(19)
(11)EP 2 803 971 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
26.06.2019 Bulletin 2019/26

(21)Application number: 14167907.6

(22)Date of filing:  12.05.2014
(51)International Patent Classification (IPC): 
G01N 15/06(2006.01)
G01N 1/22(2006.01)
G01N 21/62(2006.01)
G01N 33/00(2006.01)
G01N 21/17(2006.01)

(54)

Particle detecting device and particle detecting method

Partikelerkennungsvorrichtung und Partikelerkennungsverfahren

Dispositif de détection de particules et procédé de détection de particules


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 17.05.2013 JP 2013105318

(43)Date of publication of application:
19.11.2014 Bulletin 2014/47

(73)Proprietor: Azbil Corporation
Chiyoda-ku Tokyo 100-6419 (JP)

(72)Inventor:
  • Murakami, Hisaya
    Tokyo 100-6419 (JP)

(74)Representative: Lavoix 
Bayerstrasse 83
80335 München
80335 München (DE)


(56)References cited: : 
DE-A1-102010 002 424
JP-A- H09 159 597
US-A1- 2011 317 162
FR-A- 1 529 083
US-A- 3 787 122
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    [Field of Technology]



    [0001] The present invention relates to an environment evaluating technology, and, in particular, relates to a particle detecting device and particle detecting method.

    [Prior Art]



    [0002] JP H09-159597 A discloses a particle size distribution measuring device for powder being composed of a disperser to disperse powder for a sample by compressed air and a measuring unit to measure the particle size distribution of powder supplied from the disperser.

    [0003] US 3 787 122 A describes a light scattering device for analyzing colloidal particles in a fluid which includes an intake conduit through which a relatively high volume flow of the fluid to be analyzed is drawn by a pump.

    [0004] FR 1 529 083 A describes a divider device of sampling for gas analyzers.

    [0005] In ordinary rooms or in clean rooms, such as bio clean rooms, airborne particles, including microorganisms, are detected and recorded using particle detecting devices (referencing, for example, Patent Citations 1 and 2 and Non-patent Citation 1). An optical particle detecting device draws in air from the room wherein the device is installed, for example, and illuminates the drawn-in air with light. When there is a particle included within the air, a particle that is illuminated with light emits fluorescence or produces scattered light, enabling detection of the numbers, sizes, and the like, of particles included in the air.

    [Prior Art Literature]


    [Patent References]



    [0006] 

    [Patent Citation 1] Japanese Unexamined Patent Application Publication 2008-225539

    [Patent Citation 2] Japanese Unexamined Patent Application Publication 2011-83214


    [Non-Patent Citations]



    [0007] [Non-Patent Citation 1] N. Hasegawa, et al., "Real-time Detecting Technologies for Airborne Microbes, and Applications Thereof," Yamatake Corporation, azbil Technical Review, December 2009, Pages 2-7, 2009

    [Disclosure of the Invention]


    [Problem Solved by the Present Invention]



    [0008]  Given this, one object of the present invention is to provide a particle detecting device and particle detecting method wherein particles can be detected accurately.

    [Means for Solving the Problem]



    [0009] An aspect of the present disclosure provides a particle detecting device according to claim 1.

    [0010] Furthermore, an aspect of the present disclosure provides a particle detecting method according to claim 6.

    [0011] Preferred embodiments are detailed in the dependent claims.

    [Effects of the Invention]



    [0012] The present invention enables the provision of a particle detecting device and particle detecting method wherein particles can be detected accurately.

    [Brief Description of the Drawings]



    [0013] 

    FIG. 1 is a schematic diagram of a particle detecting device not covered by the present invention.

    FIG. 2 is a schematic diagram of a particle detecting device according to a comparative example not covered by the present invention.

    FIG. 3 is a schematic diagram of a particle detecting device as set forth in an embodiment according to the present disclosure.


    [Forms for Embodying the Present Invention]



    [0014] Forms of embodiment of the present invention will be described below. In the descriptions of the drawings below, identical or similar components are indicated by identical or similar codes. Note that the diagrams are schematic. Consequently, specific measurements should be evaluated in light of the descriptions below. Furthermore, even within these drawings there may, of course, be portions having differing dimensional relationships and proportions.

