(19)
(11)EP 2 787 296 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
29.07.2020 Bulletin 2020/31

(21)Application number: 14159341.8

(22)Date of filing:  13.03.2014
(51)International Patent Classification (IPC): 
F24F 11/00(2018.01)
H05K 7/20(2006.01)
F28F 1/00(2006.01)

(54)

Method for energy analysis and predictive modeling of components of a cooling system

Verfahren zur Analyse von Energie und prädiktive Modellierung von Komponenten eines Kühlsystems

Procédé d'analyse d'énergie et modélisation prédictive de composants d'un système de refroidissement


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 15.03.2013 US 201361793872 P

(43)Date of publication of application:
08.10.2014 Bulletin 2014/41

(73)Proprietor: Vertiv Corporation
Columbus, OH 43085 (US)

(72)Inventor:
  • Voigt, Tyler
    Delaware, OH Ohio 43085 (US)

(74)Representative: Howson, Richard Giles Bentham et al
Kilburn & Strode LLP Lacon London 84 Theobalds Road
London WC1X 8NL
London WC1X 8NL (GB)


(56)References cited: : 
US-A- 6 085 532
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    FIELD



    [0001] The present disclosure relates to systems for analyzing performance of a cooling system, and more particularly to a comprehensive system and method for analyzing and modeling a plurality of diverse components of a cooling system for the purpose of determining and/or predicting the cooling capability of the system in response to a plurality of device operational parameters and user defined inputs.

    BACKGROUND



    [0002] The statements in this section merely provide background information related to the present disclosure and may not constitute prior art.

    [0003] Improving performance of cooling systems and controlling such cooling systems is rapidly gaining attention as the cooling needs for various facilities, in particular data centers, continue to grow in size. In particular, with a chilled water ("CW") cooling system, a number of components operate to remove heat from a load, where the load may be created by a wide variety of different types of devices. In one example the load may be heat which is generated within data centers by dozens, hundreds or thousands of servers and other IT and/or network equipment. The basic CW cooling system may be understood, in one example, as including one or more chillers, one or more CW pumps, a bypass, one or more cooling tower pumps, one or more cooling towers, makeup water filtration controls, one or more variable frequency drives (VFDs) with controls, and associated piping connecting the aforementioned components. The performance and/or equipment set points associated with any one or more of these devices can have a bearing on the performance output of individual components and respectively the entire CW system during transition and balance. Presently there is no known system which is able to use the known information, performance abilities or performance curves of various ones of the components of a CW system to model how various important performance parameters of the CW system, such as total gallons per minute (GPM), temperature differential (ΔT) and SCWT (Supply Chilled Water Temperature) are likely to be affected if varying equipment set points are applied to one or more of the components of the CW system. Moreover, there is no way to be able to predict how a performance change (or user/system changed set point) for one specific component may affect operation of one or more of the other components of the system that may be receiving the direct or indirect output from the specific component.

    [0004] US 6085532 relates to a method of controlling chiller capacity in a chiller system. The method comprises the steps of: measuring entering the fluid temperature of a fluid entering a heat exchanger; measuring the fluid temperature of the fluid leaving the heat exchanger; determining a desired leaving fluid temperature; establishing chiller capacity as a function of the difference between leaving fluid temperature and the desired leaving fluid temperature; and adjusting the determined chiller capacity as a function of the difference between entering fluid temperature and the desired leaving fluid temperature.

    [0005] The present invention is set out in the independent claim, with some optional features set out in the claims dependent thereto.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0006] The drawings described herein are for illustration purposes only and are not intended to limit the scope of the invention, which is defined by the independent claim.

