(19)
(11)EP 2 803 130 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
28.07.2021 Bulletin 2021/30

(21)Application number: 13736365.1

(22)Date of filing:  10.01.2013
(51)International Patent Classification (IPC): 
H02J 50/40(2016.01)
H02J 50/00(2016.01)
H02J 50/80(2016.01)
H02J 7/00(2006.01)
H02J 50/20(2016.01)
H04B 5/00(2006.01)
(86)International application number:
PCT/US2013/020924
(87)International publication number:
WO 2013/106498 (18.07.2013 Gazette  2013/29)

(54)

SYSTEM AND METHOD FOR A VARIABLE IMPEDANCE TRANSMITTER PATH FOR CHARGING WIRELESS DEVICES

SYSTEM UND VERFAHREN FÜR EINEN SENDERPFAD MIT VARIABLER IMPEDANZ ZUM LADEN DRAHTLOSER VORRICHTUNGEN

SYSTÈME ET PROCÉDÉ POUR UNE LIGNE DE TRANSMISSION À IMPÉDANCE VARIABLE POUR LA CHARGE DE DISPOSITIFS SANS FIL


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 12.01.2012 US 201261585697 P
10.10.2012 US 201213648552

(43)Date of publication of application:
19.11.2014 Bulletin 2014/47

(60)Divisional application:
21169611.7

(73)Proprietor: Facebook, Inc.
Menlo Park, CA 94025 (US)

(72)Inventor:
  • MAGUIRE, Yael
    Menlo Park, CA 94025 (US)

(74)Representative: Murgitroyd & Company 
Murgitroyd House 165-169 Scotland Street
Glasgow G5 8PL
Glasgow G5 8PL (GB)


(56)References cited: : 
WO-A1-2011/042974
JP-A- 2010 252 497
KR-B1- 100 835 057
US-A1- 2011 109 167
US-A1- 2011 156 490
JP-A- 2008 011 341
KR-A- 20070 000 544
US-A1- 2011 037 516
US-A1- 2011 115 431
US-A1- 2011 266 880
  
  • None
  
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description

TECHNICAL FIELD



[0001] This disclosure generally relates to charging wireless devices.

BACKGROUND



[0002] Conventional wireless communication devices are able to use electromagnetic power generated from a source in close proximity to a device to charge the device. The electromagnetic power may be high or low frequency power. Wireless communication devices typically need large amounts of stored energy, typically 100 mW-hours to 75 Watt-hours, and to effectively charge these devices using wireless methods requires the devices to be within a few millimeters of the source, and requires an antenna on the device to have an area approximately equal to the size of the device. New wireless devices such as Bluetooth Low-Energy headsets, remotes, fitness devices, watches, and medical accessories, and NFC (near field communication) and UHF-RFID (ultra high frequency-radio-frequency identification) cards, labels and sensors, consume much lower amounts of power and have multi-year battery lives or no batteries at all. Convenient mechanisms to power and charge these lower power devices are provided in at least some embodiments described herein.

[0003] Document US 2011/0115431 A1 describes a method for selective wireless power transfer to multiple devices. Transferring wireless power the electronic devices may comprise varying at least one parameter of the wireless power transfer according to a wireless power transfer scenario.

[0004] Document US 2011/0109167 A1 describes a wireless signal transmission method in which at least one of a distance and an angle between two resonators is be measured. A load impedance may be determined based on at least one of the measured distance and the measured angle. When the distance between the two resonators changes, a high power transfer efficiency may be maintained without using a separate matching circuit. Where the load impedance is determined, a test power may is transmitted. Depending on a power transfer efficiency of the test power, the load impedance is controlled for wireless transmission from the source resonator to the target resonator.

SUMMARY OF PARTICULAR EMBODIMENTS



[0005] According to one aspect, systems and methods are provided to maximize power transfer from one wireless communication device (source) to another (load) in the near and mid-field by more effectively matching the impedance of the source device to the effective impedance presented by the combination of the load device and the transmission path.

[0006] Embodiments of the invention are, in particular, set out in the annexed claims.

