubular half-shell 13 is in a partially open position with the connecting plate 15 is substantially perpendicular to the connecting plate 14 of the first fixed tubular half-shell 12 and wherein the stop screw 90 is in the rest position;

    FIG. 3c is an axially sectioned exploded view of some details of the first embodiment of the hinge device 1 of FIG. 1;

    FIGs. 4a and 4b are respectively axonometric and axially sectioned views of the first embodiment of the hinge device 1 of FIG. 1, wherein the second tubular half-shell 13 is in a partially open position with the connecting plate 15 substantially perpendicular to the connecting plate 14 of the first fixed tubular half-shell 12 and wherein the stop screw 90 is in working position to block the sliding of the elongated element 60;

    FIG. 4c is an axially sectioned enlarged view of some details of the first embodiment of the hinge device 1 of FIG. 1;

    FIGs. 5a, 5b and 5c are respectively axonometric, axially sectioned and side views of the first embodiment of the hinge device 1 of FIG. 1, wherein the second tubular half-shell 13 is in the fully open position with the connecting plate 15 substantially coplanar with the connecting plate 14 of the first fixed tubular half-shell 12;

    FIGs. 6a, 6b and 6c are axonometric views of the hinge device 1 of FIG. 1 which show the position of the pin 73 relative to both the bushing 80 and the pivot 50 respectively in the closed positions of FIGS. 3a and 3b, in the partially open position of FIGS. 4a and 4b and in the of fully open position of FIGS. 5a, 5b and 5c;

    FIG. 7 is a partially exploded, broken axonometric view of the hinge device 1 of FIG. 1, which ahows the coupling between the second movable tubular half-shell 13 and the bushing 80;

    FIGs. 8a and 8c are enlarged sectioned views of some details of the first embodiment of the hinge device 1 of FIG. 1, with respectively in FIGs. 8b and 8d an enlargement of a first embodiment of the regulating member 130 respectively in the of work and rest positions;

    FIG. 8e is a sectioned, enlarged and broken view of some details of the first embodiment of the hinge device 1 of FIG. 1, which shows the seat 108 of the channel 100;

    FIG. 8f is an axonometric view of the regulating member 130 of FIG. 8a and 8b;

    FIGs. 9a to 15c are side views of some embodiments of the bushing 80, wherein for each embodiment of the latter two axonometric views show the position of the pin 73, the plunger member 30 and the elastic counteracting means 40 in the closed and fully open positions of the second tubular half-shell 13;

    FIGs. 16 and 17 are axonometric views of some embodiments of the pivot 50, wherein the actuating passing-trough element 72 constits of a single helical portion 71', 71" having a constant inclination or helical pitch, the helical portion 71', 71" being wound respectively for 180° and 90° around the axis X;

    FIGs. 18a to 18c are further side views of another embodiment of the bushing 80, which show two axonometric views of the position of the pin 73, the plunger member 30 and the elastic counteracting means 40 in the closed and fully open positions of the the second tubular half-shell 13;

    FIGs. 19a to 19d are further side views of another embodiment of the bushing 80, which show three axonometric views of the position of the pin 73, the plunger member 30 and the elastic counteracting means 40 in the closed, partially open and fully open positions of the second tubular half-shell 13;

    FIG. 20 is an exploded axonometric view of a third embodiment of the hinge device 1, wherein the hydraulic circuit 100 is partially located within the end cap 27;

    FIGs. 21a, 21b and 21c are axially sectioned views of the hinge device 1 of FIG. 20 respectively in the closed, partially open with the stop screw 90 in the working position and completely open positions;

    FIG. 22 is an exploded view of an embodiment which does not form part of the invention;

    FIGs. 23a and 23b are respectively axonometric and axially sectioned views of the embodiment of the hinge device 1 of FIG. 22, wherein the second tubular half-shell 13 is in the closed position;

    FIGs. 24a and 24b are respectively axonometric and axially sectioned views of the embodiment of the hinge device 1 of FIG. 22, wherein the second tubular half-shell 13 is in a partially open position with the connecting plate 15 substantially perpendicular to the connecting plate 14 of the first fixed tubular half-shell 12;

    FIGs. 25a and 25b are respectively axonometric and axially sectioned views of the embodiment of the hinge device 1 of FIG. 22, wherein the second tubular half-shell 13 is in the fully open position with the connecting plate 15 substantially coplanar with the connecting plate 14 of the first fixed tubular half-shell 12;

    FIG. 26 is an exploded view of an embodiment which does not form part of the invention;

    FIGs. 27a and 27b are respectively axonometric and axially sectioned views of the embodiment of the hinge device 1 of FIG. 26, wherein the second tubular half-shell element 13 is in the closed position;

    FIGs. 28a and 28b are respectively axonometric and axially sectioned views of the embodiment of the hinge device 1 of FIG. 26, wherein the second tubular half-shell 13 is in a partially open position with the connecting plate 15 substantially perpendicular to the connecting plate 14 of the first fixed tubular half-shell 12;

    FIGs. 29a and 29b are respectively axonometric and axially sectioned views of the embodiment of the hinge device 1 of FIG. 26, wherein the second tubular half-shell 13 is in the fully open position with the connecting plate 15 substantially coplanar with the connecting plate 14 of the first fixed tubular half-shell 12;

    FIG. 30 is an exploded view of a sixth embodiment of the hinge device 1;

    FIGs. 31a and 31b are respectively axonometric and axially sectioned views of the embodiment of the hinge device 1 of FIG. 30, wherein the second tubular half-shell 13 is in the closed position;

    FIGs. 32a and 32b are respectively axonometric and axially sectioned views of the embodiment of the hinge device 1 of FIG. 30, wherein the second tubular half-shell 13 is in a partially open position with the connecting plate 15 substantially perpendicular to the connecting plate 14 of the first fixed tubular half-shell 12 and wherein the stop screw 90 is in the rest position;

    FIGs. 33a and 33b are respectively axonometric and axially sectioned views of the embodiment of the hinge device 1 of FIG. 30, wherein the second tubular half-shell 13 is in a partially open position with the connecting plate 15 substantially perpendicular to the connecting plate 14 of the first fixed tubular half-shell 12 and wherein the stop screw 90 is in the working position to block the sliding of the elongated element 60;

    FIGs. 34a, 34b and 34c are respectively axonometric, axially sectioned and side views of the embodiment of the hinge device 1 of FIG. 30, wherein the second tubular half-shell 13 is in the fully open position with the connecting plate 15 substantially coplanar with the connecting plate 14 of the first fixed tubular half-shell 12;

    FIG. 35 is an axonometric view of a seventh embodiment of the hinge device 1;

    FIG. 36 is a partially exploded axonometric view of the seventh embodiment of the hinge device 1;

    FIG. 37 is a top view of the embodiment of FIG. 35 wherein the hinge device 1 has the second tubular half-shell 13 is in the closed position;

    FIGs. 38a and 38b are axonometric views of the hinge device 1 of FIG. 36, which respectively show the relative position of the connecting plates 14, 15 and the positions of the pin 73, the plunger member 30 and the elastic counteracting means 40 in the position shown in FIG. 37;

    FIG. 39 is a top view of the embodiment of FIG. 35 wherein the hinge device 1 has the second tubular half-shell 13 in a partially open position;

    FIGs. 40a and 40b are axonometric views of the hinge device 1 of FIG. 36, which respectively show the relative position of the connecting plates 14, 15 and the positions of the pin 73, the plunger member 30 and the elastic counteracting means 40 in the position shown in FIG. 39;

    FIG. 41 is a top view of the embodiment of FIG. 35 wherein the hinge device 1 has the second tubular half-shell 13 is in the fully open position;

    FIGs. 42a and 42b are axonometric views of the hinge device 1 of FIG. 36, which respectively show the relative position of the connecting plates 14, 15 and the positions of the pin 73, the plunger member 30 and the elastic counteracting means 40 in the position shown in FIG. 41;

    FIGs. 43a and 43b are enlarged sectional views of some details of the embodiment of the hinge device 1 of FIG. 20;

    FIGs. 44a, 44b and 44c are side, sectioned along a plane XLIV - XLIV and axonometric sectioned as above views of the end cap 27;

    FIGs. 45a and 45b are axonometric views of another embodiment of the bushing 80;

    FIGs. 46a and 46b are axonometric views of a further embodiment of the bushing 80;

    FIGs. 47a to 47e are axonometric views of a hinge device 1 which includes the embodiment of the bushing 80 of FIGs. 46a and 46b wherein the pin 73 is in several positions along the cam slots 81;

    FIGs. 48a and 48b are enlarged sectioned views of some details of a hinge device 1 that includes a second embodiment of the regulating member 130 respectively in the work and rest positions;

    FIG. 49 is an axonometric view of the second embodiment of the regulating member 130 of FIGS. 48a and 48b;

    FIG. 50 is an axonometrically sectioned view taken along a plane L - L in FIG. 49.


    Detailed description of some preferrred embodiments



    [0019] With reference to the above figures, the hinge device according to the invention, generally indicated with 1, is particularly useful for rotatably moving and/or controlling a closing element D, such as a door, a shutter, a gate or the like, which can be anchored to a stationary support structure S, such as a wall and/or a door or window frame and/or a support pillar and/or the floor.

    [0020] Depending on the configuration, the hinge device 1 according to the invention allows only the automatic closing of the closing element D to which it is coupled, as shown in FIGs. 30 to 34c, or also the control during opening and/or closing thereof, as shown for example in FIGs. 1 to 5c.

    [0021] In general, the hinge device 1 includes a fixed element 10 anchored to the stationary support structure S and a movable element 11 which may be anchored to the closing element D.

    [0022] In a preferred, not exclusive embodiment, the fixed element 10 may be positioned below the movable element 11.

    [0023] The fixed and movable elements 10, 11 include a respective first and second tubular half-shell 12, 13 mutually coupled each other to rotate about a longitudinal axis X between an open position, shown for example in FIGs. 3a to 5c, and a closed position, shown for example in FIGs. 2a and 2b.

    [0024] Suitably, the fixed and movable elements 10, 11 may include a respective first and second connecting plates 14, 15 connected respectively to the first and second tubular half-shell 12, 13 for anchoring to the stationary support structure S and the closing element D.

    [0025] Preferably, the hinge device 1 can be configured as an "anuba"-type hinge.

    [0026] Advantageously, with the exception of connecting plates 14, 15, all other components of the hinge device 1 may be included within the first and second tubular half-shells 12, 13.

    [0027] In particular, the first tubular half-shell 12 may be fixed and include a working chamber 20 defining the axis X and a plunger member 30 sliding therein. Appropriately, the working chamber 20 can be closed by a closing cap 27 inserted into the tubular half-shell 12.

    [0028] As better explained later, the first fixed tubular half-shell 12 may further include a working fluid, usually oil, acting on the piston 30 to hydraulically counteract the action thereof. The first tubular shell 12 includes elastic counteracting means 40, for example a helical compression spring 41, acting on the same plunger member 30.

