(19)
(11)EP 2 788 639 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
04.11.2020 Bulletin 2020/45

(21)Application number: 12856225.3

(22)Date of filing:  07.12.2012
(51)International Patent Classification (IPC): 
G01N 30/32(2006.01)
B01D 15/40(2006.01)
F04B 49/22(2006.01)
G01N 30/34(2006.01)
(86)International application number:
PCT/US2012/068383
(87)International publication number:
WO 2013/086281 (13.06.2013 Gazette  2013/24)

(54)

SELECT VALVE FOR LIQUID CHROMATOGRAPHY SYSTEMS

UMSCHALTVENTIL FÜR FLÜSSIGKEITSCHROMATOGRAFIESYSTEME

VANNE SÉLECTRICE POUR SYSTÈMES DE CHROMATOGRAPHIE LIQUIDE


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 09.12.2011 US 201161568788 P

(43)Date of publication of application:
15.10.2014 Bulletin 2014/42

(73)Proprietor: Waters Technologies Corporation
Milford, MA 01757 (US)

(72)Inventors:
  • JOUDREY, Kurt D.
    Chelmsford, MA 01824 (US)
  • SOK, Maruth
    Providence, Rhode Island 02909 (US)

(74)Representative: Forresters IP LLP 
Skygarden Erika-Mann-Straße 11
80636 München
80636 München (DE)


(56)References cited: : 
WO-A2-2010/051005
US-A- 4 169 486
US-A- 5 952 557
US-A1- 2010 040 483
US-A- 4 116 046
US-A- 5 637 208
US-A1- 2010 024 906
  
  • VILLENEUVE M S ET AL: "Analytical supercritical fluid chromatography using fully automated column and modifier selection valves for the rapid development of chiral separations", JOURNAL OF CHROMATOGRAPHY, ELSEVIER SCIENCE PUBLISHERS B.V, NL, vol. 826, no. 2, 27 November 1998 (1998-11-27), pages 217-225, XP004150470, ISSN: 0021-9673, DOI: 10.1016/S0021-9673(98)00696-7
  
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description

FIELD OF THE INVENTION



[0001] The invention relates generally to liquid chromatography systems. More specifically, the invention relates to liquid chromatography systems capable of switching between carbon dioxide (CO2)-based chromatography and high-performance liquid chromatography (HPLC) or between CO2-based chromatography and ultra-performance liquid chromatography (UPLC).

BACKGROUND



[0002] Chromatography is a set of techniques for separating a mixture into its constituents. For instance, in a liquid chromatography (LC) application, a solvent delivery system takes in a mixture of liquid solvents and delivers the mixture to an autosampler (also called an injection system or sample manager), where an injected sample awaits the arrival of this mobile phase. The mobile phase with the dissolved injected sample passes to a column. By passing the mixture through the column, the various components in the sample separate from each other at different rates and thus elute from the column at different times. A detector receives the separated components from the column and produces an output from which the identity and quantity of the analytes may be determined.

[0003] Well-established separation technologies include HPLC (High Performance Liquid Chromatography), UPLC (Ultra Performance Liquid Chromatography), and CO2-based chromatography, such as SFC (Supercritical Fluid Chromatography), gas chromatography (GC), and solvating gas chromatography (SGC). HPLC systems use high pressure, ranging traditionally between 6.98 MPa (1,000 psi (pounds per square inch)) to approximately 41.88 MPa (6,000 psi), to generate the flow required for liquid chromatography in packed columns. In contrast to HPLC, UPLC systems use columns with smaller particulate matter and higher pressures approaching 139.6 MPa (20,000 psi) to deliver the mobile phase. SFC, GC, and SGC systems use highly compressible mobile phases, which typically employ CO2 as a principle component. To ensure that the CO2 component remains liquid, the CO2 is at elevated pressure and reduced temperature. Because a single pump of the CO2-based system is dedicated to the intake of CO2, however, liquid chromatography systems that are configured for CO2-based chromatography generally cannot also be configured to perform either HPLC or UPLC, without a time and labor intensive reconfiguration of the system.