    [0015] A particle detecting device as set forth in a first example not covered by the present invention, as illustrated in FIG. 1, comprises: a frame 1; a chamber 2 that is disposed within the frame 1; an injection nozzle 21 that is disposed within the chamber 2; a sample injection flow path 3 for injecting, into the chamber 2, a fluid that includes particles, connecting between a from a first inlet opening 11 that is provided in the frame 1 and an injection nozzle 21 that is disposed within the chamber 2; an adjusting mechanism 5 for adjusting the state of the fluid within the chamber 2 by supplying a fluid, from which the particles have been removed, into the chamber 2 through an adjusting flow path 4 that connects to the chamber 2 from a second inlet opening 12 that is separate from the first inlet opening 11 that is provided in the frame 1; and a detecting mechanism 23 for detecting particles included within the fluid, by shining a light into the fluid that is blown out from the injection nozzle 21.

    [0016] The frame 1 is of an arbitrary shape. Metal, plastic, or the like, may be used as the material for the frame 1, but there is no limitation thereto. The shape and material of the chamber 2 are arbitrary. However, preferably the chamber 2 is able to withstand pressure. The sample injection flow path 3 is provided with, for example, a pipe made out of metal, plastic, or the like.

    [0017] The chamber 2 is provided with a discharge nozzle 22 that opposes the injection nozzle 21. Additionally, an discharge opening 13 is also provided in the frame 1, and a discharge flow path 6, for discharging a fluid from within the chamber 2 to the outside of the frame 1, is provided connecting the discharge nozzle 22 of the chamber 2 and the discharge opening 13 of the frame 1. The discharge flow path 6 is provided with a pipe made from, for example, metal or plastic. A discharge fan pump 62 is provided as a discharge fan in the discharge flow path 6.

    [0018] The fluid, such as air, or the like, from the outside of the frame 1, that has been drawn in by the discharge fan pump 62 through the first inlet opening 11 of the frame 1, is blown into the chamber 2 through the sample injection flow path 3 and the injection nozzle 21. The fluid that is blown into the chamber 2 is discharged from the chamber 2 through the discharge nozzle 22 that is provided opposing the injection nozzle 21, and then passes through the discharge flow path 6, to be discharged to the outside of the frame 1 from the discharge opening 13 that is provided in the frame 1.

    [0019] In the detecting mechanism 23, a light is shined on the flow of the fluid, such as air, or the like, that is formed between the injection nozzle 21 and the discharge nozzle 22, to detect the number of particles included within the fluid through, for example, detecting the scattered light produced by the particles. Conversely, the detecting mechanism 23 may detect the number of particles included in the fluid that is introduced into the chamber 2 through the first inlet opening 11 through detecting fluorescence that is produced by particles included within the fluid. Moreover, the detecting mechanism 23 can calculate the density of particles in the fluid through dividing the number of particles detected per unit time by the volume of fluid that is drawn in through the first inlet opening 11 per unit time.

    [0020] Here "particles" includes biological substances such as microorganisms, chemical substances, and dust such as dirt, grime, etc. Examples of microorganisms include bacteria and fungi. Gram-negative bacteria and Gram-positive bacteria can be listed as examples of bacteria. Escherichia coli, for example, can be listed as an example of a Gram-negative bacterium. Staphylococcus epidermidis, Bacillus atrophaeus, Micrococcus lylae, and Corynebacterium afermentans can be listed as examples of Gram-positive bacteria. Aspergillus species such as Aspergillus niger can be listed as examples of fungi. However, the microorganisms are not limited to these examples.

    [0021] When a fluorescent particle, such as a microorganism, is included, the particle, when illuminated with light, will emit fluorescent light. For example, riboflavin, flavin nucleotides (FMN), flavin adenine dinucleotide (FAD), nicotinamide adenine dinucleotide phosphate (NAD(P)H), pyridoxamine, pyridoxal phosphate (pyridoxal-5 '-phosphate), pyridoxine, tryptophan, tyrosine, phenylalanine, and the like, that are included in the microorganisms will produce fluorescence.