    [0029] Suitably, externally to the working chamber 20 and coaxially therewith a pivot 50 is provided, which may advantageously act as an actuator, which includes an end portion 51 and a tubular body 52. Advantageously, the pivot 50 is supported by the end portion 16 of the first fixed tubular half-shell 12.

    [0030] The end portion 51 of the pivot 50 will allow the coaxial coupling between the same and the second movable tubular half-shell 13, so that the latter and the pivot 50 unitary rotate between the open and the closed positions of the second movable tubular half-shell 13.

    [0031] To this end, in a preferred, not exclusive embodiment, the end portion 51 of the pivot 50 may include an outer surface 53 having a predetermined shape which is coupled, preferably in a removable manner, with a countershaped surface 17 of the second movable tubular half-shell 13.

    [0032] In a preferred, not exclusive embodiment, shown for example in FIG. 7, the shaped surface 53 may include a plurality of axial projections, susceptible to engage corresponding recesses of the countershaped surface 17.

    [0033] Preferably, the shaped surface 53 of the pivot 50 and the countershaped surface 17 of the second tubular half-shell 13 may be configured so as to allow the selective variation of the mutual angular position thereof.

    [0034] In this way, it will be possible to change the mutual angular position of the connecting plates 14, 15 according to needs in such a manner that, for example, they may be perpendicular to each other in the closed position of the closing element D, as shown e.g. in FIG. 38th.

    [0035] Suitably, the plunger member 30 and the pivot 50 are operatively connected to each other through the elongated cylindrical element 60, so that the rotation of the latter about the axis X corresponds to the sliding of the former along the same axis X and vice-versa.

    [0036] To this end, the elongate element 60 includes a first cylindrical end portion 61 inserted within the working chamber 20 and mutually connected with the plunger member 30 and a second end portion 62 external to the working chamber 20 and sliding within the tubular body 52 of the pivot 50.

    [0037] The connection between the elongate cylindrical element 60 and the plunger member 30 may be susceptible to make unitary these elements, so that they may define a slider movable along the axis X.

    [0038] Advantageously, the tubular portion 52 of the pivot 50 may have an internal diameter Di' substantially coincident with the diameter D"' of the elongated cylindrical element 60.

    [0039] The elongated cylindrical element 60 is slidable along the axis X unitary with the plunger member 30. In other words, the elongated cylindrical element 60 and the pivot 50 are coupled together in a telescopic manner.

    [0040] Moreover, as better explained later, depending on the configuration of the guide cam slots 81 of the bushing 80 the cylindrical elongated element 60 with its plunger member 30 may or may not be rotatably locked in the working chamber 20 to prevent rotation around axis X during its sliding along the latter.

    [0041] Therefore, the plunger member 30 slides along the axis X between an end-stroke position proximal to the pivot 50, corresponding to one of the open and closed position of the second movable tubular half-shell 13, and an end-stroke position distal from the pivot 50, corresponding to the other of the open and closed position of the second movable tubular half-shell 13.

    [0042] To allow the mutual movement between the plunger member 30 and the pivot 50, the tubular body 52 of the latter includes at least one pair of grooves 70', 70" equal to each other angularly spaced by 180°, each comprising at least one helical portion 71', 71" wound around the axis X. The grooves 70', 70" are communicating with each other to define a single passing-through actuating member 72.

    [0043] In FIGs. 16 and 17 an embodiment of passing-through actuating member 72 is shown.

    [0044] Suitably, the at least one helical portion 71', 71" may have any inclination, and may be right-handed, respectively left-handed. Preferably, the at least one helical portion 71', 71" may be wound for at least 90° around the axis X, and even more preferably for at least 180°.

    [0045] Advantageously, the at least one helical portion 71', 71" may have a helical pitch P of 20 mm to 100 mm, and preferably of 30 mm to 80 mm.

    [0046] In a preferred, not exclusive embodiment, each of the grooves 70', 70" may be formed by a single helical portion 71', 71" which may have constant inclination or helical pitch.

    [0047] Conveniently, the actuating member 72 may be closed at both ends so as to define a closed path having two end blocking points 74', 74" for the pin 73 sliding therethrough, the closed path being defined by the grooves 71', 71".

    [0048] Irrespective of its position or configuration, the rotation of the actuating member 72 around the axis X allows the mutual movement of the pivot 50 and the plunger member 30.

    [0049] To guide this rotation, a tubular guide bushing 80 external to the tubular body 52 of the pivot 50 and coaxial thereto is provided. The guide bushing 80 includes a pair of cam slots 81 angularly spaced by 180°.

    [0050] To allow the mutual connection between the pivot 50, the elongated element 60 and the guide bushing 80, the second end portion 62 of the elongated element 60 includes a pin 73 inserted through the passing-through actuating member 72 and the cam slots 81 to move within them.

    [0051] Therefore, the length of the pin 73 may be such as to allow this function. The pin 73 may also define a axis Y substantially perpendicular to the axis X.

    [0052] As a consequance, upon rotation of the passing-through actuating member 72 the pin 73 is moved by the latter and guided by the cam slots 81.

    [0053] As already described above, the end portion 16 of the first tubular half-shell 12 is capable of supporting the pivot 50. The bushing 80, coaxially coupled with the latter, is unitary coupled with the first tubular half-shell 12, preferably at the same end portion 16, so as to allow the coupling of the first and second tubular half-shell 12, 13.

    [0054] Advantageously, the tubular portion 52 of the pivot 50 may have an external diameter De' less than or possibly substantially coincident with the internal diameter Di" of the bushing 80.

    [0055] Moreover, the end portion 16 of the first tubular half-shell 12 may further include a substantially annular appendix 18 having outer diameter De greater than or substantially coincident with the external diameter De' of the tubular portion 52 of the pivot 50, and therefore less than or substantially coincident with the internal diameter Di" of the bushing 80.

    [0056] The substantially annular appendix 18 may further have an internal diameter Di substantially coincident with the inner diameter Di' of the tubular portion 52 of the pivot 50, and therefore substantially coincident with the diameter D"' of the elongated cylindrical element 60.

    [0057] More particularly, the substantially annular appendix 18 may further include a lower surface 21 defining the upper wall of the working chamber 20, an upper surface 19' facing the lower portion 54 of the tubular portion 52 of the pivot 50, an inner side surface 19" facing the side wall 63 of the elongated element 60 and a cylindrical outer side surface 19"' facing the inner side wall 83 of the bushing 80 for the unitary coupling thereof with the first tubular half-shell 12. To this end, for example, the wall 19"' may be threaded, while the corresponding coupling portion 85 of the inner wall 83 may be counterthreaded.

    [0058] Preferably, the second half-shell 13 may have a tubular inner side wall 13' facing the outer side wall 82 of the bushing 80 when the same second tubular half-shell 13 is coupled to the first tubular half-shell 12.

    [0059] Thanks to one or more of the above features, the hinge device 1 has high performance while being extremely simple to manufacture and cost-effective.

    [0060] In fact, the bushing 80 has the double function of guiding the pin 73 and of supporting as a column the second movable tubular half-shell 13 which is coupled to the closing element D.

    [0061] In this way, the vertical component of the weight of the latter is loaded on the stationary support structure S while the horizontal component thereof is distributed over the entire length of the bushing 80, without minimally loading the moving parts of the hinge device 1 and in particular the pivot 50.

    [0062] This provides higher performances with respect to the devices of the prior art.

    [0063] Moreover, the first and/or the second tubular half-shell 12, 13 may be made of polymeric material, e.g. polyethylene, ABS or polypropylene, or of metallic material with relatively low mechanical strength, such as aluminum, since their function is predominantly a supporting one and have relatively low wear.

    [0064] This allows to minimize costs and manufacturing times.

    [0065] Further, this allows to minimize or to eliminate the thermal transmission which occurs in the hinges or the hydraulic door closer with metal structure, since the latter transmit to the working fluid the changes of the external temperature, which in turn change the viscosity of the same working fluid and, therefore, change the operational parameters set upon installation.

    [0066] On the other hand, the pivot 50 and/or the bushing 80, which are more stressed during use, may be made of metallic material with a relatively high mechanical strength, for example hardened steel.

    [0067] Moreover, the assembly of the hinge device is exceptionally simple, thus simplifying the manufacturing thereof.

    [0068] As mentioned above, the bushing 80 and the second tubular half-shell 13 may be further coupled each other in a removable manner, for example by sliding the latter onto the former along the axis X and subsequent mutual engagement between the outer shaped surface 53 and the countershaped surface 17.

    [0069] This greatly simplify the maintenance operations of the closing element D, as the same may be removed from the operative position by simple lifting it, without disassembling the hinge device 1.

    [0070] In this case, the second tubular half-shell will remain in operative position on the bushing 80 simply thanks to the gravity force.

    [0071] FIGs. 9a to 15c and 18a to 19c show, to merely illustrate the invention in a non-limitative manner, some embodiments of the bushing 80, which differ each other for the configuration of the guide cam slots 81.

    [0072] In particular, FIG. 9a shows a bushing 80 having guide cam slots 81 that have a first portion 84' extending parallel to the axis X and a subsequent second portion 84" extending perpendicularly thereto.

    [0073] Both portions 84', 84" may have a length sufficient to guide the rotation of the pivot 50, which is unitary with the second tubular half-shell 13, for 90° around the axis X. Possibly, a stop portion 145 may also be provided for blocking the pin 73 in the desired position, which in the exemplary embodiment shown is at the end of the second portion 84".

    [0074] This configuration is particularly advantageous in the embodiments of the hinge device 1 that include the elastic means 40, and in particular the compression spring 41.

    [0075] Thanks to the particular configuration of the guide cam slots 81, the spring 41 can be preload with its highest preloading force, so that with the same size the hinge device of the invention has a greater force than the devices of the prior art, or with the same force the hinge device of the invention has a smaller size.

    [0076] In fact, when the pin 73 slides along the first portion 84' extending parallel to the axis X, the pivot 50 in rotation about the same axis X compresses the spring 41 for 90°. When the pin 73 slides along the second portion 84" extending perpendicularly to the axis X, the pivot 50 continues to rotate around the same axis X but does not compress the spring 41.

    [0077] This allows to preload the spring 41 with its highest preloading force, with the above mentioned advantages. It is self-evident that in this case the spring 41 moves only when the pin 73 slides along the first portion 84'.

    [0078] In this case, the bushing 80 may be for example operatively coupled with the pivot shown in FIG. 16, wherein the passing-through actuating member 72 consists of a single helical portion 71', 71" having constant inclination or helical pitch wound for 180° around the axis X.

    [0079] FIG. 10a shows a bushing 80 having guide cam slots 81 which have a first portion 84' extending parallel to the axis X and a subsequent second portion 84" extending perpendicularly thereto, and differs from the bushing 80 shown in FIG. 9a for the presence of three stop portions 145 along the second portion 84" of the guide cam slots 81.