BRIEF DESCRIPTION OF THE DRAWINGS



[0007] 

FIG. 1 illustrates an example communications system.

FIG. 2 illustrates an example system for charging a wireless device.

FIG. 3 illustrates an example plot representing the power received at a wireless device.

FIG. 4 illustrates an example near-field and mid-field coupling between two wireless devices.

FIG. 5 illustrates an example of adjusting the impedance of a wireless device.

FIG. 6 illustrates an example pattern etched into a layer of a printed wiring board.

FIG. 7 illustrates an example method for optimizing power transfer when charging a wireless device.


DESCRIPTION OF EXAMPLE EMBODIMENTS



[0008] The present invention is defined by the independent method claim 1 and the independent apparatus claim 4. Preferred embodiments are defined by the dependent claims. FIG. 1 is a diagram of a communications system 100 in accordance with one embodiment of the invention. The communication system 100 includes a mobile communications base station 102 and multiple wireless communication devices 104a, 104b, 104c and 104d. The base station transmits an RF (radio frequency) signal 106, including RF power. The RF signal 106 is received by the wireless communication devices 104a-104d. According to various embodiments, the wireless communication base station 102 may include one more mobile phones, tablets, personal digital assistants, iPhones, music players, iPods, iPads, laptops, computers, or cameras. The multiple wireless communication devices 104a-104d may be the same device type as the wireless communication base station but may also be headphones, headsets (including a microphone and earphone), watches, heart-rate monitors, diabetic monitors, activity sensors, or toys. According to one embodiment, the base station 102 may be connected to a power source. The power source may be an electrical outlet. FIG. 2 is a diagram of a typical embodiment of a communications system including a transmitter 200 of a wireless communication base station or device and a power receiver 230 of a second device. The transmitter 200 is a quadrature transmitter and may be the same type of transmitter used for wireless standards such as WiFi, GSM (global system for mobile), 3G, LTE (long term evolution), UHF-RFID, Bluetooth, and WiMax. The quadrature signal includes a real digital data signal component 210 and an imaginary digital data signal component 211. The type of real 210 and imaginary 211 digital data can vary depending on the type of encoding and modulation used. As shown in FIG. 2, the real digital signal component 210 is converted to a real analog signal component 214 at a first digital-to-analog (DAC) converter 212, and the imaginary digital signal component 211 is converted to an imaginary analog signal component 215 at a second digital-to-analog (DAC) converter 213. The real analog signal component 214 is then converted to the radiofrequency (RF) domain via a first mixer 217 and the imaginary analog signal component 215 is converted to the radiofrequency domain via a second mixer 218.

[0009] According to one embodiment, the real digital signal component 210 and the imaginary digital signal component 211 are both digital signals that need to be converted to analog baseband signals before they are up-converted to the RF domain. The mixers 217 and 218 receive a local oscillator signal from the local oscillator 216, and multiply the local oscillator signal by the respective real and imaginary complex signal components. In one example, the local oscillator signal is in the range of about 2.45 GHz or 5 GHz, used for WiFi or Bluetooth, or another microwave frequency. The real 214 and imaginary 215 analog signal components are combined at 220 to produce the output signal x(t) 221. The output signal x(t) 221 is amplified by amplifier 222. The antenna 223 on the wireless communication base station converts the amplified power and radiates it as an electromagnetic power 225.

[0010] The power receiver 230, includes an antenna 231 and a rectifier and power regulation circuit 232. The communication device may be a NFC or UHF-RFID device, or the circuitry from one of these protocols in a larger wireless communication device, and the receiver 230 can be adapted to other frequencies. If the antennas 223 and 231 are sufficiently in range of each other, sufficient power can be transferred to the receiver 230 from the transmitter 200. In one example, the transmitter 200 is a base station and the receiver 230 is a wireless communication device. The amount of power that can be transferred varies substantially with distance between the transmitter and the receiver, and with the wavelength of the transmitter signal. In one example, the transmitted power varies from about 0.001% at 10m to about 1% at 10 cm.