    [0022] For example, if the particle detecting device is disposed in a clean room, or the like, it may be undesirable for particles to be included in the flow that is discharged to the outside of the frame 1 through the discharge opening 13 that is provided in the frame 1. In such a case, a discharge filter 61, such as a HEPA filter (a High Efficiency Particulate Air filter), or the like, may be provided in the discharge flow path 6.

    [0023] In the injection nozzle 21 of the chamber 2, the cross-sectional area of the fluid is constricted, increasing the speed of the flow, and decreasing the pressure. Because of this, opposing flows are produced around the flow of the fluid that is formed between the injection nozzle 21 and the discharge nozzle 22. Furthermore, there are cases wherein the discharge of the fluid from the discharge nozzle 22 does not go smoothly because of the drop in pressure within the chamber 2. When opposing flows are produced within the chamber 2 or when there is a pressure drop within the chamber 2, particles may remain stagnant within the chamber 2. When particles remain stagnant within the chamber 2, then the detecting mechanism 23 may count the same particle multiple times, which may make it difficult to detect accurately the number of particles included in a unit volume of the fluid.

    [0024]  In contrast, the particle detecting device is provided with an adjusting mechanism 5 for adjusting the state of the fluid within the chamber 2 by increasing the pressure within the chamber 2, or through rectifying the flow of the fluid in the chamber 2, through providing a fluid, from which particles have been removed, into the chamber 2 through an adjusting flow path 4 that connects to the chamber 2 from a second inlet opening 12 that is separate from the first inlet opening 11 that is provided in the frame 1. This makes it possible to discharge smoothly, from the discharge nozzle 22, the fluid that includes the particles.

    [0025] The adjusting flow path 4 is provided with a pipe that is made from metal, plastic, or the like. A first filter 51, an adjusting pump 52, a flow meter 53, and a second filter 54, for example, are provided in the adjusting flow path 4. The particles that were included in the fluid on the outside of the frame 1, drawn in from the second inlet opening 12 by the adjusting pump 52, are removed by the first filter 51 and the second filter 54. The flow meter 53 measures the flow of, for example, the volume of the fluid from which particles have been removed, supplied per unit time to the chamber 2 by the adjusting pump 52.

    [0026] Here, in a reference example not covered by the claimed invention, as illustrated in FIG. 2, a single inlet opening 111 is provided in the frame 1, where the adjusting flow path 104 of the adjusting mechanism 105, and the sample injection flow path 3, are connected to a common flow path 103 that is connected to the single inlet opening 111. The adjusting pump 152 draws a portion of the fluid from the common flow path 103 into the adjusting flow path 104, and the particles that are included in the fluid that has been drawn in are removed by the first filter 151 and the second filter 154. The fluid from which the particles have been removed is provided to the chamber 2 in order to make adjustments such as increasing the pressure within the chamber 2.

    [0027] The detecting mechanism 123 calculates the density of particles in the fluid by dividing the number of particles detected per unit time by the volume of the fluid that is drawn in into the sample injection flow path 3 per unit time. For example, 40 L of the fluid is drawn in per unit time from a single inlet opening 111, where 10 L of the fluid is distributed to the adjusting flow path 104 at a branching point 200, and 30 L of the fluid is distributed to the sample injection flow path 3. In this case, the detecting mechanism 123 calculates the density of particles by dividing the number of particles detected per unit time by the 30 L that is the volume of the fluid that is distributed to the sample injection flow path 3.