    [0080] FIG. 11a shows a bushing 80 having guide cam slots 81 which have a first portion 84' extending parallel to the axis X and a subsequent second portion 84" extending perpendicularly thereto, and differs from the bushings 80 shown in FIGS. 9a and 10a for the orientation of the same second portion 84" and for the sliding direction of the pin 73 through the guide cam slots 81.

    [0081] In fact, in this case the spring 41 is susceptible to push up the pin 73, unlike what occurs in the embodiments shown in FIGs. 9a to 10c, in which the spring 41 pulls the pin 73 down. The guide cam slots 81 are therefore configurated to guide the pin 73 in its path downwards, so as to load the spring 41.

    [0082] FIGs. 12a, 13a and 14a show bushings 80 having guide cam slots 81 that have a single portion 84 inclined or helical shaped, with predetermined angle or pitch. In this way, there are not intermediate stop points the pin 73 between the closed and the fully open position of the second half-shell 13.

    [0083] This configuration is extremely advantageous in the case in which the portion 84 has an angle or pitch opposite to the one of the helical portions 71', 71" of the passing-through actuating member 72. In fact, in this case the vertical component of the reaction force that the pin 73 exterts on the guide cam slots 81 upon the sliding therethrough is added to the one given by the passing-through actuating member 72.

    [0084] This allow to obtain a hinge device that with the same size has a force greater than the devices of the prior art, or with the same force to obtain a hinge device of smaller size.

    [0085] FIG. 15a shows a bushing 80 having guide cam slots 81 having a single portion 84' substantially parallel to the axis X.

    [0086] FIG. 18a shows a bushing 80 having guide cam slots 81 that have a first portion 84 and a subsequent second portion 84' extending perpendicularly to the axis X. The first portion 84 may be inclined or helical with predetermined angle or pitch. The angle may be less than 30°, preferably less than 25° and even more preferably close to 20°, and may have angle or pitch opposite to that of the helical portion 71', 71" of the passing-through actuating member 72.

    [0087] This allows to combine the advantages described above, for example for the bushings 80 of FIGs. 9a to 12a. In fact, the first portion 84, with its slight angle allows to preload with the highest preloading force the spring 41, while the second portion 84' allows to maximize this force upon closing or opening. In practice, a closing element D potentially without blocking points is obtained, except those in correspondence of a possible stop portions 145, which has high closing or opening force and double speed, at first slow and then fast or vice-versa. Moreover, by acting on the stop screw 90 it is possible to obtain practically any opening or closing angle between 0° and 180°.

    [0088] It is understood that each of the embodiments of the hinge device 1 shown in the FIGs. 1 to 8d and 18 to 42b may include any one of the bushings 80 shown in FIGS. 9a to 15c and 18a to 19c, as well as pivots 50 having the at least one helical portion 71', 71" either right-handed or left-handed, without departing from the scope of the invention defined by the appended claims.

    [0089] Regardless of the shape of the cam slots 81, the latter may be closed at both ends so as to define a closed path having two end blocking points 87', 87" for the pin 73 sliding therethrough.

    [0090] FIGs. 45a to 46b show further embodiments of the bushing 80, in which the cam slots 81 may include a first portion 84' and a second portion 84".

    [0091] The first portion 84' may extend substantially parallel to the axis X, as shown in FIGs. 45a and 45b, or may be slightly inclined with respect to the same axis X with opposite inclination with respect to that of the grooves 70', 70" of the pivot 50, as shown in FIGs. 46a and 46b.

    [0092] On the other hand, the second portion 84" may extend substantially perpendicularly to the axis X.

    [0093] Suitably, the first and the second portion 84', 84" may each have a length sufficient to guide the rotation of the movable tubular half-shell 13 for 90° around the axis X.

    [0094] FIGs. 47a to 47e show a hinge device 1 that includes the bushing 80 in accordance with FIGs. 45a and 45b.

    [0095] FIG. 47a shows the position completely closed of the closing element D. The pin 73 is in correspondence of the first end blocking point 87'.

    [0096] FIG. 47b shows the position of the closing element D at 90° with respect to the closed door position. The pin 73 is in correspondence of an intermediate blocking point 87"'.

    [0097] In correspondence of the latter a first shock-absorbing portion 287' may be provided that extends substantially parallel to the axis X in a direction concordant to the sliding direction of the pin 73 within the first portion 84' to allow a further minimum compression of the spring 41, for example of 1-2 mm, which may correspond to a further slight rotation of the movable tubular half-shell 13. In the embodiment shown, the first shock-absorbing portion 287' guides the pin 73 so as to rotate the closing element D from 90°, which position is shown in FIG. 47b, to 120° with respect to the closed door position, as shown in Fig 47c.

    [0098] FIG. 47d shows the position of closing element D at 180° with respect to the closed door position. The pin 73 is in correspondence of the second blocking point 87".

    [0099] In correspondence of the latter a second shock-absorbing portion 287" may be provided to guide the pin 73 so as to rotate the closing element D from 180°, which position is shown in FIG. 47d, to 190° with respect to the door closed position, as shown in FIG. 47e.

    [0100] Advantageously, the blocking points 87', 87", 87"' may include zones of the cam slots 81 against which the pin 73 abuts during its sliding hrough the same cam slots 81 to block the closing element D during opening and/or closing.

    [0101] It is pointed out that the blocking points 87', 87", 87"' are different from the stop portions 145, and have also different functions.

    [0102] The shock-absorbing portions 287', 287" allow to absorb the shock imparted to the closing element D by the abutment of the pin 73 against the blocking points 87', 87".

    [0103] In fact, this abutment is rigidly transferred to the closing element D, with the consequent unhinging danger thereof. Therefore, the shock-absorbing portions 287', 287" allow a further compression of the spring 41 which absorb the shock of the abutment of the pin 73 against the blocking points 87", 87"', thus avoiding the above danger.

    [0104] This configuration is particularly advantageous in case of aluminum frames, so as to avoid the reciprocal torsion of the closing element D and the stationary support structure S.

    [0105] Suitably, the shock-absorbing portions 287', 287" may have a length sufficient to allow a further minimum rotation of the movable element 11 of 5° to 15° around the axis X.

    [0106] A further advantage of the above configuration is that even if the closing element D rotates beyond the open position determined by the blocking points 87", 87"', the the spring 41 returns the same closing element D in the predetermined open position. Therefore, the action of the shock-absorbing portions 287', 287" does not affect the predetermined open position of the closing element D, which therefore is maintained over time even in the case of several shock-absorbing actions.

    [0107] It is understood that both the blocking points that the shock-absorbing portions of the cam slots 81 may be in any number without departing from the scope of the appended claims.

    [0108] In order to allow a user to adjust the opening and/or closing angle of the second tubular half-shell 13, at least one stop screw 90 may be provided having a first end 91 susceptible to selectively interact with the second end portion 62 of the elongated element 60 and a second end 92 to be operated from the outside by a user to adjust the stroke of the same elongated element 60 along the axis X.

    [0109] Preferably, the at least one stop screw 90 can be inserted within the pivot 50 in correspondence of the end portion 51 thereof, so as to slide along the axis X between a rest position spaced from the second end portion 62 of the elongated element 60 and a working position in contact therewith.

    [0110] In this way, it is possible to adjust the hinge device 1 in any manner.

    [0111] For example, FIGs. 4b and 33b show embodiments of the hinge device 1 in which the stop screw 90 is in working position to prevent the pin 73 to slide through the second portion 84" of the guide cam slot 81 of the bushing 80. Thanks to this configuration, in such embodiments the pin 73 slides between the closed and fully open position of the second half-shell 13 without any intermediate blocking point, which fully open position in this embodiments shows an angle of approximately 90° between the connecting plates 14, 15.

    [0112] In some embodiments, such as the ones shown in FIGs. 30 to 34c, a pair of stop screws 90, 90' may be provided, which are placed in correspondence of the respective upper and lower ends 2, 3 of the hinge device 1.

    [0113] The top stop screw 90 may have the above described features.

    [0114] The lower stop screw 90' may have a first end 91' susceptible to interact selectively with the plunger member 30 and a second end 92' to be operated from the outside by a user.

    [0115] As mentioned above, some embodiments of the hinge device 1 may include a working fluid, such as those shown in FIGs. 1 to 8d and 20 to 29b.

    [0116] The embodiments according to the invention include the elastic means 40, such as those shown in FIGs. 1 to 8d, 20 to 21c and 26 to 29c. The embodiments which do not include elastic means, such as the one shown in FIGs. 22 to 25c, do not form part of the invention.

    [0117] In the embodiments that include the elastic means 40, the latter will ensure automatic closing or the opening of the closing element D, such as in those shown in FIGs. 1 to 8d, 20 to 21c and 26 to 29c, or simply allow the plunger member 30 to return from one of the distal or proximal positions towards the other of the distal or proximal positions without ensuring the automatic closing or opening of the closing element D.

    [0118] In the first case the elastic means 40 may include a thrust spring 41 of relatively high force, in the second case they may include a reset spring having a relatively low force.

    [0119] In the first case, the hinge device 1 acts as a hydraulic hinge or door closer with automatic closure, while in the second case the same hinge device 1 acts as a hydraulic damping hinge.

    [0120] Advantageously, in embodiments that include the working fluid, the working chamber 20 may include one or more sealing elements 22 to prevent the leakage thereof, for example one or more o-rings.

    [0121] The plunger member 30 may separate the working chamber 20 in at least one first and at least one second variable volume compartment 23, 24 fluidly communicating each other and preferably adjacent. Suitably, the elastic counteracting means is inserted in the first compartment 23.

    [0122] To allow the passage of the working fluid between the first and the second compartments 23, 24, the plunger member 30 may comprise a passing-through opening 31 and valve means, which may include a non-return valve 32.

    [0123] Advantageously, the non-return valve 32 may include a disc 33 inserted with minimum clearance in a suitable housing 34 to move axially along the axis X.

    [0124] Depending on the direction in which the non-return valve 32 is mounted, it opens upon the opening or closing of the closing element D, so as to allow the passage of the working fluid between the first compartment 23 and second compartment 24 during one of the opening or closing of the closing element D and to prevent backflow thereof during the other of the opening or the closing of the same closing element D.

    [0125] For the controlled backflow of the working fluid between the first compartment 23 and the second compartment 24 during the other of the opening or closing of the closing element D, a suitable hydraulic circuit 100 may be provided.

    [0126] Suitably, the plunger member 30 may include, or respectively may constits of, a cylindrical body tightly inserted in the working chamber 20 and facing the inner side wall 25 thereof. The hydraulic circuit 100 may at least partially lye within the first tubular half-shell 12, and may preferably include a channel 107 external to the working chamber 20 which defines an axis X' substantially parallel to the axis X.

    [0127] Advantageously, the hydraulic circuit 100 may include at least one first opening 101 in the first compartment 23 and at least one further opening 102 in the second compartment 24. Depending on the direction in which is mounted the valve 32, the openings 101, 102 may act respectively as inlet and outlet of the circuit 100 or as outlet and inlet thereof.