[0004] WO 2010/051005 A2 discloses a parallel screening supercritical fluid chromatography device. The disclosure provides an apparatus for supercritical fluid chromatography. The apparatus comprises a binary pump; an autosampler; a sampling valve; a first and second port switching valve; a first and second manifold; two or more channels, each having a check valve assembly, a separation column and one or more detectors operatively connected thereon; and a backpressure regulator. The apparatus also includes computer software and hardware to control distribution of fluid through the apparatus, including switching between a multi-channel mode or a single channel ode; 2) analyze data collected by the one or more detectors; and 3) optimize separation of analytes by controlling solvent combinations, concentration gradients, pressure and temperature. The apparatus excludes additional backpressure regulators or pumps on individual channels. Also provided is a method of screening a sample, using supercritical chromatography, using the above apparatus, where multiple samples can be screened simultaneously with parallel processing.

[0005] US 2010/0040483 A1 discloses a compressible fluid pumping system. The system enables the pumping of compressible fluids at high pressures when an accurate flow is desired. Two pressure sources, for example pumps plumbed in series, separate thermodynamic work, such as pressurization, at the first pressure source from a volumetric or matter metering function in the second pressure source. One example is a flowstream delivery for a chemical instrumentation system that is manufactured from relatively unsophisticated pumps yet delivers precise flows with low pulsation (<1 %) over pressures greater than 100 bar. An advantage of one embodiment allows the economical conversion of typical HPLC systems to state of-the-art supercritical fluid chromatography (SFC) systems with minimal modification to system components.

SUMMARY



[0006] The invention is set out in the accompanying claims.

[0007] In an embodiment, a pump, a solvent delivery system, and a liquid chromatography system, each comprising an actuator with an inlet, and a selector valve in fluidic communication with the inlet of the actuator are provided. The selector valve is configured to switch between a first position, in which the selector valve provides a fluidic pathway between the inlet of the actuator and a source of fluid maintained at a first pressure, and a second position, in which the selector valve provides a fluidic pathway between the inlet of the actuator and a source of pressurized fluid maintained at a pressure greater than atmospheric pressure.

[0008] In another embodiment a method for testing a liquid chromatography system is provided. The method comprises switching a selector valve from a first position, in which the selector valve provides a fluidic pathway between an inlet of a pump and a source of pressurized fluid maintained at a pressure greater than atmospheric pressure, to a second position, in which the selector valve blocks the fluidic pathway. After blocking the fluidic pathway, pressurized fluid currently remaining in the pump is vented through a vent valve disposed at an outlet of the pump. The selector valve is switched from the second position to a third position in which the selector valve provides a fluidic pathway between the pump inlet and a source of fluid maintained at a second pressure.

[0009] In another embodiment a method for operating a liquid chromatography system is provided. The method comprises pumping solvents maintained at a first pressure through a pair of pumps operating in parallel. A selector valve is switched from a first position, in which the selector valve provides a fluidic pathway between an inlet of one of the pumps and a source of one of the solvents, to a second position, in which the selector valve provides a fluidic pathway between the inlet of that one pump and a source of pressurized fluid maintained at a pressure greater than atmospheric pressure.

BRIEF DESCRIPTION OF THE DRAWINGS



[0010] The above and further advantages of this invention may be better understood by referring to the following description in conjunction with the accompanying drawings, in which like numerals indicate like structural elements and features in various figures. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the invention.

FIG. 1 is a functional block diagram of an embodiment of a liquid chromatography system.

FIG. 2A and FIG. 2B are block diagrams of an embodiment of a conventional binary solvent manager; the conventional binary solvent manager being configured in FIG. 2A for SFC and alternately configured in FIG. 2B for UPLC or HPLC.

FIG. 3 is a block diagram of another embodiment of a binary solvent manager configured with a selector valve capable of switching between a solvent source maintained at atmospheric pressure and a second solvent source maintained at greater than atmospheric pressure.