    [0028]  However, the ratio of the number of particles directed toward the adjusting flow path 104 and the number of particles directed toward the sample injection flow path 3 at the branching points 200 is not necessarily equal to the ratio of the volume of the fluid distributed to the adjusting flow path 104 and the volume of the fluid distributed to the sample injection flow path 3. For example, if 10 L of fluid per unit time is distributed to the adjusting flow path 104 and 30 L per unit time of the fluid is distributed to the sample injection flow path 3, then the ratio of the volume of the fluid distributed to the adjusting flow path 104 to the volume of the fluid distributed to the sample injection flow path 3 is 1:3. However, at the branching point 200, if the common flow path 103 and the sample injection flow path 3 are disposed so as to be on a straight line, than the inertia of the particles will tend to cause a larger number of particles to flow into the sample injection flow path 3 than into the adjusting flow path 104. The present inventor discovered that, because of this, when the density of particles in the fluid is calculated by dividing the number of particles detected by the detecting mechanism 123 by the volume of fluid that is distributed to the sample injection flow path 3, the result may be higher than the actual density.

    [0029] In contrast, in the particle detecting device according to the first embodiment, illustrated in FIG. 1, the adjusting flow path 4 does not branch from the sample injection flow path 3, but rather the fluid that is used for adjusting the pressure within the chamber 2 is drawn in from a second inlet opening 12 that is different from the first inlet opening 11 that is provided in the frame 1. Consequently, the adjusting flow path 4 is independent from the sample injection flow path 3, where the adjusting flow path 4 does not split from the sample injection flow path 3, and thus there will be no error produced even when the density of particles within the fluid is calculated by dividing the number of particles detected per unit time by the detecting mechanism 123 by the volume of the fluid that is drawn in from the first inlet opening 11 per unit time and flows in through the sample injection flow path 3. As a result, the particle detecting device according to the first embodiment enables accurate detection of the number of particles included in the fluid and of the density thereof.

    [0030] The adjusting mechanism 5 in the particle detecting device according to the invention is provided with a compressor 55 for compressing air as the fluid, as illustrated in FIG. 3. The compressed air, as the pressurized fluid that is fed from the compressor 55, is sent into the chamber 2 through a first filter 51, a pressure regulator 56, a control valve 57, and a second filter 54. The first filter 51, the pressure regulator 56, the control valve 57, and the second filter 54 are provided in an adjusting flow path 4 that passes through a second inlet opening 12.

    [0031] A bypass flow path 71 branches from a part 70 between the pressure regulator 56 and the control valve 57 of the adjusting flow path 4, where the bypass flow path 71 joins the discharge flow path 6. The first filter 51 and the second filter 54 remove the particles that are included in the compressed air. The pressure regulator 56 adjusts the pressure of the compressed air that is provided into the chamber 2. The control valve 57 adjusts the allocation ratio between the compressed air that is distributed to the adjusting flow path 4 and the bypass flow path 71.

    [0032] An ejector 63 is disposed at the confluence portion of the bypass flow path 71 and the discharge flow path 6. The supply of the compressed air from the bypass flow path 71 to the ejector 63 causes the ejector 63 to draw in the fluid from within the chamber 2. The particle detecting device according to the second embodiment enables both the supply of compressed air into the chamber 2 and the discharge of air from within the chamber 2 to be performed by the compressor 55, making it possible to simplify the device and reduce the energy consumption.

    (Other Forms of Embodiment)



    [0033] While there are descriptions of forms of embodiment as set forth above, the descriptions and drawings that form a portion of the disclosure are not to be understood to limit the present invention. A variety of alternate examples of embodiment and operating technologies should be obvious to those skilled in the art. For example, the detecting mechanism 23 shown in FIG. 1 and FIG. 3 may measure particles, while airborne, that pass between two laser beams, to calculate the aerodynamic diameters of the particles. In this way, the present invention should be understood to include a variety of forms of embodiment, and the like, not set forth herein.