[0011] FIG. 3 is a plot 300 of the power received from a typical receiving device that is 10cm from a 200 mW UHF transmitter. In one example, the transmitter is a wireless communication base station used to charge a device having a receiver. The units on the y-axis are in dBm. The plot 300 shows that when the receiver is in close proximity to the transmitter, the power transfer to the wireless device can vary substantially, depending on frequency, by greater than 8.9 dB (a factor of about 7.7). For devices that utilize, frequency hopping or selection across the frequency range shown in FIG. 10, the charging time for the devices will also very by a factor of about 7.7. In at least some systems provided herein, circuitry is designed into at least one of the receiver and the transmitter to move the trace line 320 toward the ideal power versus frequency trace line 310.

[0012] FIG. 4 is a diagram showing near-field and mid-field coupling between a wireless communication base station 402 and wireless communication devices 404a-404d at a specific frequency and spatial orientation. In near-field and mid-field wireless communication, the geometry and impedance of the antennas 405, 410a-410d and circuitry coupled to the antennas 405, 410a-410d affects the transfer of power from the base station 402 to the wireless communication devices 404a-404d. In far-field communication, the impedance of a receiving antenna and corresponding matching circuitry is conjugate matched to the impedance of free space:

where ε0 is the permittivity of free-space or approximately 8.854x10-12, and C is the speed of light (299792458 m/s). Thus, Z0 is approximately 376.7 Ωs. When the impedance connecting a transmitter and receiver is zero (for example, when the transmitter and the receiver are connected with a wire), the impedance of the receiver is approximately the complex conjugate of the transmitter:



[0013] In the near-field and mid-field, the optimal power transfer from the transmitter to the receiver is a combination of the free-space term and transmitter impedances. The wireless communication devices 404a-404d have corresponding impedances Z3 443, Z4 444, Z5 445 and Z6 446. The impedances Z3 443, Z4 444, Z5 445 and Z6 446 are coupled to the impedances of the medium ZP1 431, ZP2 432, ZP3 433 and ZP4 434 between the wireless communication device antennas 410a-410d and the base station antenna 405. The wireless communication base station 402 has two impedances: impedance Z2 421 of the antenna 405, and the impedance Z1 420 of the circuitry leading up to the antenna 405. If the wireless communication devices cannot change their own impedances 443-446, and the impedances 431-434 of the material remain constant, the wireless communication base station 402 can only modify impedance by adjusting its own source impedance Z1 420.

[0014] In conventional devices, the source impedance Z1 420 of a base station 402 is usually a static strip line on a printed wiring board (PWB), as shown schematically with dashed line 408. According to an example, not covered by the invention, systems and methods are provided to replace the static strip line with one or more electrical paths having different impedances. According to the invention, systems and methods are provided with a single path having a continuously-controllable impedance. In one example, the pair of impedances Z1 420 and Z2 421 to the second device 404b are as matched as possible to impedances ZP1 431 and Z3 443 and the impedance of free-space. The value of Z1 may vary for different devices. With a single antenna 405, each device may be optimally charged in serial, or short time windows could be interleaved to charge multiple devices in a pseudo-simultaneous fashion. It is further noted that the transmitter signal before the amplifier could change the transmitter phase in combination with the impedance selected for Z1 420.

[0015] FIG. 5 is a diagram of an embodiment in which the impedance before the antenna 516 of the wireless communication base station can be adjusted to provide efficient transfer of power. Changing the impedance before the antenna 516 may lead to changes in the output signal transmitted by the antenna 516. As shown in FIG. 5, the impedance between the transmitter and the antenna 516 of the wireless communication base station may be changed discretely using a pair of 3-way switches 503, 515 in the path. At each switch position, an impedance 511-513 is designed to be used to test whether the new impedance of the combined system improves or decreases the ability to transfer wireless power from the base station to one of the wireless communications devices. In various embodiments, the switches 503, 515 may have any number of switch positions, and more or less impedance values may be used. In a further embodiment, a mechanism may be utilized to continuously change a network of resistances, capacitances, inductances or any combination thereof to change the impedance of the path.