DETAILED DESCRIPTION



[0011] Solvent delivery systems described herein include a manually or automatically controllable selector valve with different positions for selecting between a source of pressurized fluid, for example CO2, and a source of solvent, typically maintained at atmospheric pressure. The selector valve enables either source to be fluidically coupled to an inlet of a pump. This ability to switch from the pressurized fluid to the solvent enables a CO2-based chromatography system, with this selector valve, to operate alternatively as an HPLC system (or as an UPLC system, depending on the system's other capabilities). Conversely, the ability to switch from the solvent to the pressurized supply of fluid enables an HPLC system (or UPLC system) with this selector valve to operate alternatively as a CO2-based chromatography system. In addition, being able to switch from the pressurized fluid to the solvent enables the performance of typical diagnostics, for example, a fluid leak test. The selector valve has a blocked position in which no fluid supply is coupled to the pump inlet. This shut-off position advantageously facilitates system maintenance.

[0012] FIG. 1 shows an embodiment of a liquid chromatography system 10 for separating a sample into its constituents. The liquid chromatography system 10 includes a solvent delivery system 12 in fluidic communication with a sample manager 14 (also called an injector or autosampler) through tubing 16. The sample manager 14 is in fluidic communication with a chromatographic column 18. A detector (not shown), for example, a mass spectrometer, can be in fluidic communication with the column 18 to receive its output.

[0013] The solvent delivery system 12 includes pumps (not shown) in fluidic communication with solvent (or fluid) reservoirs 20 from which the pumps draw solvents through tubing 22. One of the solvent reservoirs 20 and a source 24 of a highly compressible fluid, for example, CO2, are fluidically coupled to the solvent delivery system 12 through a selector valve 26, as described in more detail in connection with FIG. 3. Solvents in the solvent reservoirs 20 are maintained at atmospheric pressure, whereas the highly compressible fluid from the source 24 is maintained at an elevated pressure (i.e., greater than atmospheric pressure). The selector valve 26 can be implemented with any one of a variety of types including, but not limited to, rotary shear valves, solenoid valves, pneumatic, manual or electromechanically actuated valves. Although described in the context of CO2, the principles herein can apply to any chemical compound being supplied to the inlet of a pump.

[0014] In one embodiment, the solvent delivery system 12 is a binary solvent manager (hereafter, BSM 12), which uses two individual serial flow pumps to draw solvents and to deliver a solvent composition to the sample manager 14. During operation of the BSM 12, one of the serial flow pumps draws a solvent from a solvent reservoir 20, while the other serial flow pump draws either a highly compressible fluid from the pressurized source 24 or another solvent from a second solvent reservoir 20 maintained at atmospheric pressure, depending upon the setting of the selector valve 26. The mixing of solvents occurs at high pressure after the solvents pass through the pumps. An example implementation of a BSM is the ACQUITY UPLC Binary Solvent Manager, manufactured by Waters Corp. of Milford, MA.

[0015] The BSM 12 can further include a processor 28 that is in communication with a processor-based data system 30. From the data system 30, the processor 28 of the solvent delivery system 12 can be programmed to switch the selector valve 26 automatically, in accordance with a predetermined procedure that ensures safety when switching between the CO2 source 24 at an elevated pressure and a solvent 20 at a different pressure, for example, atmospheric pressure.

[0016] FIG. 2A and FIG. 2B each shows a conventional embodiment of a BSM 12', which lacks the selector valve 26 of FIG. 1. The BSM 12' includes two pumps 52-1 and 52-2 (generally, 52), respectively referred to as pump A and pump B. Each pump 52-1, 52-2 includes a primary actuator 54 and an accumulator actuator 56 coupled in series; the solvent composition stream leaving the primary actuator 54 passes through a pressure transducer 58 to the inlet of the accumulator actuator 56.

[0017] The inlet check valve of the primary actuator 54 of the pump A 52-1 is fluidically coupled through a filter 60 to the source 24 of CO2, which is under high pressure to maintain the chemical compound at saturation point or in the liquid state. The inlet check valve of the primary actuator 54 of the pump B 52-2 is at low pressure, where fluid intake from a solvent reservoir 20 occurs at atmospheric pressure during the pump cycle. A solvent select valve 62, coupled to a degasser 64, is configured to select the particular solvent that passes to the inlet of the primary actuator 54 of the pump B 52-2.