    [0128] The first tubular half-shell 12 may have at least one first adjusting screw 103 having a first end 104 which interacts with the opening 102 of the hydraulic circuit 100 and a second end 105 which can be operated from outside by a user to adjust the flow section of the working fluid through the same opening 102.

    [0129] In the embodiments shown in FIGs. 1 to 8d, the valve 32 opens upon opening of the closing element and closes upon closing thereof, thus forcing the working fluid to flow back through the hydraulic circuit 100. In these conditions, the opening 101 acts as inlet of the hydraulic circuit 100 while the opening 102 acts as oultet thereof.

    [0130] Suitably, the outlet 102 may be fluidly decoupled from the plunger member 30 during the whole stroke thereof. The screw 103 may have the first end 104 which interacts with the opening 102 to adjust the closing speed of the closing element.

    [0131] In some preferred but not exclusive embodiments, for example those shown in FIGs. 1 to 8d , the hydraulic circuit 100 may include a further opening 106 in the second compartment 24, which in the above mentioned example may act as a second outlet in the second compartment 24 for the circuit 100.

    [0132] Therefore, the plunger member 30 may be in a spatial relationship with the openings 102, 106 such as to remain fluidly decoupled from the opening 102 for the entire stroke of the plunger member 30, as mentioned above, and such as to remain fluidically coupled with the opening 106 for a first part of the stroke thereof and to remain fluidly decoupled from the same opening 106 for a second part of the stroke of the plunger member 30.

    [0133] In this way, in the above embodiment the closing element D latches towards the closed position when the second tubular half-shell 13 is in close to the first tubular half-shell 12, or in any event when the closing element D is in the proximity of the closed position.

    [0134] In the case of valve 32 mounted on the contrary, i.e. that opens upon the closing of the closing element and closes upon the opening thereof, the circuit 100 configured as described above allows to have two resistences during opening, a first resistance for a first angular portion of the opening of the closing element D and a second resistance for a second angular portion of the opening thereof.

    [0135] In this case, upon opening of the closing element D the working fluid flows from the second compartment 24 to the first compartment 23 through the channel 107, by entering through the openings 102, 106 and exiting through the opening 101. Upon the time of closing of the closing element D the working fluid flows from the first compartment 23 to second compartment 24 through the valve 32. The first resistance during opening is obtained when the plunger member 30 is fluidly coupled with the opening 106 during the first part of the stroke thereof, while the second resistance during opening is obtained when the plunger member 30 is fluidly decoupled from the same opening 106 for the second part of the stroke thereof.

    [0136] In some preferred but not exclusive embodiments, for example those shown in FIGs. 1 to 5d, the channel 107 may include a substantially cylindrical seat 108 in which a regulating member 130 can be inserted, the regulating member 130 comprising an operative end 131 and a rod 132 coupled thereto. The rod 132 may define a longitudinal axis X" mutually parallel or coincident with the axis X' of the channel 107.

    [0137] As particularly shown in FIG. 8e, the seat 108 may have a first cylindrical portion 109' in correspondence of the opening 102 and a second cylindrical portion 109" in correspondence of the opening 106.

    [0138] To allow the mutual coupling between the regulating member 130 and the seat 108, the rod 132 of the regulating member 130 may include a first and a second threaded portion 133', 133", while the seat 108 may be counterthreaded in correspondence of the first cylindrical portion 109'. Alternatively, instead of the first threaded portion 133' the regulating member 130 may include a ring of the Seeger type inserted trough a first countershaped cylindrical portion 109'.

    [0139] However, the second cylindrical portion 109" may advantageously be smooth, that is free of counterthread. Therefore, the first cylindrical portion 109' of the seat 108 may have a maximum diameter Dp1 greater than the one Dp2 of the second cylindrical portion 109".

    [0140] The rod 132 may have an outer surface 134 faced to both the openings 101 and 106, which in a first embodiment shown for example in FIGs. 8a to 8f may essentially have a substantially cylindrical area 135' and a flat area 135" opposite thereto.

    [0141] More particularly, the outer surface 134 may include a third and a fourth cylindrical portion 136', 136" and a first and a second flat portion 137', 137" opposed thereto which are respectively faced to the first and the second cylindrical portion 109', 109" of the seat 108.

    [0142] Suitably, the maximum diameter Dp4 of the fourth cylindrical portion 136" is greater than the maximum diameter Dp3 of the third cylindrical portion 136' and may substantially coincide with the maximum diameter Dp2 of the second cylindrical portion 109" of the seat 108. Therefore, the maximum diameter Dp3 of the third cylindrical portion 136' is less than the maximum diameter Dp1 of the first cylindrical portion 109'.

    [0143] The shape of the rod 132 may be such that the substantially cylindrical area 135' extends beyond the plane of symmetry of the regulating member 130. Therefore, the first and the second flat portions 137', 137" may have respective maximum widths h', h" lower than the respective maximum diameters Dp3, Dp4 of the third and fourth cylindrical portions 136', 136".

    [0144] Advantageously, the first threaded portion 133', which may be interposed between the third and fourth cylindrical portions 136', 136", may in turn include a first cylindrical zone 138' in correspondence of the third and fourth cylindrical portions 136', 136" and a first planar zone 138" in correspondence of the first and second flat portions 137', 137".

    [0145] On the other hand, the second threaded portion 133", which may be interposed between the operative end 131 and the third cylindrical portion 136' of the rod 132, may in turn include a second cylindrical zone 139' in correspondence of the third cylindrical portion 136' and a second planar zone 139" in correspondence of the first flat portion 137'.

    [0146] Thanks to one or more of the above features, the regulating member 130 easily allows to adjust the flow section of the opening 106 when, as in this case, the limited bulkiness of the hinge device 1 does not allow the use a "classical" radial screw. The regulating member 130 allows for example to adjust the force by which the closing element D latches towards the closed position, as well as to avoid the latch action, as well as to adjust or to avoid one of the resistencies during opening.

    [0147] By acting on the operative end 131, for example by using a screwdriver, a user can promote the rotation of the rod 132 around the axis X" between a working position, shown for example in FIGs. 8b and 8d, and a rest position, shown for example in FIGs. 8a and 8c.

    [0148] As shown in these figures, in the working position the third and fourth cylindrical portions 136', 136" are respectively faced to the first and second openings 101, 106, so that the outer surface 134 of the rod 132 selectively obstruct the opening 106 while the other opening 101 will remain in fluid communication with the channel 107 and the opening 102 regardless of the rest or working position of the rod 132.

    [0149] On the other hand, in the rest position the first and the second flat portions 137', 137" remain respectively faced to the openings 101, 106, so that the working fluid is free to pass between the first and the second volume variable compartments 23, 24 through the channel 107.

    [0150] It is therefore apparent that regardless the rest or working position of the regulating member 130 the opening 101 is always in fluid communication with the opening 102, while depending from the rest or the working position of the regulating member 130 the opening 106 remains respectively in fluid communication or not with the same opening 102.

    [0151] Consequently, when the adjustment member 130 is in the rest position the opening 101 remains in fluid communication with both openings 102 and 106, so as to allow for example the above mentioned latch action or double resistance during opening, while in the working position, the opening 101 remains in fluid communication exclusively with the opening 102, so as to exclude for example the above mentioned latch action or double resistance during opening.

    [0152] In an alternative embodiment, shown in FIGs. 48a to 50, the regulating member 130 may include an axial blind hole 240, while the third and fourth cylindrical portion 136', 136" may include a respective first and second passing-through hole 250', 250" in mutual fluidic communication with the axial blind hole 240, as particularly shown in FIG. 50.

    [0153] The operation of this embodiment is similar to that of the above described embodiment shown in FIGs. 8a to 8f.

    [0154] As shown in FIGs. 48a and 48b, when the rod 132 is in the rest position, as shown in FIG. 48b, the second passing-through hole 250" remains fluidly coupled with the opening 106 and when the rod 132 is in working position, as shown in FIG. 48a, the second passing-through hole 250" remains fluidly decoupled from the opening 106, so as to selectively obstruct it.

    [0155] Suitably, the first passing-through hole 250' may be susceptible to put in mutual fluid communication the opening 101 and the opening 102 through the channel 107 regardless of the rest or working position of the rod 132. In fact, when the latter is in the working position, the working fluid flows in correspondence of the cylindrical portion 136' and passes through the passing-through hole 250'.

    [0156] In some preferred but not exclusive embodiments, for example those shown in FIGS. 1 to 8 , the channel 107 may pass through the connecting plate 14.

    [0157] Advantageously, in such embodiments the regulating member 130 can be inserted at one end of the channel 107, for example the bottom one, to selectively obstruct the opening 106, while the adjustment screw 103 can be inserted at the other end of the same channel 107, for example the upper one, to selectively obstruct the opening 102.

    [0158] More particularly, the regulating member 130 and the adjustment screw 103 can be inserted into the channel 107 so that the axis X' of the latter coincides with the fourth axis X" of the regulating member 130 and with the fifth axis X"' of the adjusting screw 103. It is understood that the axes X', X" and X"' are substantially parallel to the axis X.

    [0159] In this way, the operative end 131 of the regulating member 130 and the operative end 105 of the adjusting screw 103 can be accessible by the user at opposite sides with respect to a median plane nM, shown for example in FIG. 3a, passing through the connecting plate 14 and substantially perpendicular to the axes X', X" and X"', and consequently perpendicular to the axis X.

    [0160] Thanks to this configuration, it is possible to obtain both the adjustment of the closing and/or opening speed of the closing element D (by acting on the adjustment screw 103) and the force of the latch action and/or of the resistances during opening (by acting on the regulating member 130) with minimum bulkiness and round shapes, typical of the "Anuba"-type hinges.

    [0161] In some preferred but not exclusive embodiments, for example those shown in FIGs. 20 to 21c and 43a to 44c, the closing cap 27 of the working chamber 20 may include a passing-through duct 100' and a substantially annular peripheral groove 29 around the substantially cylindrical side wall 28 of the same cap 27. Once the cap 27 is inserted in the working chamber 20, its substantially cylindrical side wall 28, and therefore the peripheral groove 29, remains faced the inner side wall 25 of the same working chamber 20.

    [0162] Conveniently, the peripheral groove 29, which may have facing side walls 29', 29" and a bottom wall 29"', may be open at the top so that the bottom wall 29"' and the inner side wall 25 of the working chamber 20 remain directly faced each other.

    [0163] The passing-through duct 100' may include a pair of first branches 140', 140" having respective openings 100 fluidly communicating with the channel 107 through the peripheral groove 29 and the opening 101 passing through the second half-shell 12 and a second branch 141 with an opening 100"' fluidly communicating with the first compartment 23.

    [0164] A central manifold 100'''' may lye in a substantially central position along the X axis between the first branches 140', 140" and the second branch 141, which central manifold 100'''' is therefore in fluid communication with both the channel 107 that the first compartment 23.

    [0165] Advantageously, the cap 27 may include the adjustment screw 103 preferably in axial position along the axis X. The screw 103 may have the end 104 interacting with the central manifold 100'''' and the operative end 105 to be operated from the outside by a user to adjust the flow section of the working fluid therethrough.