[0016] FIG. 6 is a diagram showing the layout of a pattern 600 to be etched into a single layer of a printed wiring board (PWB) to implement the three switched impedances shown in FIG. 5, according to one embodiment. The pattern 600 is etched into a single layer of a printed wiring board (PWB) with a corresponding ground plane above or below the pattern 600. When etched, the lines shown in the pattern 600 become stripline transmission lines 611-613 with integrated inductances within the stripline. In one embodiment, the pattern 600 may further have additional shapes corresponding to capacitors. Further impedances may be added with discrete surface mount components or components that are integrated within the substrate. According to one aspect, the width 620 of the striplines 611-613 is selected to correspond to the impedance of the transmitter amplifier 502 and may be adjusted to match the transmitter antenna or a network that connects to the antenna. According to one embodiment, the radius of curvature 610, height 615 and width 620 of the striplines 611-613 are selected to result in predetermined inductances suitable for the selected application.

[0017] FIG. 7 is a diagram of an embodiment of a method 700 that uses a communication system with a wireless communication base station to optimize power transfer with wireless communication devices. According to one embodiment, in the near and mid-field, the link margin of the ability to communicate with the devices is equal to or substantially higher than the link margin to enable the charging circuitry. According to one example, for passive RFID tags, the link margin of the ability to communicate with an RFID tag is equal to the link margin to enable the charging circuitry. In the near or mid-field, communications link margins are generally between about 80 dB and about 110 dB for battery-based devices, while power-up or charging link margins may have a negative value, as charging circuits need a minimum amount of power to overcome internal leakage, or they may range from about 0 dB up to about 40 dB. Almost all circuits have some amount of current leakage. In practice, it is very hard to make a switch in silicon circuits that can go from low impedance (e.g., a fraction of an Ohm to a few Ohms) to gigaOhms (i.e., nanoAmps). Given that circuit designers care about nanoWatts to microWatts of leakage, to charge a circuit, an amount of current that exceeds the leakage must first be supplied. This is even harder if there is a small microprocessor or logic circuit that must be turned on always to makes sure some state transition occurs (e.g., pressing a button, waking up an AP, etc.), as this leakage may be microWatts to milliWatts. In either case, the charging circuit must overcome this negative "link margin" to actually be able to charge a battery. Since a base station can communicate with wireless communications devices, the base station can use the rectification parameters observed by the wireless communications devices to effectively close the loop of measurement and control by the base station.

[0018] At step 701, the wireless communication base station connects to all devices and uses a communications protocol to request information about the power level seen by each device. At step 705, the wireless communication base station switches the transmit impedance 408 to a different impedance, either discretely as shown in FIGS. 5 and 6, or continuously. At step 710, the state machine within the wireless communication base station establishes whether it has tested the full set or space of possible transmit impedances. If not, the transmit impedance is changed to a new value at step 705 and step 710 is repeated. To cover the full set of possible impedances, it may take between a few microseconds and multiple seconds to establish the best power transfer impedance. However, this time is short compared to the overall charging time of minutes to hours. In one example, the transmit phase is incorporated into the algorithm. At step 715, the base station determines which impedance enables the best power transfer. The base station may determine which impedance enable the best power transfer by accepting an impedance that results in a threshold amount of power transfer, or the base station may test all sets of transmit impedances and phases and select the impedance that enables the best power transfer. As has been discussed above, the impedance that is best for one device may be different from the impedance that is optimal for another device. In one embodiment, the various best impedances may be time-sequenced to provide the best power transfer to the set of wireless communication devices.

[0019] According to one embodiment, the communication link margin may be high for communication with the wireless communication devices. According to another embodiment, the link margin for the original intended communications application (WiFi network or cellular base station) may be compromised with this algorithm. Thus, in some examples, the transmit impedance may not be set to the optimal value for the wireless communication devices. According to the invention, the transmit impedance is time-interleaved with a default value for communication with the networked base station. There may be additional embodiments of communications protocol between multiple wireless communication base stations if they are simultaneously attempting to provide power optimally to the same set of wireless communication devices.

[0020] Having thus described several aspects of at least one embodiment, it is to be appreciated various alterations, modifications, and improvements will readily occur to those skilled in the art. Such alterations, modifications, and improvements are intended to be part of this disclosure and are intended to be within the scope of the invention, the scope of the invention is solely defined by the appended claims.