    Figure 1 is a block diagram of various subportions of the system that may be used to calculate performance characteristics of both the indoor operating conditions and the CW system components taking into account the permissible operating settings/ranges for each CW device of the CW system;

    Figure 2 is a high level block diagram of various calculation sheets that may be used by one embodiment of the system of the present disclosure to determine performance values for each component of a CW system, taking into account that the output from a first CW component that is being fed into a second CW component may affect the output of the second CW component; and

    Figure 3 is a high level flowchart setting forth major operations that may be performed by the system of the present disclosure in optimizing operation of the CW system to meet the load and/or customer specified requirements;

    Figure 4 is a graph illustrating how significant differences in efficiencies can be achieved depending on relatively small changes in supply chilled water temperature (SCWT) and supply/remote air temperature (SAT), at a given load and wet bulb (WB) temperature;

    Figure 5 is a chart that shows how the system can be used to predict, for a given load and WB temperature, what types of energy savings may be obtained depending on variables that the user has set;

    Figure 6 is graph that may be presented to the user that shows the user the direction that the system is predicting the load and the WB temperature to take based on some preselected form of historical operating data (e.g., time of day or external information source); and

    Figure 7 is a diagram 500 showing how variables for the load and the various components making up a CW system may be taken into account by the system 10 in determining balancing points for every possible permissible equipment configuration for the CW system.


    DETAILED DESCRIPTION



    [0007] The following description is merely exemplary in nature and is not intended to limit the present invention, which is defined by the independent claim. It should be understood that throughout the drawings, corresponding reference numerals indicate like or corresponding parts and features.

    [0008] Referring to Figure 1, there is shown a plurality of modules that form an energy analysis system 10 (hereinafter simply "system 10") for predicting and optimizing performance of various indoor and other components of a chilled water (CW) system pursuant to user or system Wet Bulb (WB) set point and load requirements. In general, it will be appreciated that every piece of equipment of a CW system reacts accordingly to achieve desired output conditions. The final balanced equipment state is dictated by the set points imposed on the individual pieces of equipment. The final balanced state will dictate the energy and/or water consumption for each piece of equipment within the said CW system.

    [0009] By being able to quickly calculate not only performances of individual pieces of equipment but a total system balance for varying equipment interconnections, the system 10 can model any CW system configuration against any load input to determine the most cost effective set points of all pieces of equipment against a given ambient condition. The possible equipment being calculated could include, but is not limited to, computer/IT servers, CW units, water cooled chillers, cooling towers, air cooled chillers and pumps. Modeling all possible allowable set points for various CW components, for a given set of fixed conditions, allows global optimization of total cost not only for the current operating condition but also for anticipated future operating states of the system 10. This allows predictive manipulation of set points and equipment staging. It also may show if a non-local operating point might be possible. By "non-local" operating point it is meant to infer that scenarios not realized by small incremental changes to equipment set points or operating conditions can be calculated and examined to ensure that a more efficient CW system operating state is not being overlooked. As one example, incrementing set points by one degree lower or higher on certain CW loop equipment could yield higher total CW system energy consumption. In this scenario the control system would leave the set points as they are. However, in practice changing the same set points three to four degrees could actually trigger a different CW system operating mode that could utilize some form of economization that would have previously been overlooked. Actual equipment performance can also be fed back into the system 10 to adjust performance tables to make the theoretical equipment calculations even more accurate over time. Existing equipment data tables can then be extracted for use in the design of new systems providing more efficient CW system designs than what might be currently possible.

    [0010] The system 10 can also evaluate equipment staging to optimize overall system performance. An example of equipment staging would be when the system 10 determines when it is more efficient to operate 3 chillers at 1/3 capacity each versus 2 chillers at ½ capacity each, since the efficiencies are not proportional. Using the system 10 to control pump staging is another example.

    [0011] Referring further to Figure 1, the system 10 may include a plurality of subsystem (software and hardware) modules for calculating the performance of each component of a CW system. For example, an "indoor unit calculator" module 12 may be used to calculate a performance for each indoor unit (i.e., component) of the CW system, for each allowable operating point for each of the indoor units of the CW system. A "primary CW pump" calculator module 14 may be used to model the performance of a primary CW pump at each allowable operating point. An "economizer calculator" module 16 may be used to model the performance of the heat exchanger economizer at every permissible operating point. A "cooling tower pump calculator" module 18 may be used to calculate the cooling tower pump performance at each allowable operating point for the cooling tower pump. A "cooling tower" calculator 20 is available to calculate the performance of the cooling tower of the CW system at each possible operating condition (i.e., considering temperature and rate of flow of water entering the cooling tower). A "chiller" calculator 22 is available to calculate the performance of a chiller unit of the CW system at each permissible operating point. A processing system 24 may be in communication with each of the components 12-22 and used to perform the optimizing and predictive calculations to meet the customer and/or system requirements at the prescribed WB. The WB set point and any other pertinent customer or system information 26 may be supplied to the processing system 26 as well as information about the load 28. It will be appreciated that by "permissible" or "possible" operating point or condition, it is meant that particular range of operating points or range of operating conditions that the component may be operated at (or within), and that this range may be constrained in part by the output of one component of the CW system which is being supplied as an input to another one of the components of the CW system.