    [0166] In the embodiment shown in FIGs. 20 to 21c and 43a to 44c, in which the valve means 32 are configured to allow the passage of the working fluid between the first compartment 23 and second compartment 24 during the opening of the closing element D and to prevent the backflow thereof during the closing of the same closing element D, the single screw 103 is susceptible to adjust the closing speed of the closing element D.

    [0167] Thanks to one or more of the above features, it is possible to obtain a simple and quick adjustment even in hinge devices 1 having minimum dimensions or completely round shaped, where it is not possible to insert screws neither axially nor radially.

    [0168] Moreover, the peripheral annular channel 29 allows to simplify the mounting of the hinge device 1, while improving the reliability thereof.

    [0169] As mentioned above, the hinge device includes the elastic counteracting means 40, as shown in FIGs. 1 to 8d, 20 to 21c and 30 to 34c.

    [0170] Such embodiments may include the working fluid, such as those shown in FIGs. 1 to 8d, 20 to 21c and 26 to 29c, or not, such as that shown in FIGs. 30 to 34c.

    [0171] In the latter case, the hinge device 1 acts as a purely mechanical opening/closing hinge.

    [0172] In some preferred but not exclusive embodiments, for example those shown in FIGs. 1 to 8d, 20 to 21c and 30 to 34c, the spring 41 and the plunger member 30 are coupled to each other so that the former 41 is in the position of maximum elongation in correspondence of the end-stroke distal position of the latter. In this case, the spring 41 is interposed between the cylindrical portion 52 of the pivot 50 and the plunger member 30.

    [0173] In order to minimize friction between the moving parts, at least one antifriction member is provided, such as an annular bearing 110, interposed between the pivot 50 and the end portion 16 of the first tubular half-shell 12 for the supporting thereof.

    [0174] In fact, in the above mentioned embodiment the pin 73 will be pulled downwards, thus urging downwards also the pivot 50 which therefore rotate about the axis X on the bearing 110. Suitably, the pin loads the stresses due to the action of the spring 41 on the latter bearing 110.

    [0175] In the embodiments which do not form part of the invention, such as the one shown in FIGs. 26 to 29c, the spring 41 and the plunger member 30 may be coupled to each other so that the first is in the position of maximum elongation in correspondence of the proximal end-stroke position of the plunger member 30. In this case, the spring 41 may be interposed between the bottom wall 26 of the working chamber 20 and the plunger member 30.

    [0176] In this case, to minimize friction between the moving parts at least one antifriction member may be provided, for example a further annular bearing 111, interposed between the pivot 50 and the upper wall 121 of a sleeve 120 susceptible to retain the pivot 50, which sleeve 120 being unitary coupled externally to the bushing 80 coaxially therewith.

    [0177] In fact, with the above configuration the pin 73 is urged upwards, by urging in turn upwords the pivot 50 which therefore rotate about the axis X on the bearing 111. The retaining sleeve 120 may for example be screwed into the lower portion of the bushing 80, so as to retain the pivot 50 in the operative position.

    [0178] In any case, the hinge device 1 is configured to minimize friction between the moving parts.

    [0179] For this purpose, at least one antifriction member is provided, for example a further annular bearing 112, interposed between the bushing 80 and the second tubular half-shell 13, in such a manner that the latter rotates around the axis X on the bearing 112.

    [0180] Therefore, the bushing 80 has a central opening 86 in the proximity of the upper portion 87 for insertion of the end portion 51 of the pivot 50. More particularly, the bushing 80 and the pivot 50 are mutually configured so that once the pivot 50 is inserted within the bushing 80 the end portion 51 of the former passes through the central opening 86 of the latter.

    [0181] To this end, the bushing 80 may have a height h substantially equal to the sum of the height of the bearing 110, the tubular body 52 of the pivot 50 and its coupling portion 85 with the outer side wall 19"' of the annular appendix 18.

    [0182] Therefore, the bearing 112 rests on the upper portion 87, so that the closing element does not load at all the pivot 50 during its rotation about the axis X. In fact, the weight of the closing element D is loaded on the bearing 112.

    [0183] Moreover, the position of the pivot 50 within the bushing 80 prevents misalignment and/or slipping out of the same pivot 50 due to forces pushing the same upwards, for example in the case of a user that force in closing the closing element D. In fact, in this case the pivot 50 impacts against the upper portion 87 of the bushing 80, such as clearly visible in FIGs. 32b and 33b, thus remaining in its original position.

    [0184] Moreover, the bushing 80 and the second tubular half-shell 13 are preferably in a spatial relationship to each other such that the second tubular half-shell 13 once coupled with the bushing 80 remains spaced from the first tubular half-shell 12, for example by a distance d of few tenths of a millimeter.

    [0185] From the above description, it is apparent that the invention fulfils the intended objects.

    [0186] The invention is susceptible to many changes and variants. All particulars may be replaced by other technically equivalent elements, and the materials may be different according to the needs, without exceeding the scope of the invention defined by the appended claims.


    Claims

    1. A hinge device for rotatably moving and/or controlling during closing and/or opening a closing element (D), such as a door, a shutter or the like, anchored to a stationary support structure (S), such as a wall or a frame, the device including:

    - a fixed element (10) anchorable to the stationary support structure (S);

    - a movable element (11) anchorable to the closing element (D), one of said fixed element (10) and movable element (11) including a first tubular half-shell (12) which includes a working chamber (20) defining a longitudinal axis (X), the other of said fixed element (10) and movable element (11) including a second tubular half-shell (13), the latter and said first tubular half-shell (12) being superimposed one another to mutually rotate around said longitudinal axis (X) between an open position and a closed position;

    - a pivot (50) positioned along said axis (X) externally to said working chamber (20), said pivot (50) and said second tubular half-shell (13) being rigidly coupled, said pivot (50) comprising a tubular body (52);

    - a plunger member (30) operatively connected to said pivot (50) and inserted within said working chamber (20) to slide along said axis (X) between an end-stroke position proximal to said pivot (50), corresponding to one of the open and the closed position of the movable element (11), and an end-stroke position distal therefrom, corresponding to the other of the open and the closed position of the movable element (11);

    - an elongate cylindrical element (60) extending along said axis (X) having a first end portion (61) inserted wothin said working chamber (20) mutually connected with said plunger member (30) and a second end portion (62) external to the working chamber (20) sliding within the tubular body (52) of said pivot (50);

    - a tubular bushing (80) having a pair of guide cam slots (81) angularly spaced by 180°, said tubular bushing (80) coaxially lying externally to said tubular body (52) of said pivot (50);

    - said working chamber including elastic counteracting means (40) acting on said plunger member (30) for returning thereof from one of said proximal and distal end-stroke positions to the other of said proximal and distal end-stroke positions, said elastic counteracting means (40) being movable along said axis (X) between a position of maximum and minimum elongation;

    wherein said pivot (50) includes at least one pair of grooves (70', 70") equal to each other angularly spaced by 180° each comprising at least one helical portion (71', 71") wound around said axis (X), said grooves (70', 70") being communicating with each other to define a single passing-through actuating member (72);
    wherein said second end portion (62) of said elongated element (60) includes a pin (73) inserted through said passing-through actuating member (72) and in said guide cam slots (81) to slide therethrough, in such a manner to mutually engage said pivot (50), said elongated cylindrical element (60) and said bushing (80);
    wherein said bushing (80) and said first tubular half-shell (12) are unitary coupled to each other in order to allow said cam slots (81) to guide the sliding of said pin (73) actuated by said passing-through actuating member (72), said bushing (80) and said second tubular half-shell (13) being coaxially coupled in such a manner that one defines the rotation axis of the other;
    characterized in that said elastic counteracting means (40) and said plunger member (30) are mutually coupled so that the former (40) are in a position of maximum elongation in correspondence of the distal end-stroke position of the latter (30), said elastic counteracting means (40) being interposed between said cylindrical portion (52) of said pivot (50) and said plunger member (30), and in that said first tubular half-shell (12) includes an end portion (16) operatively coupled with said pivot (50), at least one first antifriction element (110) interposed between said pivot (50) and said end portion (16) of said first tubular half-shell (12) being further provided to minimize friction due to the action of the elastic counteracting means (40) on said pivot (50).
     
    2. Device according to claim 1, wherein said bushing (80) and said second tubular half-shell (13) are coaxially coupled in a removable manner by mutual sliding along said axis (X) so as to allow a user to decouple the closing element (D) from the stationary support structure (S) by lifting.
     
    3. Device according to claim 1 or 2, wherein said tubular portion (52) of said pivot (50) has an internal diameter (Di') substantially coinciding with the diameter (D"') of said elongated cylindrical element (60) and an outer diameter (De') less than or substantially coincident with the internal diameter (Di") of said bushing (80), the second tubular half-shell (13) having an inner side wall (13') faced to the outer side wall (82) of said bushing (80) when the same is coupled to the first tubular half-shell (12), said end portion (16) of said first tubular half-shell (12) including a substantially annular appendix (18) having external diameter (De) greater than or substantially coincident with the outer diameter (De') of said tubular portion (52) of said pivot (50) and an inner diameter (Di) substantially coincident with the inside diameter (Di') of said tubular portion (52) of said pivot (50), said substantially annular appendix (18) comprising a first end surface (21) defining an end wall of said working chamber (20), a second end surface (19') opposite to said first end surface (21) facing the lower portion (54) of said tubular portion (52) of said pivot (50) for supporting thereof, an inner side surface (19") facing the side wall (63) of said elongated cylindrical element (60) and an outer side surface (19"') facing the inner side wall (83) of said bushing (80).
     
    4. Device according to claim 1, 2 or 3, further comprising at least one stop screw (90) in the proximity of one of the top or bottom end (2, 3) of the device, said at least one stop screw (90) including a first end (91) susceptible to selectively interact with said second end portion (62) of said elongated cylindrical element (60) and a second end (92) to be operated from the outside by a user to adjust the stroke thereof along said axis (X), said at least one stop screw (90) being inserted within said pivot (50) at said end portion (51) to slide along said axis (X) between a rest position away from the second end portion end (62) of the elongated cylindrical element (60) and a working position in contact therewith.
     
    5. Device according to one or more of the preceding claims, wherein said first and/or said second tubular half-shells (12, 13) are made of polymeric material, said pivot (50) and/or said bushing (80) being made of metallic material.
     
    6. Device according to one or more of the preceding claims, wherein said bushing (80) has a central opening (86) at the upper portion (87), said bushing (80) and said pivot (50) being mutually configured so that the end portion (51) of the latter (50) passes through the central opening (86) of the former (80), said pivot (50) lying within said bushing (80) being interposed between said at least one first antifriction element (110) and said upper portion (87) of the same bushing (80), at least one second antifriction element (112) being arranged externally to said bushing (80) between said upper portion (87) thereof (80) and said second tubular half-shell (13) so the closing element (D) does not load said pivot (50).
     