Claims

1. A method comprising:

by a base station (102, 402), receiving from a wireless device (104, 404) power-level information comprising a power level of a signal (106) transmitted from the base station (102, 402) to the wireless device (104, 404), wherein the base station comprises an electrical path having a continuously-controllable transmit impedance, and wherein the power-level information is sent by the wireless device (104, 404) and received by the base station (102, 402) using a communication protocol;

by the base station (102, 402), determining, based on the power-level information, a first power transfer value of the signal (106) when transmitted from the base station (102, 402) to the wireless device (104, 404) using a first transmit impedance;

by the base station (102, 402), determining, based on the power-level information, a second power transfer value of the signal when transmitted from the base station (102, 402) to the wireless device (104, 404) using a second transmit impedance;

by the base station (102, 402), selecting the first transmit impedance based on the power-level information indicating that the first power transfer value is greater than the second power transfer value; and

by the base station (104, 404), time-interleaving the first transmit impedance with a default transmit impedance; wherein the time-interleaving comprises wirelessly charging the wireless device (104, 404) using the first transmit impedance and communicating with the wireless device (104, 404) using the default transmit impedance and the communications protocol, and wherein the first transmit impedance, the second transmit impedance, and the default transmit impedance are attained by changing the impedance of the continuously-controllable transmit impedance in a continuous manner.
 
2. The method of Claim 1, further comprising

re-determining the first power transfer value of the signal when transmitted from the base station (102, 402) to the wireless device (104, 404) using the first transmit impedance;

re-determining the second power transfer value of the signal when transmitted from the base station (102, 402) to the wireless device (104, 404) using the second transmit impedance; and

re-selecting one of the first transmit impedance and the second transmit impedance based on the re-determined first power transfer value and the re-determined second power transfer value.


 
3. The method of Claim 1, wherein the first transmit impedance corresponds to a power transfer value that is greater than a threshold power transfer value.
 
4. A communications device (102, 402) comprising:

an antenna (223, 405, 516);

an electrical path having a continuously-controllable transmit impedance; and

processing circuitry operable to:

receive from a wireless device (104, 404) power-level information comprising a power level of a signal transmitted from the antenna (223, 405, 516) to the wireless device (104, 404), wherein the power-level information is sent by the wireless device (104, 404) and received by the communications device (102, 402) using a communications protocol;

determine, based on the power-level information, a first power transfer value of the signal when transmitted from the antenna (223, 405, 516) to the wireless device (104, 404) using a first transmit impedance of the plurality of transmit impedances,

determine, based on the power-level information, a second power transfer value of the signal when transmitted from the antenna (223, 405, 516) to the wireless device (104, 404) using a second transmit impedance of the plurality of transmit impedances,

select the first transmit impedance based on the power-level information indicating that the first power transfer value is greater than the second power transfer value; and

time-interleave the first transmit impedance with a default transmit impedance, wherein the time-interleave comprises wirelessly charging the wireless device (104, 404) using the first transmit impedance and communicating with the wireless device (104, 404) using the default transmit impedance and the communications protocol, and wherein the first transmit impedance, the second transmit impedance, and the default transmit impedance are attained by changing the impedance of the continuously-controllable transmit impedance in a continuous manner.


 
5. The communications device (102, 402) of Claim 4, wherein a transmitter of the communications device (102, 402) comprises:

a first digital-to-analog converter (212) configured to convert a real digital signal to a real analog signal;

a second digital-to-analog converter (213) configured to convert an imaginary digital signal to an imaginary analog signal;

a first mixer (217) configured to convert the real analog signal into a radiofrequency, RF, domain; and

a second mixer (218) configured to convert the imaginary analog signal into the RF domain.


 
6. The communications device (102, 402) of Claim 4,
wherein the antenna (223, 405, 516) is configured to be shared with other communications functions of the communications device (102, 402).
 