    [0012] Referring to Figure 2, it can be seen that the system 10 may use a plurality of sources of information for its optimizing and predictive capabilities. It will be appreciated that the predictive and optimizing features that the system 10 enables one to implement may enable the user to realize significant energy (and thus cost) savings with little or no reduction in the capabilities of the equipment that is being managed by the system 10. The system 10 further enables anticipated loading schedules and/or anticipated future ambient conditions to be taken into account in controlling the diverse CW components that are thermally managing data center components in a given environment.

    [0013] In particular, the indoor unit calculator module 12 may generate an indoor unit calculator data sheet 12a, the primary CW pump calculator module 14 may generate a primary CW pump calculator data sheet 14a, the economizer calculator module 16 may calculate an economizer calculator data sheet 16a, the cooling tower pump calculator module 18 may generate a cooling tower pump data sheet 18a, the cooling tower calculator module 20 may calculate a cooling tower data sheet 20a, and the chiller calculator module 22 may generate a chiller data sheet 22a. The data sheets 12a-22a each represent data or information on the performance of each of their associated components at every permissible operating point. However, if this information is available from a manufacture of a given component, then the system 10 may use the information provided from the component's manufacturer. The information provided from the data calculation sheets 12a-22a may be used by the system 10 in performing its optimizing and/or predictive calculation, and ultimately to "push" or override previously determined set points for the various components of the CW system to meet and/or maintain the WB set point and to meet load requirements.

    [0014] Referring now to Figure 3, a high level flowchart 100 shows various operations that the system 10 of Figure 1 may perform in its optimizing/control and/or predicting operations. At operation 102 the system 10 may obtain or create a performance data table (i.e., data sheet) for at least one component of the CW system. In practice, most or all of the components of the CW system will have data tables generated therefor, such as described in connection with Figure 2. These data tables provide the performance information for all possible operating points of the component and preferably take into account constraints on each component that may be imposed if it is receiving, as an input, the output from a different one or combination of CW components.

    [0015] At operation 104 the allowable or applicable operating points for each component of the CW system are defined. In this regard it will be appreciated that a defined range of operating points of a given component may in fact be narrower than what the component is actually able to operate at, depending on the constraints placed on the given component by other ones of the CW components or other factors. At operation 106 the system 10 produces a list of obtainable performance points for each individual indoor unit of the CW system that falls within user, customer and/or system allowable operating ranges on set points, or on allowable operating conditions for each CW system component. At operation 108 the system 10 determines/calculates the equivalent loop characteristics such as total gallons per minute (GPM) water flow, temperature differential and SCWT (supply chilled water temperature) for the CW system components covering the load.

    [0016] At operation 110, for each equivalent loop operating condition, the system 10 balances the CW system components at some or all possible operating conditions given an ambient Wet Bulb (WB) input, to meet the load requirements of the load-covering CW components. This amounts to generating lists of every available balance point for the CW system that meets the user, customer and/or system requirements.

    [0017] At operation 112 the lists generated at operation 110 may be used for optimization analysis. This may involve performing a wide variety of analyses which may include, but are not limited to, energy analysis, water analysis, humidification (or dehumidification) analysis, equipment staging analysis, economization analysis, maintenance analysis and total cost analysis for operating the CW system.