    7. Device according to claim one or more of the preceding claims, wherein said bushing (80) and said second tubular half-shell (13) are in a mutual spatial relationship so that the latter (13) remains spaced apart from said first tubular half-shell (12).
     
    8. Device according to one or more of the preceding claims, wherein said fixed element (10) includes said first tubular half-shell (12), said movable element (11) including said second tubular half-shell (13), the latter being superimposed on said first tubular half-shell (12), said end portion (16) of said first tubular half-shell (12) rotatably supporting said pivot (50), said bushing (80) defining the rotation axis of said second tubular half-shell (13).
     
    9. Device according to one or more of the preceding claims, wherein said working chamber (20) includes said working fluid, at least one sealing element (22) being provided to prevent leakage of said working fluid from said working chamber (20), said plunger member (30) being susceptible to separate said working chamber (20) in at least one first and a second variable volume compartments (23, 24) fluidly communicating each other and preferably adjacent, said plunger member (30) comprising a passing-through opening (31) to put in fluid communication said first and said second variable volume compartments (23, 24) and valve means (32) interacting with said opening (31) to allow the passage of the working fluid between said first compartment (23) and said second compartment (24) upon one of the opening or closing of the closing element (D) and to prevent the backflow thereof upon the other of the opening or closing of the same closing element (D), a hydraulic circuit (100) being further provided to allow the passage of the working fluid between said first compartment (23) and said second compartment (24) during the other of the opening or closing of the closing element (D).
     
    10. Device according to the preceding claim, wherein said plunger member (30) is tightly inserted within said working chamber (20), said first tubular half-shell (12) including at least partly said hydraulic circuit (100), the latter having at least one first opening (101) in said first compartment (23) and at least one second opening (106) in said second compartment (24).
     
    11. Device according to the preceding claim, wherein said hydraulic circuit (100) includes a third opening (102) in said second compartment (24), said plunger member (30) being in a spatial relationship with said second and third openings (102, 106) of said circuit (100) such as to remain fluidly decoupled from said third opening (102) for the entire stroke of the plunger member (30) and such as to remain fluidly coupled with said second opening (106) for a first part of said stroke and to remain fluidly decoupled therefrom for a second part of said stroke.
     
    12. Device according to any one of the preceding claims, wherein said helical portions (71', 71") of said grooves (70', 70") are right-handed, respectively left-handed, said cam slots (81) including at least one first portion (84') extending substantially parallel to said axis (X) or slightly inclined with respect thereto (X) with an inclination opposite to that of said grooves (70', 70") of said pivot (50), said cam slots (81) further including at least one second portion (84") extending substantially perpendicularly thereto, wherein when the pin (73) slides along said at least one first portion (84') of said cam slots (81) said elastic counteracting means (40) move between the positions of maximum and minimum elongation, and wherein when the pin (73) slides along said at least one second portion (84") of said cam slots (81) said elastic counteracting means (40) remain in said position of minimum elongation.
     
    13. Device according to the preceding claim, wherein said elastic counteracting means (40) are preloaded so as to maximize the closing or opening force of the device and/or to minimize the bulkiness thereof.
     
    14. Device according to claim 12 or 13, wherein said at least one first and at least one second portions (84', 84") of said cam slots (81) are mutually consecutive.
     
    15. Device according to claim 12, 13 or 14, wherein said at least one first portion (84') extends substantially parallel to said axis (X), wherein when the pin (73) slides along said at least one first portion (84') of said cam slots (81) said plunger member (30) slides between said first and second end-stroke position by remaining rotationally blocked, and wherein when the pin (73) slides along said at least one second portion (84") of said cam slots (81), said plunger member (30) rotates unitary with said pivot (50) around said axis (X) by remaining in one of said first and second end-stroke positions.
     


    Ansprüche

    1. Scharniervorrichtung zum drehenden Bewegen und/oder Steuern eines Verschlusselements (D), wie etwa einer Tür, einer Klappe oder dergleichen, während des Schließens und/oder Öffnens, die an einer stationären Stützstruktur (S), wie etwa einer Wand oder einem Rahmen verankert ist, wobei die Vorrichtung Folgendes beinhaltet:

    - ein feststehendes Element (10), das an der stationären Stützstruktur (S) verankerbar ist,

    - ein bewegliches Element (11), das am Verschlusselement (D) verankerbar ist, wobei das feststehende Element (10) oder das bewegliche Element (11) eine erste röhrenförmige Halbummantelung (12) beinhaltet, die eine Arbeitskammer (20) beinhaltet, welche eine Längsachse (X) definiert, und das jeweils andere des feststehenden Elements (10) und des beweglichen Elements (11) eine zweite röhrenförmige Halbummantelung (13) beinhaltet, wobei Letztere und die erste röhrenförmige Halbummantelung (11) einander überlagern, um sich zwischen einer offenen Position und einer geschlossenen Position gemeinsam um die Längsachse (X) zu drehen,

    - eine Angel (50), die entlang der Achse (X) äußerlich der Arbeitskammer (20) positioniert ist, wobei die Angel (50) und die zweite röhrenförmige Halbummantelung (13) starr verbunden sind, wobei die Angel (50) einen röhrenförmigen Körper (52) umfasst,

    - ein Kolbenelement (30), das funktionsfähig mit der Angel (50) verbunden und in die Arbeitskammer (20) eingesetzt ist, um entlang der Achse (X) zwischen einer Hubendposition nahe der Angel (50), die entweder der offenen oder der geschlossenen Position des beweglichen Elements (11) entspricht, und einer von ihr entfernten Hubendposition zu gleiten, die der jeweils anderen der offenen und der geschlossenen Position des beweglichen Elements (11) entspricht,

    - ein längliches zylinderförmiges Element (60), das sich entlang der Achse (X) erstreckt und einen ersten Endabschnitt (61) aufweist, der in die Arbeitskammer (20) eingesetzt und wechselseitig mit dem Kolbenelement (30) verbunden ist, und einen zweiten Endabschnitt (62), der außerhalb der Arbeitskammer (20) liegt und im röhrenförmigen Körper (52) der Angel (50) gleitet,

    - eine röhrenförmige Buchse (80) mit einem Paar Führungsnockenschlitzen (81), die in einem Winkel von 180° beabstandet sind, wobei die röhrenförmige Buchse (80) koaxial außerhalb des röhrenförmigen Körpers (52) der Angel (50) liegt,

    wobei die Arbeitskammer elastische Gegenhaltemittel (40) beinhaltet, die auf das Kolbenelement (30) wirken, um dieses von der nahen oder der entfernten Hubendposition zur jeweils anderen der nahen und der entfernten Hubendposition zurückzuführen, wobei die elastischen Gegenhaltemittel (40) entlang der Achse (X) zwischen einer Position maximaler und einer Position minimaler Streckung beweglich sind,
    wobei die Angel (50) mindestens ein Paar Rillen (70', 70") umfasst, die einander gleichen, in einem Winkel von 180° beabstandet sind und mindestens einen spiralförmigen Abschnitt (71', 71") umfassen, der sich um die Achse (X) windet, wobei die Rillen (70', 70") miteinander in Verbindung stehen, um ein einziges durchlassendes Betätigungselement (72) zu definieren,
    wobei der zweite Endabschnitt (62) des länglichen Elements (60) einen Stift (73) beinhaltet, der für das Hindurchgleiten derart in das durchlassende Betätigungselement (72) und in die Führungsnockenschlitze (81) eingesetzt ist, dass die Angel (50), das längliche zylinderförmige Element (60) und die Buchse (80) in gegenseitigem Eingriff stehen,
    wobei die Buchse (80) und die erste röhrenförmige Halbummantelung (12) als Einheit miteinander gekoppelt sind, um zu ermöglichen, dass die Nockenschlitze (81) das Gleiten des Stiftes (73) führen, der durch das durchlassende Betätigungselement (72) betätigt wird, wobei die Buchse (80) und die zweite röhrenförmige Halbummantelung (13) derart koaxial gekoppelt sind, dass eines die Drehung des anderen definiert,
    dadurch gekennzeichnet, dass die elastischen Gegenhaltemittel (40) und das Kolbenelement (30) derart wechselseitig gekoppelt sind, dass sich Erstere (40) in einer Position maximaler Streckung befinden, die mit der entfernten Endhubposition von Letzterem (30) übereinstimmt, wobei die elastischen Gegenhaltemittel (40) zwischen dem zylinderförmigen Abschnitt (52) der Angel (50) und dem Kolbenelement (30) eingesetzt sind, und dadurch, dass die erste röhrenförmige Halbummantelung (12) einen Endabschnitt (16) beinhaltet, der funktionsfähig mit der Angel (50) gekoppelt ist, wobei des Weiteren zwischen der Angel (50) und dem Endabschnitt (16) der ersten röhrenförmigen Halbummantelung (12) mindestens ein Gleitelement (110) eingesetzt ist, um die Reibung infolge der Aktivität der elastischen Gegenhaltemittel (40) auf die Angel (50) zu minimieren.
     
    2. Vorrichtung nach Anspruch 1, wobei die Buchse (80) und die zweite röhrenförmige Halbummantelung (13) durch gemeinsames Gleiten entlang der Achse (X) in lösbarer Weise koaxial gekoppelt sind, so dass es einem Benutzer möglich wird, das Verschlusselement (D) durch Anheben von der stationären Stützstruktur (S) zu lösen.
     
    3. Vorrichtung nach Anspruch 1 oder 2, wobei der röhrenförmige Abschnitt (52) der Angel (50) einen Innendurchmesser (Di') aufweist, der im Wesentlichem mit dem Durchmesser (D"') des länglichen zylinderförmigen Elements (60) übereinstimmt, und einen Außendurchmesser (De'), der kleiner als der Innendurchmesser (Di') der Buchse (80) ist oder mit diesem im Wesentlichen übereinstimmt, wobei die zweite röhrenförmige Halbummantelung (13) eine innere Seitenwand (13`) aufweist, die der äußeren Seitenwand (82) der Buchse (80) zugewandt ist, wenn diese an die erste röhrenförmige Halbummantelung (12) gekoppelt ist, wobei der Endabschnitt (16) der ersten röhrenförmigen Halbummantelung (12) einen im Wesentlichen ringförmigen Fortsatz (18) beinhaltet, der einen Außendurchmesser (De) aufweist, der größer als der Außendurchmesser (De') des röhrenförmigen Abschnitts (52) der Angel (50) ist oder im Wesentlichem mit diesem übereinstimmt, und einen Innendurchmesser (Di), der im Wesentlichem mit dem Innendurchmesser (Di') des röhrenförmigen Abschnitts (52) der Angel (50) übereinstimmt, wobei der im Wesentlichen ringförmige Fortsatz (18) eine erste Endfläche (21) umfasst, die eine Endwand der Arbeitskammer (20) definiert, eine zweite Endfläche (19') gegenüber der ersten Endfläche (21), die dem unteren Abschnitt (54) des röhrenförmigen Abschnitts (52) der Angel (50) zugewandt ist, um diese zu stützen, eine innere Seitenfläche (19"), die der Seitenwand (63) des länglichen zylinderförmigen Elements (60) zugewandt ist, und eine äußere Seitenfläche (19"'), die der inneren Seitenwand (83) der Buchse (80) zugewandt ist.
     