[0018] Each of the accumulator actuators 56 is at high pressure, maintaining the fluid received from its respective primary actuator 54 at system pressure during the intake and transfer operations performed by the primary actuator. In brief overview, while each primary actuator 54 intakes fluid (e.g., from the pressurized CO2 source 24 or a solvent source 20), each accumulator actuator 56 delivers fluid at system pressure to a vent valve 66, and while each primary actuator 54 transfers fluid, the accumulator actuator 56 receives and holds the fluid at system pressure for the next delivery cycle. The high-pressure flows delivered by the accumulator actuators 56 pass through the vent valve 66 and combine at a flow-combining device 68, such as a T-section or a mixer. The solvent composition resulting from the combined flows is delivered over time to the sample manager 14.

[0019] FIG. 2B shows the BSM 12' with the source 24 of CO2 physically disconnected from the intake side of the filter 60, and replaced with a fluidic connection 70 to a solvent reservoir 20 through the degasser 64. This reconfiguration enables the BSM 12' to operate as an HPLC system (or as a UPLC system, depending upon the base configuration of the system). However, the reconfiguration involves disconnecting the pressurized CO2 source 24 and changing the various fittings, a manually intensive process requiring considerable system downtime and posing risks to the system and to personnel if done incorrectly.

[0020] FIG. 3 shows an embodiment of the BSM 12 of FIG. 1, configured to include the selector valve 26, in one of the pumps This embodiment resembles the BSM 12' of FIG. 2A and FIG. 2B, modified to include the selector valve 26. The pumps 52, primary actuators 54, accumulator actuators 56, transducers 58, filter 60, solvent select valve 62, degasser 64, vent valve 66, and mixer 68 of the BSM 12 are unchanged from the corresponding components of the BSM 12' of FIG. 2A and FIG. 2B.

[0021] The selector valve 26 has a plurality of ports and positions. One port 80-1 is fluidically coupled to the pressurized source 24 of CO2. Another port 80-2 is fluidically coupled to an output of the degasser 64, to receive therefrom a solvent from one of the solvent reservoirs 20. A third (output) port 80-3 is fluidically coupled to the intake side of the filter 60. A fourth port 80-4 is a blocked port. The selector valve 26 can have other ports than those shown, such as a vent port and one or more ports coupled to receive other solvents.

[0022] A first position of the selector valve 26 produces an open fluidic pathway between the source 24 of CO2, coupled to port 80-1, and the intake side of the filter 60. In this first position, the BSM 12 is configured as a CO2-based chromatography system, with the pump A 52-1 receiving CO2. In addition, the connection to the degasser 64 is blocked; that is, there is no open fluidic pathway between the port 80-2 of the selector valve 26 and the intake side of the filter 60. The other pump B 52-2 receives a solvent from a solvent reservoir 20.

[0023] A second position of the selector valve 26 produces an open fluidic pathway between the degasser 64, coupled to port 80-2, and the intake side of the filter 60. In this second position, both pumps 52-1, 52-2 receive a solvent from the solvent reservoirs 20. In addition, the pressurized source 24 of CO2 is blocked; that is, there is no open fluidic pathway between the port 80-1 and the intake side of the filter 60. The second position can also serve as a configuration in which to perform a leak test, without having to change any fittings. The BSM 12 can operate as an HPLC system or as a UPLC system, depending upon the particular configuration of the system.

[0024] A third position, referred to as a blocked position, has no fluidic pathway between the output port 80-3 and either the pressurized source 24 of CO2 or the degasser 64. The blocking of fluidic pathways can occur at the output port 80-3, at both input ports 80-1 and 80-2, or at all three ports 80-1, 80-2, 80-3. The blocked position advantageously facilitates system maintenance by virtue of having no leaking solvents when removing tubing, valves, pump heads, etc.

[0025] This blocking also facilitates switching from the pressurized source 24 to a solvent source 20 maintained at a different pressure, for example, atmospheric pressure. To make the switch, the selector valve 26 can be switched from the first position, in which there is a fluidic pathway between the inlet of a pump 52 and the pressurized source 24, to the third position, in which the selector valve 26 blocks this fluidic pathway. After the fluidic pathway is blocked, the pressurized fluid currently remaining in the pump vents through the vent valve 66 disposed at an outlet of the pump 52, thus controllable releasing the pressure. After the venting, the selector valve 26 can be switched from the third position to the second position in which the selector valve 26 provides a fluidic pathway between the pump inlet and a source 20 of fluid maintained at the different pressure.