    [Explanation of Codes]



    [0034] 

    1: Frame

    2: Chamber

    3: Sample Injection Flow Path

    4: Adjusting Flow Path

    5: Adjusting Mechanism

    6: Discharge Flow Path

    11: First Inlet Opening

    12: Second Inlet Opening

    13: Discharge Opening

    21: Injection Nozzle

    22: Discharge Nozzle

    23: Detecting Mechanism

    51: First Filter

    52: Adjusting Pump

    53: Flow Meter

    54: Second Filter

    55: Compressor

    56: Pressure Regulator

    57: Control Valve

    61: Discharge Filter

    62: Discharge Pump

    63: Ejector

    70: Part

    71: Bypass Flow Path

    103: Common Flow Path

    104: Adjusting Flow Path

    105: Adjusting Mechanism

    111: Inlet Opening

    123: Detecting Mechanism

    151: First Filter

    152: Adjusting Pump

    154: Second Filter

    200: Branching Point




    Claims

    1. A particle detecting device comprising:

    a frame (1);

    a chamber (2) that is disposed within the frame (1);

    a sample injection flow path (3) for injecting, into the chamber (2), air that includes particles, from a first inlet opening (11) that is provided in the frame (1);

    an adjusting mechanism (5) for adjusting the pressure in the chamber (2) by supplying air, from which the particles have been removed, into the chamber (2) through an adjusting flow path (4) that connects to the chamber (2) from a second inlet opening (12) that is separate from the first inlet opening (11) that is provided in the frame (1);

    a detecting mechanism (23) for detecting particles included within the air, by shining a light into the air within the chamber (2);

    an injection nozzle (21), disposed within the chamber (2), connected to the sample injection flow path (3);

    a discharge nozzle (22) that is disposed within the chamber (2), opposing the injection nozzle (21),

    a discharge flow path (6), connecting the discharge nozzle (22) and a discharge opening (13) that is provided within the frame (1), for discharging, to the outside of the frame (1), the air that is within the chamber (2); and

    a bypass flow path (71) joining the discharge flow path (6);

    characterized:

    in that the bypass flow path (71) branches from the adjusting flow path (4); and

    by an ejector (63) disposed at the confluence portion of the bypass flow path (71) and the discharge flow path (6), the ejector (63) being adapted to draw in air from within the chamber (2) through provision of compressed air from the bypass flow path (71) to the ejector (63).


     
    2. A particle detecting device as set forth in Claim 1, wherein:
    the detecting mechanism (23) detects the number of particles per unit volume of air that is injected into the chamber (2) from the first inlet opening (11).
     
    3. A particle detecting device as set forth in any one of Claim 1 through Claim 2, wherein:
    the adjusting mechanism (5) rectifies the flow within the chamber (2).
     
    4. A particle detecting device as set forth in any one of Claim 1 through Claim 3, wherein:

    the detecting mechanism (23) detects scattered light produced by the particles and/or

    fluorescent light produced by the particles.


     
    5. A particle detecting device as set forth in any one of Claim 1 through Claim 4, wherein:
    a pressure regulator (56) and a control valve (57) are provided in the adjusting flow path (4), wherein the pressure regulator (56) is adapted to adjust pressure of the compressed air that is provided into the chamber (2) and the control valve (57) is adapted to adjust the allocation ratio between the compressed air that is distributed to the adjusting flow path (4) and the bypass flow path (71).
     
    6. A particle detecting method, including:

    injecting air that includes particles into a chamber (2) that is disposed within a frame (1), through a sample injection flow path (3), from a first inlet opening (11) that is provided within the frame (1);

    adjusting the pressure in the chamber (2) by supplying air, from which the particles have been removed, into the chamber (2) through an adjusting flow path (4) that connects to the chamber (2) from a second inlet opening (12) that is separate from the first inlet opening (11) that is provided in the frame (1);

    detecting particles included within the air, by shining a light into the air within the chamber (2);

    disposing an injection nozzle (21) within the chamber (2), connected to the sample injection flow path (3), and

    discharging, to the outside of the frame (1), air from within the chamber (2), through a discharge flow path (6) that connects a discharge opening (13) that is provided in the frame (1) and a discharge nozzle (22) that is provided facing the injection nozzle (21) within the chamber (2);

    characterized by the step of providing a compressed air to an ejector (63) from a bypass flow path (71) that branches from the adjusting flow path (4) and joins the discharge flow path (6), wherein the ejector (63) draws in air from within the chamber (2).


     
    7. A particle detecting method as set forth in Claim 6, wherein: in detecting the particles that are included in the air, the number of particles per unit volume of air that is injected into the chamber (2) from the first inlet opening (11) is detected.
     