    [0018] At operation 114, the system 10 may optionally operate to "push" or override previously implemented set points onto appropriate CW components as needed to achieve the required customer, user or system desired optimization. At operation 116, the system 10 may optionally use the above analysis/analyses performed at operation 112 along with trend data of a load distribution and amplitude, and also along with Wet Bulb historical data for a given environment, to construct predictive optimization tables and/or set point maps for CW system components to proactively optimize the system to meet changing load and/or ambient requirements.

    [0019] Figure 4 shows a graph 200 to illustrate how significant differences in efficiencies can be achieved depending on relatively small changes in supply chilled water temperature (SCWT) and supply remote air temperature (SAT), while the current load and the wet bulb (WB) are held constant. For the purpose of the present disclosure, the term "SAT" will be understood to include supply and/or remote air temperature.

    [0020] The graph 200 shows bars 202-210 which represent the percentage of energy savings (which is related to cost), relative to the worst possible operating condition at the current load and WB, that can be achieved with slight variations in the SCWT and the SAT. For example, block 210 indicates that an energy savings of about 34% can be achieved if the SCWT is set to 58°F and the SAT is set to 67°F. At the opposite end of the graph 200, block 202 indicates that the energy savings achievable would only be 11% when the SCWT is set to 45°F and the SAT is set to 64°F. The graph 200 thus shows the user what types of energy savings may be achievable, with different changes to both the SCWT and the SAT, against current operating conditions (i.e., in this example with the load at 1200kW and WB at 62°F). It will be appreciated that the system 10 provides a powerful tool for helping the user determine if/how small changes in the SCWT and SAT can be expected to impact the overall energy savings, relative to a baseline set of conditions (e.g., relative to the current load and WB temperature).

    [0021] Figure 5 shows a chart 300 representing a specific property contour map that the system 10 may construct which helps to visually communicate (i.e, predict) how a user selected variable will change with respect to the WB and/or load changing. In discussing Figure 5 it will be appreciated that the user will have entered a range of permissible set points (or possibly just one set point) into the system 10, for each of the CW components that the system 10 is monitoring and/or controlling. The user selectable range is not to exceed the equipment manufacturer's specific equipment limitations. The user will have also specified specific set points or ranges of set points for the variables indicated by 302. These selected set points might include a range of SCWT temperatures that are permissible, a range of SAT that the user sets as permissible, etc.

    [0022] The chart 300 of Figure 5 may enable the system to visually represent a changing user selected variable of interest. The variable could be but is not limited to the total CW system energy consumption, types of energy savings compared to a baseline, SCWT, SAT set points, number of chillers operating, number of indoor units operating, etc. Every box in Figure 5 may be selectable by the user (such as by clicking on with a mouse or touching with a finger) to pull up additional charts or graphs, such as shown in Figure 4, so that the user may compare different operating equipment scenarios to confirm the impact of their said imposed equipment operating range limitations. For example, if the user selects box 304 in Figure 5, then a graph such as Figure 4 may be provided that compares total energy consumption of multiple scenarios with each scenario operating at that specific load/WB temperature the user has selected. The scenarios shown may communicate the effect on total CW system energy consumption if different specific equipment set points and the specific variables 302 that the user has selected were to be implemented. Figure 6 illustrates a graph 400 that may be presented to the user that shows the user the direction that the system 10 is predicting the load and the WB temperature to take based on historical operating data. For example, the system 10 may use historical data such as the load experienced during specific times of day, along with WB temperatures experienced at various times of day, to predict where the load and WB temperature is trending. In the example of Figure 6, the arrow 402, being the largest of the six arrows shown, indicates that the trend at the present time (represented by box 404) is predicted by the system 10 to be toward an increasing WB temperature and a decreasing load. The color of the boxes or arrows to visually communicate a user specified system property. In example only, green arrows could indicate the system would be moving to a more energy efficient or equipment friendly mode of operation. Understanding likelihood of system conditions to change to pre-determined values is important when understanding priority in possible operating condition calculations.