[0026] Switching the selector valve 26 from one position to another can occur automatically or manually, depending upon the particular implementation of the BSM 12. For manual switching, the BSM 12 can have an external dial connected to the selector valve 26, for rotating the selector valve 26 into its desired position. For automated switching, the BSM 12 has programmatically controllable electronics (e.g., CPU 28) connected to the selector valve 26 for turning the selector valve into its desired position (e.g., in response to a user-issued command submitted through a computer data station 30). Automated switching is preferred over manual switching because automated switching is less prone to operator error. For example, a possible shortcoming with a manually operated selector valve is the risk of a direct change from the CO2 (at tank pressure) to fluid (e.g., at atmospheric pressure). The resulting instantaneous expansion of the CO2 could have damaging effects on the system. An automated selector valve can be controlled to prevent this situation.

[0027] An automated selector valve also provides advantages for system start-up. Usually, when starting a pump 52, the pump auto-zeros the pressure transducers 58. If the pump 52-1, for example, starts running while connected to the source 24 of CO2, the transducers 58 auto-zero with the tank pressure of the pressurized source 24. The pump 52-1 then subsequently uses an offset equal to this tank pressure. The other pump 52-2, being connected to a solvent at, for example, atmospheric pressure, produces a different offset. This difference in pump offsets can decrease performance significantly. The selector valve 26 enables the first pump 52-1 to make a connection to a solvent reservoir at atmospheric pressure, which results in a comparable offsets for the two pumps 52-1, 52-2.

[0028] While the invention has been shown and described with reference to specific preferred embodiments, it should be understood by those skilled in the art that various changes in form and detail may be made therein without departing from the scope of the invention as defined by the following claims. For example, although shown in FIG. 3 to be coupled to the pump A 52-1, the selector valve 26 can instead be connected to the primary actuator 54 of the second pump B 52-2 with the solvent select valve 62 instead connected to the inlet of the first pump A 52-1, without departing from the principles described herein. In addition, other embodiments of the BSM 12 can have two selector valves 26, one selector valve being connected to the inlet of each pump 52-1, 52-2, each selector valve providing a switchable connection between a fluid maintained at elevated pressure and a fluid maintained at the same elevated pressure or at a different pressure, for example, atmospheric (or room) pressure.


Claims

1. A pump (52) for use in a high-performance or ultra-performance liquid chromatography system (10) comprising:

an actuator (54) with an inlet; and

a selector valve (26) in fluidic communication with the inlet of the actuator (54), the selector valve (26) being configured to switch between

a first position, in which the selector valve (26) provides a fluidic pathway between the inlet of the actuator (54) and a solvent reservoir of fluid (20) maintained at a first pressure;

a second position, in which the selector valve (26) provides a fluidic pathway between the inlet of the actuator (54) and a source of pressurized fluid maintained at a pressure greater than atmospheric pressure and different from the first pressure; and

a third position wherein both the fluidic pathway between the solvent reservoir of fluid (20) and the inlet of the actuator (54) and the fluidic pathway between the source (24) of the pressurized fluid and the inlet of the actuator (54) are blocked.


 
2. The pump (52) of claim 1, wherein the pressurized fluid is carbon dioxide.
 
3. The pump (52) of claim 1, wherein the actuator (54) with the inlet is a primary actuator (54), the pump (52) further comprising an accumulator actuator(56) connected in series with the primary actuator (54) to receive pressurized fluid pumped by the primary actuator (54).
 
4. A solvent delivery system (12) for use in a high-performance or ultra-performance liquid chromatography system (10), comprising:
a pumping system including a pump (52) according to any of claims 1 to 3.
 
5. The solvent delivery system (12) of claim 4, wherein the pumping system includes two independent serial flow pumps, each serial flow pump including a primary actuator (54) connected in series with an accumulator actuator (56), and wherein the inlet of the actuator (54) is an inlet to the primary actuator (54) of one of the two serial flow pumps.
 