Ansprüche

1. Ein Verfahren, das Folgendes beinhaltet:

durch eine Basisstation (102, 402), Empfangen, von einer drahtlosen Vorrichtung (104, 404), von Leistungsstufeninformationen, die eine Leistungsstufe eines Signals (106) beinhalten, das von der Basisstation (102, 402) an die drahtlose Vorrichtung (104, 404) gesendet wird, wobei die Basisstation einen elektrischen Pfad beinhaltet, der eine kontinuierlich steuerbare Sendeimpedanz aufweist, und wobei die Leistungsstufeninformationen unter Verwendung eines Kommunikationsprotokolls durch die drahtlose Vorrichtung (104, 404) übermittelt werden und durch die Basisstation (102, 402) empfangen werden;

durch die Basisstation (102, 402), Bestimmen, basierend auf den Leistungsstufeninformationen, eines ersten Leistungsübertragungswerts des Signals (106) beim Senden von der Basisstation (102, 402) an die drahtlose Vorrichtung (104, 404) unter Verwendung einer ersten Sendeimpedanz;

durch die Basisstation (102, 402), Bestimmen, basierend auf den Leistungsstufeninformationen, eines zweiten Leistungsübertragungswerts des Signals beim Senden von der Basisstation (102, 402) an die drahtlose Vorrichtung (104, 404) unter Verwendung einer zweiten Sendeimpedanz;

durch die Basisstation (102, 402), Auswählen der ersten Sendeimpedanz basierend auf den Leistungsstufeninformationen, die anzeigen, dass der erste Leistungsübertragungswert größer als der zweite Leistungsübertragungswert ist; und

durch die Basisstation (104, 404), zeitliches Verschachteln der ersten Sendeimpedanz mit einer Standardsendeimpedanz; wobei das zeitliche Verschachteln das drahtlose Laden der drahtlosen Vorrichtung (104, 404) unter Verwendung der ersten Sendeimpedanz und das Kommunizieren mit der drahtlosen Vorrichtung (104, 404) unter Verwendung der Standardsendeimpedanz und des Kommunikationsprotokolls beinhaltet und wobei die erste Sendeimpedanz, die zweite Sendeimpedanz und die Standardsendeimpedanz durch Ändern der Impedanz der kontinuierlich steuerbaren Sendeimpedanz auf eine kontinuierliche Weise erlangt werden.


 
2. Verfahren gemäß Anspruch 1, das ferner Folgendes beinhaltet:

Neubestimmen des ersten Leistungsübertragungswerts des Signals beim Senden von der Basisstation (102, 402) an die drahtlose Vorrichtung (104, 404) unter Verwendung der ersten Sendeimpedanz;

Neubestimmen des zweiten Leistungsübertragungswerts des Signals beim Senden von der Basisstation (102, 402) an die drahtlose Vorrichtung (104, 404) unter Verwendung der zweiten Sendeimpedanz; und

Neuauswählen einer der ersten Sendeimpedanz und der zweiten Sendeimpedanz basierend auf dem neubestimmten ersten Leistungsübertragungswert und dem neubestimmten zweiten Leistungsübertragungswert.


 
3. Verfahren gemäß Anspruch 1, wobei die erste Sendeimpedanz einem Leistungsübertragungswert entspricht, der größer als ein Schwellenwertleistungsübertragungswert ist.
 
4. Eine Kommunikationsvorrichtung (102, 402), die Folgendes beinhaltet:

eine Antenne (223, 405, 516);

einen elektrischen Pfad, der eine kontinuierlich steuerbare Sendeimpedanz aufweist; und

eine Verarbeitungsschaltung, die betriebsfähig ist zum:

Empfangen, von einer drahtlosen Vorrichtung (104, 404), von Leistungsstufeninformationen, die eine Leistungsstufe eines Signals beinhalten, das von der Antenne (223, 405, 516) an die drahtlose Vorrichtung (104, 404) gesendet wird, wobei die Leistungsstufeninformationen unter Verwendung eines Kommunikationsprotokolls durch die drahtlose Vorrichtung (104, 404) übermittelt werden und durch die Kommunikationsvorrichtung (102, 402) empfangen werden; Bestimmen, basierend auf den Leistungsstufeninformationen, eines ersten Leistungsübertragungswerts des Signals beim Senden von der Antenne (223, 405, 516) an die drahtlose Vorrichtung (104, 404) unter Verwendung einer ersten Sendeimpedanz der Vielzahl von Sendeimpedanzen,