    [0023] Figure 7 illustrates a diagram 500 showing how variables for the load and the various components making up a CW system may be taken into account by the system 10 in determining balancing points for every possible permissible equipment configuration for the CW system. Figure 7 further illustrates how the actual component performance is used in closed loop fashion, via line 502, to update the various performance data tables based on actual measured data points. The theoretical system is calculated to balance within allowable user/equipment defined boundaries. Using user input to determine desired optimization, a specific CW system balance result is examined and the appropriate equipment set points are then communicated to the respective pieces of equipment so as to allow the individual pieces of equipment to react in a similar fashion as to the theoretical model (desired balance). Inconsistencies between performances of actual individual pieces of equipment and theoretical performances are resolved by adjustment to the equipment data tables. System shall monitor for alarming conditions and protect equipment by disallowing concerning set point communication. By adjusting theoretical data tables, system accuracy in theoretical balancing shall become more accurate over time.


    Claims

    1. A method for analyzing performance of a chilled water (CW) system having a plurality of CW components, the method comprising:

    considering a collection of at least one of allowable operating points, allowable operating ranges or allowable operating conditions, for each one of the plurality of CW components of the CW system;

    considering at least one of a user set or system measured ambient wet bulb (WB) temperature for an environment in which at least a subplurality of the CW components are located;

    calculating equivalent loop conditions for each of the CW components covering a load being thermally managed by the CW system, the equivalent loop conditions relating to a performance parameter for one or more of the CW components covering the load in a manner to manage cooling of the load; and

    for each one of the calculated equivalent loop conditions, using a processor to generate information for balancing the CW components by selecting specific operating points of the CW system, given the user set or system measured WB temperature, to meet load requirements imposed by the load.


     
    2. The method of claim 1, further comprising using the information to optimize operation of the CW components by selecting specific set points for the CW components that result in optimizing a selected operational parameter for the CW system.
     
    3. The method of claim 1, further comprising initially obtaining a performance data table for each one of the CW components of the CW system, the performance data table defining at least one of operating points or operating ranges for each of the CW components based on at least one of an input or an output associated with each of the CW components, and from the performance data table obtaining the collection of the at least one of allowable operating points, allowable operating ranges or allowable operating conditions.
     
    4. The method of claim 1, wherein the operation of obtaining a collection comprises obtaining a collection of at least one of allowable operating points, operating ranges or allowable operating conditions, for each one of the subplurality of components of the CW system, based on information at least one:

    provided by the user; or

    representing a known operating parameter limitation.


     
    5. The method of claim 1, wherein the operation of using the processor to generate information for balancing the CW components comprises generating a plurality of lists which include set points for each of the CW components that enable the CW system to meet the load requirements given the user set or system measured WB temperature.
     
    6. The method of claim 1, wherein the performance parameter comprises a gallons per minute (GPM) flow of water provided by the CW system.
     
    7. The method of claim 1, wherein the performance parameter comprises a change in temperature of the water able to be affected by the CW system.
     
    8. The method of claim 1, wherein the performance parameter comprises a supply chilled water temperature (SWCT) of water being output by one of the CW components of the CW system.
     
    9. The method of claim 1, wherein the set point of the each of the CW components further relates to load requirements imposed by the load.
     
    10. The method of claim 1, wherein the selected operational parameter relates to at least one of:

    electrical power consumed by the CW system;

    water used by the CW system requiring replenishment;

    dehumidification analysis;

    equipment staging analysis;

    maintenance of one or more of the CW components; and

    total cost of operation of the CW system.


     


    Ansprüche

    1. Verfahren zum Analysieren der Leistungsfähigkeit eines Kaltwassersystems (CW-System), das mehrere CW-Komponenten besitzt, wobei das Verfahren Folgendes umfasst:

    Prüfen einer Sammlung zulässiger Betriebspunkte und/oder zulässiger Betriebsbereiche und/oder zulässiger Betriebsbedingungen für jede der mehreren CW-Komponenten des CW-Systems;

    Prüfen mindestens einer von einem Anwender gesetzten oder vom System gemessenen Feuchtkugelumgebungstemperatur (WB-Umgebungstemperatur) für eine Umgebung, in der sich mindestens eine Untermehrzahl der CW-Komponenten befindet;