    4. Vorrichtung nach Anspruch 1, 2 oder 3, ferner in der Nähe des Oberseiten- oder Bodenendes (2, 3) der Vorrichtung mindestens eine Stoppschraube (90) umfassend, wobei die mindestens eine Stoppschraube (90) ein erstes Ende (91) beinhaltet, das geeignet ist, mit dem zweiten Endabschnitt (62) des länglichen zylinderförmigen Elements (60) selektiv zu interagieren, und ein zweites Ende (92), das von außerhalb durch einen Benutzer betätigt werden kann, um deren Hub entlang der Achse (X) zu justieren, wobei die mindestens eine Stoppschraube (90) am Endabschnitt (51) in die Angel (50) eingesetzt ist, um entlang der Achse (X) zwischen einer Ruheposition entfernt vom Ende des zweiten Endabschnitts (62) des länglichen zylinderförmigen Elements (60) und einer Arbeitsposition in Kontakt mit diesem zu gleiten.
     
    5. Vorrichtung nach einem oder mehreren der vorhergehenden Ansprüche, wobei die erste und/oder die zweite röhrenförmige Halbummantelung (12, 13) aus Polymermaterial und die Angel (50) und/oder die Buchse (80) aus Metallmaterial bestehen.
     
    6. Vorrichtung nach einem oder mehreren der vorhergehenden Ansprüche, wobei die Buchse (80) am oberen Abschnitt (87) eine Mittelöffnung (86) aufweist, die Buchse (80) und die Angel (50) wechselseitig derart gestaltet sind, dass der Endabschnitt (51) Letzterer (50) durch die Mittelöffnung (86) Ersterer (80) verläuft, wobei die in der Buchse (80) liegende Angel (50) zwischen dem mindestens einem ersten Gleitelement (110) und der oberen Abschnitt (87) der Buchse (80) eingesetzt ist und äußerlich der Buchse (80), zwischen deren (80) oberem Abschnitt (87) und der zweiten röhrenförmigen Halbummantelung (13) mindestens ein zweites Gleitelement (112) derart angeordnet ist, dass das Verschlusselement (D) die Angel (50) nicht belastet.
     
    7. Vorrichtung nach einem oder mehreren der vorhergehenden Ansprüche, wobei die Buchse (80) und die zweite röhrenförmige Halbummantelung (13) sich derart in gegenseitigem räumlichen Verhältnis befinden, dass Letztere (13) von der ersten röhrenförmigen Halbummantelung (12) beabstandet bleibt.
     
    8. Vorrichtung nach einem oder mehreren der vorhergehenden Ansprüche, wobei das feststehende Element (10) die erste röhrenförmige Halbummantelung (12) beinhaltet, das bewegliche Element (11) die zweite röhrenförmige Halbummantelung (13) beinhaltet, Letztere die erste röhrenförmige Halbummantelung (12) überlagert, der Endabschnitt (16) der ersten röhrenförmigen Halbummantelung (12) die Angel (50) drehbar stützt und die Buchse (80) die Rotationsachse der zweiten röhrenförmigen Halbummantelung (13) definiert.
     
    9. Vorrichtung nach einem oder mehreren der vorhergehenden Ansprüche, wobei die Arbeitskammer (20) das Arbeitsfluid beinhaltet, mindestens ein Dichtungselement (22) bereitgestellt ist, um ein Auslaufen des Arbeitsfluids aus der Arbeitskammer (20) zu verhindern, und das Kolbenelement (30) geeignet ist, die Arbeitskammer (20) in mindestens einen ersten und einen zweiten Raum mit variablem Volumen (23, 24) zu teilen, die in Fluidverbindung miteinander stehen und vorzugsweise aneinander angrenzen, wobei das Kolbenelement (30) eine Durchlassöffnung (31) umfasst, um den ersten und den zweiten Raum mit variablem Volumen (23, 24) in Fluidverbindung zu bringen, und Ventilmittel (32) mit der Öffnung (31) interagieren, um das Durchlassen des Arbeitsfluides zwischen dem ersten Raum (23) und dem zweiten Raum (24) nach dem Öffnen oder Schließen des Verschlusselements (D) zu ermöglichen und dessen Rückfließen nach dem jeweils anderen des Öffnens und Schließens des Verschlusselements (D) zu verhindern, wobei des Weiteren ein Hydraulikkreis (100) bereitgestellt ist, um den Durchlass des Arbeitsfluides zwischen dem ersten Raum (23) und dem zweiten Raum (24) während des jeweils anderen des Öffnens oder Schließens des Verschlusselements (D) zu ermöglichen.
     
    10. Vorrichtung nach dem vorhergehenden Anspruch, wobei das Kolbenelement (30) dichtend in die Arbeitskammer (20) eingesetzt ist und die erste röhrenförmige Halbummantelung (12) den Hydraulikkreis (100) zumindest teilweise beinhaltet, wobei Letzterer mindestens eine erste Öffnung (101) im ersten Raum (23) und mindestens eine zweite Öffnung (106) im zweiten Raum (24) aufweist.
     
    11. Vorrichtung nach dem vorhergehenden Anspruch, wobei der Hydraulikkreis (100) im zweiten Raum (24) eine dritte Öffnung (102) beinhaltet und das Kolbenelement (30) derart in räumlicher Beziehung zur zweiten und zur dritten Öffnung (102, 106) des Kreises (100) steht, dass das Kolbenelement (30) während des gesamten Hubes nicht in Fluidverbindung mit der dritten Öffnung (102) steht und während eines ersten Teils des Hubs in Fluidverbindung mit der zweiten Öffnung (106) steht und während eines zweiten Teils des Hubs nicht mit dieser in Fluidverbindung steht.
     
    12. Vorrichtung nach einem der vorhergehenden Ansprüche, wobei die spiralförmigen Abschnitte (71', 71") der Rillen (70', 70") rechts- beziehungsweise linksgängig sind, die Nockenschlitze (81) mindestens einen ersten Abschnitt (84') beinhalten, der sich im Wesentlichen parallel zur Achse (X) erstreckt oder im Verhältnis zu dieser (X) leicht geneigt ist, mit einer der der Rillen (70', 70") der Angel (50) entgegengesetzten Neigung, und die Nockenschlitze (81) des Weiteren mindestens einen zweiten Abschnitt (84") beinhalten, der sich im Wesentlichen senkrecht dazu erstreckt, wobei sich die elastischen Gegenhaltemittel (40) zwischen den Positionen maximaler und minimaler Streckung bewegen, wenn der Stift (73) entlang des mindestens einen Abschnitts (84') der Nockenschlitze (81) gleitet, und wobei die elastischen Gegenhaltemittel (40) in der Position minimaler Streckung bleiben, wenn der Stift (73) entlang des mindestens einen zweiten Abschnitts (84") der Nockenschlitze (81) gleitet.
     
    13. Vorrichtung nach dem vorhergehenden Anspruch, wobei die elastischen Gegenhaltemittel (40) derart vorgespannt sind, dass die Schließ- oder Öffnungskraft der Vorrichtung maximiert und/oder deren Sperrigkeit minimiert wird.
     
    14. Vorrichtung nach Anspruch 12 oder 13, wobei der mindestens eine erste und der mindestens eine zweite Abschnitt (84', 84") der Nockenschlitze (81) aneinander anschließen.
     
    15. Vorrichtung nach Anspruch 12, 13 oder 14, wobei sich der mindestens eine erste Abschnitt (84') im Wesentlichen parallel zur Achse (X) erstreckt, wobei das Kolbenelement (30) durch gesperrte Drehbewegung zwischen der ersten und der zweiten Hubendposition gleitet, wenn der Stift (73) entlang des mindestens einen ersten Abschnitts (84') der Nockenschlitze (81) gleitet, und wobei sich das Kolbenelement (30) durch Verbleiben in der ersten oder der zweiten Hubendposition in Einheit mit der Angel (50) um die Achse (X) dreht, wenn der Stift (73) entlang des mindestens einen zweiten Abschnitts (84") der Nockenschlitze (81) gleitet.
     


    Revendications

    1. Dispositif charnière destiné à déplacer par rotation et/ou à contrôler pendant la fermeture et/ou l'ouverture un élément de fermeture (D), tel qu'une porte, un volet ou similaire, ancré à une structure fixe de support (S), telle qu'une paroi ou un cadre, le dispositif comprenant :

    - un élément fixe (10) ancrable à la structure fixe de support (S) ;

    - un élément mobile (11) ancrable à l'élément de fermeture (D), l'un desdits élément fixe (10) et élément mobile (11) comprenant une première demi-coque tubulaire (12) qui comprend une chambre de travail (20) définissant un axe longitudinal (X), l'autre desdits élément fixe (10) et élément mobile (11) comprenant une seconde demi-coque tubulaire (13), cette dernière et ladite première demi-coque tubulaire (12) étant superposées l'une sur l'autre afin de tourner mutuellement autour dudit axe longitudinal (X) entre une position ouverte et une position fermée ;

    - un pivot (50) positionné le long dudit axe (X) à l'extérieur de ladite chambre de travail (20), ledit pivot (50) et ladite seconde demi-coque tubulaire (13) étant couplés de manière rigide, ledit pivot (50) comprenant un corps tubulaire (52) ;

    - un élément piston (30) relié de manière fonctionnelle audit pivot (50) et inséré à l'intérieur de ladite chambre de travail (20) pour coulisser le long dudit axe (X) entre une position de fin de course proximale audit pivot (50), correspondant à l'une de la position ouverte et fermée de l'élément mobile (11), et une position de fin de course distale de celui-ci, correspondant à l'autre de la position ouverte et fermée de l'élément mobile (11) ;

    - un élément cylindrique allongé (60) s'étendant le long dudit axe (X) présentant une première partie d'extrémité (61) insérée à l'intérieur de ladite chambre de travail (20) reliées mutuellement audit élément piston (30) et une seconde partie d'extrémité (62) externe à la chambre de travail (20) coulissant à l'intérieur du corps tubulaire (52) dudit pivot (50) ;

    - une douille tubulaire (80) présentant une paire de fentes de came de guidage (81), espacées de manière angulaire de 180°, ladite douille tubulaire (80) s'étendant de manière coaxiale à l'extérieur dudit corps tubulaire (52) dudit pivot (50) ;