Bestimmen, basierend auf den Leistungsstufeninformationen, eines zweiten Leistungsübertragungswerts des Signals beim Senden von der Antenne (223, 405, 516) an die drahtlose Vorrichtung (104, 404) unter Verwendung einer zweiten Sendeimpedanz der Vielzahl von Sendeimpedanzen,

Auswählen der ersten Sendeimpedanz basierend auf den Leistungsstufeninformationen, die anzeigen, dass der erste Leistungsübertragungswert größer als der zweite Leistungsübertragungswert ist; und

zeitliches Verschachteln der ersten Sendeimpedanz mit einer Standardsendeimpedanz, wobei das zeitliche Verschachteln das drahtlose Laden der drahtlosen Vorrichtung (104, 404) unter Verwendung der ersten Sendeimpedanz und das Kommunizieren mit der drahtlosen Vorrichtung (104, 404) unter Verwendung der Standardsendeimpedanz und des Kommunikationsprotokolls beinhaltet und wobei die erste Sendeimpedanz, die zweite Sendeimpedanz und die Standardsendeimpedanz durch Ändern der Impedanz der kontinuierlich steuerbaren Sendeimpedanz auf eine kontinuierliche Weise erlangt werden.


 
5. Kommunikationsvorrichtung (102, 402) gemäß Anspruch 4, wobei ein Sender der Kommunikationsvorrichtung (102, 402) Folgendes beinhaltet:

einen ersten Digital-Analog-Umwandler (212), der konfiguriert ist, um ein reelles digitales Signal in ein reelles analoges Signal umzuwandeln;

einen zweiten Digital-Analog-Umwandler (213), der konfiguriert ist, um ein imaginäres digitales Signal in ein imaginäres analoges Signal umzuwandeln;

einen ersten Mischer (217), der konfiguriert ist, um das reelle analoge Signal in eine Radiofrequenz-Domäne, RF-Domäne, umzuwandeln; und

einen zweiten Mischer (218), der konfiguriert ist, um das imaginäre analoge Signal in die RF-Domäne umzuwandeln.


 
6. Kommunikationsvorrichtung (102, 402) gemäß Anspruch 4, wobei die Antenne (223, 405, 516) konfiguriert ist, um mit anderen Kommunikationsfunktionen der Kommunikationsvorrichtung (102, 402) geteilt zu werden.
 


Revendications

1. Un procédé comprenant :

par une station de base (102, 402), la réception en provenance d'un dispositif sans fil (104, 404) d'informations de niveau de puissance comprenant un niveau de puissance d'un signal (106) transmis de la station de base (102, 402) au dispositif sans fil (104, 404), où la station de base comprend un trajet électrique ayant une impédance de transmission continûment contrôlable, et où les informations de niveau de puissance sont envoyées par le dispositif sans fil (104, 404) et reçues par la station de base (102, 402) à l'aide d'un protocole de communication ;

par la station de base (102, 402), la détermination, sur la base des informations de niveau de puissance, d'une première valeur de transfert de puissance du signal (106) lorsqu'il est transmis de la station de base (102, 402) au dispositif sans fil (104, 404) à l'aide d'une première impédance de transmission ;

par la station de base (102, 402), la détermination, sur la base des informations de niveau de puissance, d'une deuxième valeur de transfert de puissance du signal lorsqu'il est transmis de la station de base (102, 402) au dispositif sans fil (104, 404) à l'aide d'une deuxième impédance de transmission ;

par la station de base (102, 402), la sélection de la première impédance de transmission sur la base des informations de niveau de puissance indiquant que la première valeur de transfert de puissance est supérieure à la deuxième valeur de transfert de puissance ; et

par la station de base (104, 404), l'entrelacement temporel de la première impédance de transmission avec une impédance de transmission par défaut ; où l'entrelacement temporel comprend la charge sans fil du dispositif sans fil (104, 404) à l'aide de la première impédance de transmission et la communication avec le dispositif sans fil (104, 404) à l'aide de l'impédance de transmission par défaut et du protocole de communication, et où la première impédance de transmission, la deuxième impédance de transmission, et l'impédance de transmission par défaut sont atteintes par modification de l'impédance de l'impédance de transmission continûment contrôlable d'une manière continue.