6. The solvent delivery system (12) of claim 4, wherein the source (24) of pressurized fluid is maintained at a pressure that keeps the pressurized fluid near its supercritical state.
 
7. A high-performance or ultra-performance liquid chromatography system (10), comprising:
a solvent delivery system (12) according to any of claims 5 and 6.
 
8. The liquid chromatography system (10) of claim 7, wherein the liquid chromatography system (10) performs as a CO2-based chromatography system when the selector valve (26) is in the second position and as an HPLC (High Performance Liquid Chromatography) system when the selector valve (26) is in the first position.
 
9. The liquid chromatography system (10) of claim 7, wherein the liquid chromatography system performs as a CO2-based chromatography system when the selector valve (26) is in the second position and as a UPLC (Ultra Performance Liquid Chromatography) system when the selector valve (26) is in the first position.
 
10. A method for operating a high-performance or ultra-performance liquid chromatography system (10), as claimed in claim 7, the method comprising:

pumping solvents maintained at a first pressure through a pair of pumps (52) operating in parallel;

switching a selector valve (26) from

a first position, in which the selector valve (26) provides a fluidic pathway between an inlet of one of the pumps (52) and a solvent reservoir (20) of one of the solvents, to

a second position, in which the selector valve provides a fluidic pathway between the inlet of that one pump (52) and a source (24) of pressurized fluid maintained at a second pressure greater than atmospheric pressure different from the first pressure; and switching the selector valve (26) from the second position to

a third position in which the selector valve (26) provides a fluidic pathway between the pump inlet and a solvent reservoir (20) of fluid maintained at a second pressure.


 
11. The method of claim (10), wherein the liquid chromatography system (10) performs as an HPLC (High Performance Liquid Chromatography) or as a UPLC (Ultra Performance Liquid Chromatography) system when the selector valve (26) is in the first position and as a CO2-based chromatography system when the selector valve (26) is in the second position.
 


Ansprüche

1. Pumpe (52) für den Einsatz in einem Hochleistungs- oder Ultrahochleistungs-Flüssigkeitschromatographiesystem (10), die Folgendes umfasst:

einen Stellantrieb (54) mit einem Einlass; und

ein Selektorventil (26) in strömungstechnischer Verbindung mit dem Einlass des Stellantriebs (54), wobei das Selektorventil (26) konfiguriert ist zum Umschalten zwischen

einer ersten Position, in der das Selektorventil (26) einen Strömungsweg zwischen dem Einlass des Stellantriebs (54) und einem Lösungsmittelreservoir (20) mit Fluid bereitstellt, das auf einem ersten Druck gehalten wird;

einer zweiten Position, in der das Selektorventil (26) einen Strömungsweg zwischen dem Einlass des Stellantriebs (54) und einer Quelle für Druckfluid bereitstellt, das auf einem Druck gehalten wird, der höher als der atmosphärische Druck ist und sich vom ersten Druck unterscheidet; und

einer dritten Position, in der sowohl der Strömungsweg zwischen dem Lösungsmittelreservoir (20) mit Fluid und dem Einlass des Stellantriebs (54) als auch der Strömungsweg zwischen der Quelle (24) für Druckfluid und dem Einlass des Stellantriebs (54) blockiert sind.


 
2. Pumpe (52) nach Anspruch 1, wobei das Druckfluid Kohlendioxid ist.
 
3. Pumpe (52) nach Anspruch 1, wobei der Stellantrieb (54) mit dem Einlass ein primärer Stellantrieb (54) ist, wobei die Pumpe (52) ferner einen Akkumulator-Stellantrieb (56) aufweist, der mit dem primären Stellantrieb (54) in Reihe geschaltet ist, um von dem primären Stellantrieb (54) gepumptes Druckfluid aufzunehmen.
 
4. Lösungsmittelzuführungssystem (12) für den Einsatz in einem Hochleistungs- oder Ultrahochleistungs-Flüssigkeitschromatographiesystem (10), das Folgendes umfasst:
ein Pumpsystem mit einer Pumpe (52) nach einem der Ansprüche 1 bis 3.
 