    - ladite chambre de travail comprenant des moyens de compensation élastiques (40) agissant sur ledit élément piston (30) pour le retour de celui-ci de l'une desdites positions de fin de course proximale et distale à l'autre desdites positions de fin de course proximale et distale, lesdits moyens de compensation élastiques (40) étant mobiles le long dudit axe (X) entre une position d'allongement minimum et maximum ;

    dans lequel ledit pivot (50) comprend au moins une paire de rainures (70', 70") égales l'une à l'autre, espacées de manière angulaire de 180°, chacune comprenant au moins une partie hélicoïdale (71', 71") enroulée autour dudit axe (X), lesdites rainures (70', 70") communiquant l'une avec l'autre pour définir un seul élément d'actionnement traversant (72) ;
    dans lequel ladite seconde partie d'extrémité (62) dudit élément allongé (60) comprend une broche (73) insérée à travers ledit élément d'actionnement traversant (72) et dans lesdites fentes de came de guidage (81) afin de coulisser à travers, de manière à mettre en prise mutuellement ledit pivot (50), ledit élément cylindrique allongé (60) et ladite douille (80) ;
    dans lequel ladite douille (80) et ladite première demi-coque tubulaire (12) sont couplées de manière unitaire l'une à l'autre pour permettre auxdites fentes de came (81) de guider le coulissement de ladite broche (73) actionnée par ledit élément d'actionnement traversant (72), ladite douille (80) et ladite seconde demi-coque tubulaire (13) étant couplées de manière coaxiale de telle sorte que l'une définit l'axe de rotation de l'autre ;
    caractérisé en ce que lesdits moyens de compensation élastiques (40) et ledit élément piston (30) sont couplés mutuellement de sorte que les premiers (40) se trouvent dans une position d'allongement maximum correspondant à la position de fin de course distale du deuxième (30), lesdits moyens de compensation élastiques (40) étant interposés entre ladite partie cylindrique (52) dudit pivot (50) et dudit élément piston (30), et en ce que ladite première demi-coque tubulaire (12) comprend une partie d'extrémité (16) couplée de manière fonctionnelle audit pivot (50), au moins un premier élément antifriction (110) interposé entre ledit pivot (50) et ladite partie d'extrémité (16) de ladite première demi-coque tubulaire (12) étant fourni en outre pour minimiser la friction due à l'action des moyens de compensation élastiques (40) sur ledit pivot (50).
     
    2. Dispositif selon la revendication 1, dans lequel ladite douille (80) et ladite seconde demi-coque tubulaire (13) sont couplées de manière coaxiale d'une manière amovible par coulissement mutuel le long dudit axe (X) de façon à permettre à un utilisateur de découpler l'élément de fermeture (D) de la structure fixe de support (S) par soulèvement.
     
    3. Dispositif selon la revendication 1 ou 2, dans lequel ladite partie tubulaire (52) dudit pivot (50) présente un diamètre interne (Di') coïncidant sensiblement avec le diamètre (D"') dudit élément cylindrique allongé (60) et un diamètre externe (De') inférieur ou coïncidant sensiblement avec le diamètre interne (Di") de ladite douille (80), la seconde demi-coque tubulaire (13) présentant une paroi latérale interne (13') orientée vers la paroi latérale externe (82) de ladite douille (80) lorsque celle-ci est couplée à la première demi-coque tubulaire (12), ladite partie d'extrémité (16) de ladite première demi-coque tubulaire (12) comprenant un appendice sensiblement annulaire (18) présentant un diamètre externe (De) supérieur ou coïncidant sensiblement au diamètre externe (De') de ladite partie tubulaire (52) dudit pivot (50) et un diamètre interne (Di) coïncidant sensiblement avec le diamètre intérieur (Di') de ladite partie tubulaire (52) dudit pivot (50), ledit appendice sensiblement annulaire (18) comprenant une première surface d'extrémité (21) définissant une paroi d'extrémité de ladite chambre de travail (20), une seconde surface d'extrémité (19') opposée à ladite première surface d'extrémité (21) faisant face à la partie inférieure (54) de ladite partie tubulaire (52) dudit pivot (50) pour le support de celui-ci, une surface latérale intérieure (19") faisant face à la paroi latérale (63) dudit élément cylindrique allongé (60) et une surface latérale extérieure (19"') faisant face à la paroi latérale intérieure (83) de ladite douille (80).
     
    4. Dispositif selon la revendication 1, 2 ou 3, comprenant en outre au moins une vis-butée (90) à proximité de l'une de l'extrémité inférieure ou supérieure (2, 3) du dispositif, ladite au moins une vis-butée (90) comprenant une première extrémité (91) susceptible d'interagir de manière sélective avec ladite seconde partie d'extrémité (62) dudit élément cylindrique allongé (60) et une seconde extrémité (92) destinée à être utilisée depuis l'extérieur par un utilisateur afin de régler la course de celui-ci le long dudit axe (X), ladite au moins une vis-butée (90) étant insérée à l'intérieur dudit pivot (50) au niveau de ladite partie d'extrémité (51) pour coulisser le long dudit axe (X) entre une position de repos éloignée de la seconde extrémité de la partie d'extrémité (62) de l'élément cylindrique allongé (60) et une position de travail en contact avec celle-ci.
     
    5. Dispositif selon une ou plusieurs des revendications précédentes, dans lequel ladite première et/ou ladite seconde demi-coques tubulaires (12, 13) sont réalisées en matériau polymère, ledit pivot (50) et/ou ladite douille (80) étant réalisés en matériau métallique.
     
    6. Dispositif selon une ou plusieurs des revendications précédentes, dans lequel ladite douille (80) présente une ouverture centrale (86) au niveau de la partie supérieure (87), ladite douille (80) et ledit pivot (50) étant configurés mutuellement de sorte que la partie d'extrémité (51) de ce dernier (50) traverse l'ouverture centrale (86) de ce premier (80), ledit pivot (50) s'étendant à l'intérieur de ladite douille (80) étant interposé entre ledit au moins un premier élément antifriction (110) et ladite partie supérieure (87) de la même douille (80), au moins un second élément antifriction (112) étant disposé de façon externe à ladite douille (80) entre ladite partie supérieure (87) de celle-ci (80) et ladite seconde demi-coque tubulaire (13) de sorte que l'élément de fermeture (D) ne charge pas ledit pivot (50).
     
    7. Dispositif selon une ou plusieurs des revendications précédentes, dans lequel ladite douille (80) et ladite seconde demi-coque tubulaire (13) se trouvent dans une relation spatiale mutuelle de sorte que cette dernière (13) reste éloignée de ladite première demi-coque tubulaire (12).
     
    8. Dispositif selon une ou plusieurs des revendications précédentes, dans lequel ledit élément fixe (10) comprend ladite première demi-coque tubulaire (12), ledit élément mobile (11) comprenant ladite seconde demi-coque tubulaire (13), cette dernière étant superposée sur ladite première demi-coque tubulaire (12), ladite partie d'extrémité (16) de ladite première demi-coque tubulaire (12) supportant par rotation ledit pivot (50), ladite douille (80) définissant l'axe de rotation de ladite seconde demi-coque tubulaire (13).
     
    9. Dispositif selon une ou plusieurs des revendications précédentes, dans lequel ladite chambre de travail (20) comprend ledit fluide de travail, au moins un élément d'étanchéité (22) étant fourni pour empêcher une fuite dudit fluide de travail de ladite chambre de travail (20), ledit élément piston (30) étant susceptible de séparer ladite chambre de travail (20) en au moins un premier et un second compartiment à volume variable (23, 24) en communication fluidique l'un avec l'autre et de préférence adjacents, ledit élément piston (30) comprenant une ouverture traversante (31) afin de placer en communication fluidique ledit premier et ledit second compartiment à volume variable (23, 24) et un moyen de valve (32) interagissant avec ladite ouverture (31) pour permettre le passage du fluide de travail entre ledit premier compartiment (23) et ledit second compartiment (24) lors de l'une de l'ouverture ou de la fermeture de l'élément de fermeture (D) et pour empêcher le refoulement de celui-ci lors de l'autre de l'ouverture ou de la fermeture du même élément de fermeture (D), un circuit hydraulique (100) étant fourni en outre pour permettre le passage du fluide de travail entre ledit premier compartiment (23) et ledit second compartiment (24) pendant l'autre de l'ouverture ou de la fermeture de l'élément de fermeture (D).
     
    10. Dispositif selon la revendication précédente, dans lequel ledit élément piston (30) est étroitement inséré à l'intérieur de ladite chambre de travail (20), ladite première demi-coque tubulaire (12) comprenant au moins en partie ledit circuit hydraulique (100), ce dernier présentant au moins une première ouverture (101) dans ledit premier compartiment (23) et au moins une deuxième ouverture (106) dans ledit second compartiment (24).
     
    11. Dispositif selon la revendication précédente, dans lequel ledit circuit hydraulique (100) comprend une troisième ouverture (102) dans ledit second compartiment (24), ledit élément piston (30) étant en relation spatiale avec lesdites deuxième et troisième ouvertures (102, 106) dudit circuit (100) de façon à rester dissocié fluidiquement de ladite troisième ouverture (102) pendant toute la course de l'élément piston (30), de façon à rester couplé fluidiquement avec ladite deuxième ouverture (106) pendant une première partie de ladite course et pour rester dissocié fluidiquement de celle-ci pendant une seconde partie de ladite course.
     
    12. Dispositif selon l'une quelconque des revendications précédentes, dans lequel lesdites parties hélicoïdales (71', 71") desdites rainures (70', 70") sont à pas à droite, respectivement à pas à gauche, lesdites fentes de came (81) comprenant au moins une première partie (84') s'étendant de manière sensiblement parallèle audit axe (X) ou légèrement inclinée par rapport à celui-ci (X) avec une inclinaison opposée à celle desdites rainures (70', 70") dudit pivot (50), lesdites fentes de came (81) comprenant en outre au moins une seconde partie (84") s'étendant de manière sensiblement perpendiculaire à celle-ci, dans lequel lorsque la broche (73) coulisse le long de ladite au moins une première partie (84') desdites fentes de came (81), lesdits moyens de compensation élastiques (40) se déplacent entre les positions d'allongement minimum et maximum, et dans lequel lorsque la broche (73) coulisse le long de ladite au moins une seconde partie (84") desdites fentes de came (81), lesdits moyens de compensation élastiques (40) restent dans ladite position d'allongement minimum.
     
    13. Dispositif selon la revendication précédente, dans lequel lesdits moyens de compensation élastiques (40) sont précontraints de façon à maximiser la force d'ouverture et de fermeture du dispositif et/ou de minimiser l'encombrement de celui-ci.
     
    14. Dispositif selon la revendication 12 ou 13, dans lequel lesdites au moins une première et au moins une seconde partie (84', 84") desdites fentes de came (81) sont mutuellement consécutives.
     
    15. Dispositif selon la revendication 12, 13 ou 14, dans lequel ladite au moins une première partie (84') s'étend de manière sensiblement parallèle audit axe (X), dans lequel lorsque la broche (73) coulisse le long de ladite au moins une première partie (84') desdites fentes de came (81), ledit élément piston (30) coulisse entre lesdites première et seconde positions de fin de course en restant bloqué par rotation, et dans lequel lorsque la broche (73) coulisse le long de ladite au moins une seconde partie (84") desdites fentes de came (81), ledit élément piston (30) pivote de manière unitaire avec ledit pivot (50) autour dudit axe (X) en restant dans l'une desdites première et seconde positions de fin de course.
     




    Drawing





























































































    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description