    Berechnen von Ersatzschleifenbedingungen für jede der CW-Komponenten, die eine Last, die durch das CW-System thermisch gemanagt wird, abdecken, wobei die Ersatzschleifenbedingungen mit einem Leistungsparameter für eine oder mehrere der CW-Komponenten, die die Last in einer Weise, um das Kühlen der Last zu managen, abdecken, in Beziehung stehen; und

    Verwenden für jede der berechneten Ersatzschleifenbedingungen eines Prozessors, um Informationen zum Ausgleichen der CW-Komponenten durch Wählen bestimmter Betriebspunkte des CW-Systems in Anbetracht der von einem Anwender gesetzten oder vom System gemessenen WB-Temperatur zu erzeugen, um Lastanforderungen, die durch die Last auferlegt werden, zu erfüllen.


     
    2. Verfahren nach Anspruch 1, das ferner ein Verwenden der Informationen umfasst, um den Betrieb der CW-Komponenten durch Wählen bestimmter Sollwerte für die CW-Komponenten, die im Optimieren eines gewählten Betriebsparameters für das CW-System resultieren, zu optimieren.
     
    3. Verfahren nach Anspruch 1, das ferner ein anfängliches Erhalten einer Leistungsdatentabelle für jede der CW-Komponenten des CW-Systems umfasst, wobei die Leistungsdatentabelle Betriebspunkte und/oder Betriebsbereiche für jede CW-Komponente auf der Grundlage einer Eingabe und/oder einer Ausgabe, die jeder CW-Komponente zugeordnet sind, definiert, und Erhalten aus der Leistungsdatentabelle der Sammlung der zulässigen Betriebspunkte und/oder der zulässigen Betriebsbereiche und/oder der zulässigen Betriebsbedingungen.
     
    4. Verfahren nach Anspruch 1, wobei der Vorgang des Erhaltens einer Sammlung das Erhalten einer Sammlung zulässiger Betriebspunkte und/oder Betriebsbereiche und/oder zulässiger Betriebsbedingungen für jede der Untermehrzahl von Komponenten des CW-Systems auf der Grundlage von Information umfasst, die
    durch den Anwender bereitgestellt werden und/oder
    eine bekannte Betriebsparametereinschränkung repräsentieren.
     
    5. Verfahren nach Anspruch 1, wobei der Vorgang des Verwendens des Prozessors, um Informationen zum Ausgleichen der CW-Komponenten zu erzeugen, ein Erzeugen mehrerer Listen umfasst, die Sollwerte für jede CW-Komponente enthalten, die dem CW-System ermöglichen, die Lastanforderungen in Anbetracht der von einem Anwender gesetzten oder vom System gemessenen WB-Temperatur zu erfüllen.
     
    6. Verfahren nach Anspruch 1, wobei der Leistungsparameter einen Gallonen-pro-Minute-Wasserstrom (GPM-Wasserstrom) umfasst, der durch das CW-System geliefert wird.
     
    7. Verfahren nach Anspruch 1, wobei der Leistungsparameter eine Änderung der Temperatur des Wassers umfasst, die durch das CW-System beeinflusst werden kann.
     
    8. Verfahren nach Anspruch 1, wobei der Leistungsparameter eine Versorgungskaltwassertemperatur (SWCT) von Wasser, das durch eine der CW-Komponenten des CW-Systems ausgegeben wird, umfasst.
     
    9. Verfahren nach Anspruch 1, wobei sich der Sollwert jeder CW-Komponente ferner auf Lastanforderungen, die durch die Last auferlegt werden, bezieht.
     
    10. Verfahren nach Anspruch 1, wobei sich der gewählte Betriebsparameter auf Folgendes bezieht:

    eine elektrische Leistung, die durch das CW-System aufgenommen wird; und/oder

    Wasser, das durch das CW-System verwendet wird, das eine Wiederauffüllung erfordert; und/oder

    eine Entfeuchtungsanalyse und/oder

    eine Ausrüstungsbereitstellungsanalyse und/oder

    eine Wartung einer oder mehrerer CW-Komponenten und/oder

    Gesamtkosten des Betriebs des CW-Systems.