5. Lösungsmittelzuführungssystem (12) nach Anspruch 4, wobei das Pumpsystem zwei unabhängige serielle Strömungspumpen umfasst, wobei jede serielle Strömungspumpe einen primären Stellantrieb (54) umfasst, der mit einem Akkumulator-Stellantrieb (56) in Reihe geschaltet ist, und wobei der Einlass des Stellantriebs (54) ein Einlass zu dem primären Stellantrieb (54) von einer der beiden seriellen Strömungspumpen ist.
 
6. Lösungsmittelzuführungssystem (12) nach Anspruch 4, wobei die Quelle (24) für Druckfluid auf einem Druck gehalten wird, der das Druckfluid in der Nähe seines überkritischen Zustands hält.
 
7. Hochleistungs- oder Ultrahochleistungs-Flüssigkeitschromatographiesystem (10), das Folgendes umfasst:
ein Lösungsmittelzuführungssystem (12) nach einem der Ansprüche 5 und 6.
 
8. Flüssigkeitschromatographiesystem (10) nach Anspruch 7, wobei das Flüssigkeitschromatographiesystem (10) als Chromatographiesystem auf CO2-Basis arbeitet, wenn das Selektorventil (26) in der zweiten Position ist, und als HPLC-(Hochleistungs-Flüssigkeitschromatographie)-System arbeitet, wenn das Selektorventil (26) in der ersten Position ist.
 
9. Flüssigkeitschromatographiesystem (10) nach Anspruch 7, wobei das Flüssigkeitschromatographiesystem als Chromatographiesystem auf CO2-Basis arbeitet, wenn das Selektorventil (26) in der zweiten Position ist, und als UPLC-(Ultrahochleistungs-Flüssigkeitschromatographie)-System arbeitet, wenn das Selektorventil (26) in der ersten Position ist.
 
10. Verfahren zum Betreiben eines Hochleistungs- oder Ultrahochleistungs-Flüssigkeitschromatographiesystems (10) nach Anspruch 7, wobei das Verfahren Folgendes beinhaltet:

Pumpen von Lösungsmitteln, die auf einem ersten Druck gehalten werden, durch ein Paar parallel arbeitender Pumpen (52);

Umschalten eines Selektorventils (26) von
einer ersten Position, in der das Selektorventil (26) einen Strömungsweg zwischen einem Einlass von einer der Pumpen (52) und einem Lösungsmittelreservoir (20) von einem der Lösungsmittel bereitstellt, in

eine zweite Position, in der das Selektorventil einen Strömungsweg zwischen dem Einlass dieser einen Pumpe (52) und einer Quelle (24) für Druckfluid bereitstellt, das auf einem zweiten Druck gehalten wird, der höher als der Atmosphärendruck ist und sich vom ersten Druck unterscheidet; und

Umschalten des Selektorventils (26) von der zweiten Position in
eine dritte Position, in der das Selektorventil (26) einen Strömungsweg zwischen dem Pumpeneinlass und einem Lösungsmittelbehälter (20) mit Fluid bereitstellt, das auf einem zweiten Druck gehalten wird.


 
11. Verfahren nach Anspruch 10, wobei das Flüssigkeitschromatographiesystem (10) als HPLC-(Hochleistungs-Flüssigkeitschromatographie)- oder als UPLC-(Ultra Hochleistungs-Flüssigkeitschromatographie)-System arbeitet, wenn das Selektorventil (26) in der ersten Position ist, und als Chromatographiesystem auf CO2-Basis arbeitet, wenn das Selektorventil (26) in der zweiten Position ist.
 