    8. A particle detecting method as set forth in any one of Claim 6 through Claim 7, wherein in adjusting the state of the air within the chamber (2), the flow within the chamber (2) is rectified.
     
    9. A particle detecting method as set forth in any one of Claim 6 through Claim 8, wherein:
    in detecting the particles, scattered light produced by the particles is detected and/or fluorescent light produced by the particles is detected.
     


    Ansprüche

    1. Partikeldetektionsgerät, umfassend:

    einen Rahmen (1);

    eine im Inneren des Rahmens (1) angeordnete Kammer (2);

    einen Probeneinspritzstromweg (3), um Luft (2), die Partikel enthält, aus einer im Rahmen (1) vorgesehenen ersten Einlassöffnung (11) in die Kammer (2) einzuspritzen,

    einen Anpassungsmechanismus (5) zur Anpassung des Drucks in der Kammer (2) durch Zuführen von Luft, aus der die Partikel entfernt worden sind, aus einer zweiten, von der ersten, im Rahmen vorgesehenen Einlassöffnung (11) getrennten Einlassöffnung (12) in die Kammer (2) über einen Anpassungsstromweg (4), der sich an die Kammer (2) anschließt,

    einen Detektionsmechanismus (23) zur Erkennung der in der Luft enthaltenen Partikel durch Beleuchtung der Luft im Inneren der Kammer (2);

    eine in der Kammer (2) angeordnete Einspritzdüse (21), die an den Einspritzstromweg (3) angeschlossen ist;

    eine im Inneren der Kammer (2) angeordneten Austrittsdüse (22), die der Einspritzdüse (21) gegenüberliegt,

    einen Ausflussweg (6), der die Austrittsdüse (22) mit einer im Rahmen (1) vorgesehen Ausflussöffnung (13) verbindet, um die Luft im Inneren der Kammer (2) nach außerhalb des Rahmens (1) fließen zu lassen, und

    einen Bypass-Flussweg (71), der sich an den Ausflussweg (6) anschließt,

    dadurch gekennzeichnet,

    dass der Bypass-Flussweg (71) vom Anpassungsflussweg (4) abgeht, und

    durch einen Ausstoßer (63), der an der Stelle angeordnet ist, wo Bypass-Flussweg (71) und Ausflussweg (6) zusammenfließen, wobei der Ausstoßer (63) geeignet ist, Luft aus dem Inneren der Kammer (2) durch die Bereitstellung von Pressluft aus dem Bypass-Flussweg (71) an den Ausstoßer (63) hineinzuziehen.


     
    2. Partikeldetektionsgerät nach Anspruch 1, wobei:
    der Detektionsmechanismus (23) die aus der ersten Einlassöffnung (11) in die Kammer (2) eingespritzte Anzahl Partikel pro Luftvolumeneinheit erkennt.
     
    3. Partikeldetektionsgerät nach einem der Ansprüche 1 - 2, wobei
    der Anpassungsmechanismus (5) die Strömung im Inneren der Kammer (2) gleichrichtet.
     
    4. Partikeldetektionsgerät nach einem der Ansprüche 1 - 3,
    wobei:

    der Detektionsmechanismus (23) das von den Partikeln erzeugte Streulicht und/oder

    das von den Partikeln erzeugte fluoreszierende Licht erkennt.


     
    5. Partikeldetektionsgerät nach einem der Ansprüche 1 - 4, wobei
    ein Druckregler (56) und ein Regelventil (57) im Anpassungsflussweg (4) vorgesehen sind, wobei der Druckleger (56) dazu geeignet ist, den Druck der der Kammer (2) zugeführten Pressluft zu regeln, und das Regelventil (57) dazu geeignet ist, das Verteilungsverhältnis zwischen der dem Anpassungsflussweg (4) zugeführten Pressluft und der dem Bypass-Flussweg (71) zugeführten Pressluft zu regeln.
     