     


    Revendications

    1. Procédé d'analyse des performances d'un système d'eau glacée (EG) doté d'une pluralité de composants à EG, le procédé comprenant :

    la prise en considération d'une collection de points de fonctionnement admissibles, et/ou de plages de fonctionnement admissibles, et/ou de conditions de fonctionnement admissibles, pour chaque composant de la pluralité de composants à EG du système d'EG ;

    la prise en considération d'une température humide (TH) ambiante réglée par l'utilisateur et/ou mesurée par le système pour un environnement dans lequel est située au moins une sous-pluralité des composants à EG ;

    le calcul de conditions de boucle équivalente pour chacun des composants à EG couvrant une charge qui est gérée thermiquement par le système d'EG, les conditions de boucle équivalente se rapportant à un paramètre de performances pour un ou plusieurs des composants à EG couvrant la charge de manière à gérer le refroidissement de la charge ; et

    pour chacune des conditions de boucle équivalente calculées, l'utilisation d'un processeur pour générer des informations servant à équilibrer les composants à EG en sélectionnant des points de fonctionnement spécifiques du système d'EG, étant donnée la température TH réglée par l'utilisateur ou mesurée par le système, pour répondre à des besoins de charge imposés par la charge.


     
    2. Procédé selon la revendication 1, comprenant en outre l'utilisation des informations pour optimiser le fonctionnement des composants à EG en sélectionnant des points de consigne spécifiques pour les composants à EG qui se traduisent par l'optimisation d'un paramètre opérationnel sélectionné pour le système d'EG.
     
    3. Procédé selon la revendication 1, comprenant en outre l'obtention initiale d'une table de données de performances pour chacun des composants à EG du système d'EG, la table de données de performances définissant des points de fonctionnement et/ou des plages des fonctionnement pour chacun des composants à EG sur la base d'une entrée et/ou d'une sortie associées à chacun des composants à EG et, à partir de la table de données de performances, l'obtention de la collection des points de fonctionnement admissibles, et/ou des plages de fonctionnement admissibles, et/ou des conditions de fonctionnement admissibles.
     
    4. Procédé selon la revendication 1, l'opération d'obtention d'une collection comprenant l'obtention d'une collection de points de fonctionnement admissibles, et/ou de plages de fonctionnement, et/ou de conditions de fonctionnement admissibles, pour chaque composant de la sous-pluralité de composants du système d'EG, sur la base d'informations :

    fournies par l'utilisateur ; et/ou

    représentant une limitation connue des paramètres de fonctionnement.


     
    5. Procédé selon la revendication 1, l'opération d'utilisation du processeur pour générer des informations servant à équilibrer les composants à EG comprenant la génération d'une pluralité de listes qui comprennent des points de consigne pour chacun des composants à EG qui permettent au système d'EG de répondre aux besoins de charge étant donnée la température TH réglée par l'utilisateur ou mesurée par le système.
     
    6. Procédé selon la revendication 1, le paramètre de performances comprenant un débit d'eau en gallons par minute (GPM) fourni par le système d'EG.
     
    7. Procédé selon la revendication 1, le paramètre de performances comprenant une variation de température de l'eau qui peut être réalisée par le système d'EG.
     
    8. Procédé selon la revendication 1, le paramètre de performances comprenant une température d'eau glacée d'alimentation (SWCT) de l'eau délivrée par un des composants à EG du système d'EG.
     
    9. Procédé selon la revendication 1, le point de consigne de chacun desdits composants à EG se rapportant en outre à des besoins de charge imposés par la charge.
     
    10. Procédé selon la revendication 1, le paramètre opérationnel sélectionné se rapportant à au moins un aspect parmi :

    une puissance électrique consommée par le système d'EG ; de l'eau utilisée par le système d'EG nécessitant un réapprovisionnement ;

    une analyse de déshumidification ;

    une analyse d'échelonnement d'équipement ;

    l'entretien d'un ou plusieurs des composants à EG ; et

    le coût total d'exploitation du système d'EG.


     




    Drawing




















    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description