Revendications

1. Pompe (52) destinée à être utilisée dans un système de chromatographie liquide hautement performante ou ultra-performante (10), comprenant :

un actionneur (54) avec une entrée ; et

un robinet sélecteur (26) en communication fluidique avec l'entrée de l'actionneur (54), le robinet sélecteur (26) étant configuré pour changer entre une première position, dans laquelle le robinet sélecteur (26) fournit un passage de fluide entre l'entrée de l'actionneur (54) et un réservoir de fluide solvant (20) maintenu à une première pression ;

une deuxième position, dans laquelle le robinet sélecteur (26) fournit un passage de fluide entre l'entrée de l'actionneur (54) et une source de fluide pressurisé maintenue à une pression supérieure à la pression atmosphérique et différente de la première pression ; et

une troisième position dans laquelle le chemin de fluide entre le réservoir de fluide solvant (20) et l'entrée de l'actionneur (54) et le chemin de fluide entre la source (24) du fluide pressurisé et l'entrée de l'actionneur (54) sont bloqués.


 
2. Pompe (52) selon la revendication 1, dans laquelle le fluide pressurisé est du dioxyde de carbone.
 
3. Pompe (52) selon la revendication 1, dans laquelle l'actionneur (54) avec l'entrée est un actionneur principal (54), la pompe (52) comprenant en outre un actionneur accumulateur (56) connecté en série à l'actionneur principal (54) pour recevoir un fluide pressurisé pompé par l'actionneur principal (54).
 
4. Système de distribution de solvant (12) destiné à être utilisé dans un système de chromatographie liquide hautement performante ou ultra-performante (10), comprenant :
un système de pompage incluant une pompe (52) selon l'une quelconque des revendications 1 à 3.
 
5. Système de distribution de solvant (12) selon la revendication 4, dans lequel le système de pompage inclut deux pompes à fluide en série, chaque pompe à fluide en série incluant un actionneur principal (54) connecté en série à un actionneur accumulateur (56), et dans lequel l'entrée de l'actionneur (54) est une entrée de l'actionneur principal (54) d'une des deux pompes à fluide en série.
 
6. Système de distribution de solvant (12) selon la revendication 4, dans lequel la source (24) de fluide pressurisé est maintenue à une pression qui maintient le fluide pressurisé proche de son état supercritique.
 
7. Système de chromatographie liquide hautement performante ou ultra-performante (10), comprenant :
un système de distribution de solvant (12) selon l'une quelconque des revendications 5 et 6.
 
8. Système de chromatographie liquide (10) selon la revendication 7, le système de chromatographie liquide (10) fonctionnant comme un système de chromatographie à base de CO2 quand le robinet sélecteur (26) est dans la deuxième position et comme un système HPLC (chromatographie liquide hautement performante) quand le robinet sélecteur (26) est dans la première position.
 
9. Système de chromatographie liquide (10) selon la revendication 7, le système de chromatographie liquide fonctionnant comme un système de chromatographie à base de CO2 quand le robinet sélecteur (26) est dans la deuxième position et comme un système UPLC (chromatographie liquide ultra-performante) quand le robinet sélecteur (26) est dans la première position.
 
10. Procédé de fonctionnement d'un système de chromatographie liquide hautement performante ou ultra-performante (10) selon la revendication 7, le procédé consistant à :

pomper des solvants maintenus à une première pression par l'intermédiaire d'une paire de pompes (52) fonctionnant en parallèle ;

changer un robinet sélecteur (26) :

d'une première position, dans laquelle le robinet sélecteur (26) fournit un passage de fluide entre une entrée d'une des pompes (52) et un réservoir de solvant (20) d'un des solvants

à une deuxième position, dans laquelle le robinet sélecteur fournit un passage de fluide entre l'entrée de ladite pompe (52) et une source (26) de fluide pressurisé maintenue à une seconde pression supérieure à la pression atmosphérique et différente de la première pression ;

et changer le robinet sélecteur (26) :

de la deuxième position

à une troisième position dans laquelle le robinet sélecteur (26) fournit un passage de fluide entre l'entrée de pompe et un réservoir de solvant (20) d'un fluide maintenu à une seconde pression.


 
11. Procédé selon la revendication 10, dans lequel le système de chromatographie liquide (10) fonctionne comme un système HPLC (chromatographie liquide hautement performante) ou comme un système UPLC (chromatographie liquide ultra-performante) quand le robinet sélecteur (26) est dans la première position et comme un système de chromatographie à base de CO2 quand le robinet sélecteur (26) est dans la deuxième position.
 




Drawing

















Cited references

REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description