    6. Verfahren zur Detektion von Partikeln, umfassend:

    Einspritzen von Partikel enthaltender Luft aus einer im Rahmen (1) vorgesehenen ersten Einlassöffnung (11) in eine in einem Rahmen (1) angeordnete Kammer (2) durch einen Probeneinspritzstromweg (3),

    Anpassen des Drucks in der Kammer (2) durch Zuführen von Luft, aus der die Partikel entfernt worden sind, aus einer zweiten, von der ersten, im Rahmen vorgesehenen Einlassöffnung (11) getrennten Einlassöffnung (12) in die Kammer (2) über einen Anpassungsstromweg (4), der sich an die Kammer (2) anschließt,

    Erkennen der in der Luft enthaltenen Partikel durch Beleuchtung der Luft im Inneren der Kammer (2);

    Anordnen einer an den Einspritzstromweg (3) angeschlossenen Einspritzdüse (21) in der Kammer (2),

    Auslassen von Luft aus dem Inneren der Kammer (2) nach außerhalb des Rahmens (1) durch einen Ausflussweg (6), der eine im Rahmen (1) vorgesehene Ausflussöffnung (13) mit einer der Einspritzdüse (21) gegenüberliegenden Austrittsdüse (22) im Inneren der Kammer verbindet,
    gekennzeichnet durch den Schritt: Bereitstellen von Pressluft aus einem vom Anpassungsflussweg (4) abgehenden Bypass-Flussweg (71), der mit dem Ausflussweg (6) zusammentrifft, an einen Ausstoßer (63), wobei der Ausstoßer (63) Luft aus dem Inneren der Kammer (2) einzieht.


     
    7. Verfahren nach Anspruch 6, wobei:
    bei der Erkennung der in der Luft enthaltenen Partikel die Anzahl Partikel pro Volumeneinheit der aus der ersten Einlassöffnung (11) in die Kammer (2) eingespritzten Luft erkannt wird.
     
    8. Verfahren nach einem der Ansprüche 6 - 7, wobei bei der Anpassung des Zustands der Luft im Inneren der Kammer (2) der Fluss in der Kammer (2) gleichgerichtet wird.
     
    9. Verfahren nach einem der Ansprüche 6 - 8, wobei
    bei der Erkennung der Partikel das von den Partikeln erzeugte Streulicht und/oder das von den Partikeln erzeugte fluoreszierende Licht erkannt wird.
     


    Revendications

    1. Dispositif de détection de particules comprenant :

    une armature (1) ;

    une chambre (2) qui est disposée dans l'armature (1) ;

    un trajet d'écoulement d'injection d'échantillon (3) destiné à injecter, dans la chambre (2), de l'air qui comprend des particules, depuis une première ouverture d'admission (11) qui est prévue dans l'armature (1) ;

    un mécanisme d'ajustement (5) destiné à ajuster la pression dans la chambre (2) en fournissant de l'air, dont les particules ont été supprimées, dans la chambre (2) par le biais d'un trajet d'écoulement d'ajustement (4) qui est relié à la chambre (2) depuis une seconde ouverture d'admission (12) qui est distincte de la première ouverture d'admission (11) qui est prévue dans l'armature (1) ;

    un mécanisme de détection (23) destiné à détecter les particules incluses dans l'air, en projetant de la lumière dans l'air dans la chambre (2) ;

    un buse d'injection (21), disposée dans la chambre (2), reliée au trajet d'écoulement d'injection d'échantillon (3) ;

    une buse d'évacuation (22) qui est disposée dans la chambre (2), de manière opposée à la buse d'injection (21),

    un trajet d'écoulement d'évacuation (6), qui relie la buse d'évacuation (22) et une ouverture d'évacuation (13) qui est prévue dans l'armature (1), destiné à évacuer, vers l'extérieur de l'armature (1), l'air qui se trouve dans la chambre (2) ; et

    un trajet d'écoulement de dérivation (71) qui rejoint le trajet d'écoulement d'évacuation (6) ;

    caractérisé :

    en ce que le trajet d'écoulement de dérivation (71) est dérivé du trajet d'écoulement d'ajustement (4) ; et

    par un éjecteur (63) disposé au niveau de la partie de confluence du trajet d'écoulement de dérivation (71) et du trajet d'écoulement d'évacuation (6), l'éjecteur (63) étant adapté pour aspirer l'air depuis l'intérieur de la chambre (2) en fournissant de l'air comprimé du trajet d'écoulement de dérivation (71) vers l'éjecteur (63).