 
2. Le procédé de la revendication 1, comprenant en outre
la re-détermination de la première valeur de transfert de puissance du signal lorsqu'il est transmis de la station de base (102, 402) au dispositif sans fil (104, 404), à l'aide de la première impédance de transmission ;
la re-détermination de la deuxième valeur de transfert de puissance du signal lorsqu'il est transmis de la station de base (102, 402) au dispositif sans fil (104, 404), à l'aide de la deuxième impédance de transmission ; et
la re-sélection d'une impédance parmi la première impédance de transmission et la deuxième impédance de transmission sur la base de la première valeur de transfert de puissance re-déterminée et de la deuxième valeur de transfert de puissance re-déterminée.
 
3. Le procédé de la revendication 1, dans lequel la première impédance de transmission correspond à une valeur de transfert de puissance qui est supérieure à une valeur de transfert de puissance seuil.
 
4. Un dispositif de communication (102, 402) comprenant :

une antenne (223, 405, 516) ;

un trajet électrique ayant une impédance de transmission continûment contrôlable ; et

une circuiterie de traitement à même de fonctionner pour :

recevoir en provenance d'un dispositif sans fil (104, 404) des informations de niveau de puissance comprenant un niveau de puissance d'un signal transmis de l'antenne (223, 405, 516) au dispositif sans fil (104, 404), où les informations de niveau de puissance sont envoyées par le dispositif sans fil (104, 404) et reçues par le dispositif de communication (102, 402) à l'aide d'un protocole de communication ;

déterminer, sur la base des informations de niveau de puissance, une première valeur de transfert de puissance du signal lorsqu'il est transmis de l'antenne (223, 405, 516) au dispositif sans fil (104, 404), à l'aide d'une première impédance de transmission de la pluralité d'impédances de transmission,

déterminer, sur la base des informations de niveau de puissance, une deuxième valeur de transfert de puissance du signal lorsqu'il est transmis de l'antenne (223, 405, 516) au dispositif sans fil (104, 404) à l'aide d'une deuxième impédance de transmission de la pluralité d'impédances de transmission,

sélectionner la première impédance de transmission sur la base des informations de niveau de puissance indiquant que la première valeur de transfert de puissance est supérieure à la deuxième valeur de transfert de puissance ; et

entrelacer temporellement la première impédance de transmission avec une impédance de transmission par défaut, où le fait d'entrelacer temporellement comprend la charge sans fil du dispositif sans fil (104, 404) à l'aide de la première impédance de transmission et la communication avec le dispositif sans fil (104, 404) à l'aide de l'impédance de transmission par défaut et du protocole de communication, et où la première impédance de transmission, la deuxième impédance de transmission, et

l'impédance de transmission par défaut sont atteintes par modification de l'impédance de l'impédance de transmission continûment contrôlable d'une manière continue.


 
5. Le dispositif de communication (102, 402) de la revendication 4, où un transmetteur du dispositif de communication (102, 402) comprend :

un premier convertisseur numérique-analogique (212) configuré pour convertir un signal numérique réel en un signal analogique réel ;

un deuxième convertisseur numérique-analogique (213) configuré pour convertir un signal numérique fictif en un signal analogique fictif ;

un premier mélangeur (217) configuré pour convertir le signal analogique réel en un domaine de radiofréquence, RF ; et

un deuxième mélangeur (218) configuré pour convertir le signal analogique fictif en le domaine RF.


 
6. Le dispositif de communication (102, 402) de la revendication 4, où l'antenne (223, 405, 516) est configurée pour être partagée avec d'autres fonctions de communication du dispositif de communication (102, 402).
 




Drawing


























Cited references

REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description