     
    2. Dispositif de détection de particules selon la revendication 1, dans lequel :
    le mécanisme de détection (23) détecte le nombre de particules par unité de volume d'air qui est injecté dans la chambre (2) depuis la première ouverture d'admission (11).
     
    3. Dispositif de détection de particules selon l'une quelconque des revendications 1 à 2, dans lequel :
    le mécanisme d'ajustement (5) rectifie l'écoulement dans la chambre (2).
     
    4. Dispositif de détection de particules selon l'une quelconque des revendications 1 à 3, dans lequel :
    le mécanisme de détection (23) détecte la lumière diffusée produite par les particules et/ou la lumière fluorescente produite par les particules.
     
    5. Dispositif de détection de particules selon l'une quelconque des revendications 1 à 4, dans lequel :
    un régulateur de pression (56) et une soupape de commande (57) sont prévus sur le trajet d'écoulement d'ajustement (4), dans lequel le régulateur de pression (56) est adapté pour ajuster la pression de l'air comprimé qui est fourni à la chambre (2) et la soupape de commande (57) est adaptée pour ajuster le rapport d'affectation entre l'air comprimé qui est distribué au trajet d'écoulement d'ajustement (4) et l'air comprimé qui est distribué au trajet d'écoulement de dérivation (71).
     
    6. Procédé de détection de particules, comprenant :

    l'injection d'air qui contient des particules dans une chambre (2) qui est disposée dans une armature (1), par le biais d'un trajet d'écoulement d'injection d'échantillon (3), depuis une première ouverture d'admission (11) qui est prévue dans l'armature (1) ;

    l'ajustement de la pression dans la chambre (2) en fournissant de l'air, dont les particules ont été supprimées, à la chambre (2) par le biais d'un trajet d'écoulement d'ajustement (4) qui est relié à la chambre (2) depuis une seconde ouverture d'admission (12) qui est distincte de la première ouverture d'admission (11) qui est prévue dans l'armature (1) ;

    la détection des particules contenues dans l'air, en projetant de la lumière dans l'air dans la chambre (2) ;

    la disposition d'une buse d'injection (21) dans la chambre (2), reliée au trajet d'écoulement d'injection d'échantillon (3), et

    l'évacuation, vers l'extérieur de l'armature (1), de l'air de l'intérieur de la chambre (2), par le biais d'un trajet d'écoulement d'évacuation (6) qui relie une ouverture d'évacuation (13) qui est prévue dans l'armature (1) et une buse d'évacuation (22) qui est prévue face à la buse d'injection (21) dans la chambre (2) ;

    caractérisé par l'étape qui consiste à fournir de l'air comprimé à un éjecteur (63) depuis un trajet d'écoulement de dérivation (71) qui est dérivé du trajet d'écoulement d'ajustement (4) et rejoint le trajet d'écoulement d'évacuation (6), dans lequel l'éjecteur (63) aspire l'air depuis l'intérieur de la chambre (2).


     
    7. Procédé de détection de particules selon la revendication 6, dans lequel :
    lors de la détection des particules qui sont incluses dans l'air, le nombre de particules par unité de volume d'air qui est injecté dans la chambre (2) depuis la première ouverture d'admission (11) est détecté.
     
    8. Procédé de détection de particules selon l'une quelconque des revendications 6 à 7, dans lequel, lors de l'ajustement de l'état de l'air dans la chambre (2), l'écoulement dans la chambre (2) est rectifié.
     
    9. Procédé de détection de particules selon l'une quelconque des revendications 6 à 8, dans lequel :
    lors de la détection des particules, la lumière diffusée produite par les particules est détectée et/ou la lumière fluorescente produite par les particules est détectée.
     




    Drawing














    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description




    Non-patent literature cited in the description