(19)
(11)EP 2 805 408 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
11.12.2019 Bulletin 2019/50

(21)Application number: 12709171.8

(22)Date of filing:  20.01.2012
(51)International Patent Classification (IPC): 
H02M 3/158(2006.01)
(86)International application number:
PCT/IB2012/000359
(87)International publication number:
WO 2013/108066 (25.07.2013 Gazette  2013/30)

(54)

DC/DC CONVERTER WITH STEP-DOWN STEP-UP CASCADE AND METHOD FOR OPERATING IT

DC/DC WANDLER MIT TIEFSETZSTELLER HOCHSETZSTELLER KASKADE UND VERFAHREN ZUM BETRIEB

CONVERTISSEUR CC/CC AVEC ABAISSEUR ET ÉLÉVATEUR EN CASCADE ET MÉTHODE POUR L'OPÉRATION


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(43)Date of publication of application:
26.11.2014 Bulletin 2014/48

(73)Proprietor: NXP USA, Inc.
Austin TX 78735 (US)

(72)Inventors:
  • BERNON-ENJALBERT, Valérie
    F-31470 Fonsorbes (FR)
  • GALTIE, Franck
    F-31830 Plaisance du Touch (FR)
  • GOYHENETCHE, Philippe
    F-31470 Fonsorbes (FR)

(74)Representative: Hardingham, Christopher Mark 
NXP Semiconductors Intellectual Property Group Abbey House 25 Clarendon Road
Redhill, Surrey RH1 1QZ
Redhill, Surrey RH1 1QZ (GB)


(56)References cited: : 
DE-A1- 2 323 482
JP-A- 2008 092 779
US-A1- 2012 001 610
DE-A1- 10 054 339
US-A1- 2009 295 343
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    Field of the invention



    [0001] This invention relates to a DC to DC converter and a method to operate a DC to DC converter.

    Background of the invention



    [0002] In the automotive market, DC to DC converters must operate through a wide input voltage range defined by a normal variation of the supplied input voltage as well as by some transient voltages. Such a transient voltage may be, for example, a cranking pulse, i.e., a huge voltage drop that can happen when certain events occur simultaneously, for example, a discharged battery, low temperatures, and the driver attempting to start the car.

    [0003] A DC to DC converter may be used to compensate such a cranking pulse and may additionally provide an adapted voltage level to connected electronic devices. Such a DC to DC converter may transform an input voltage Vin to an output voltage Vout, wherein the output voltage Vout may be higher or lower than the input voltage Vin. A DC to DC converter capable of regulating an output voltage regardless of the input voltage Vin is called a buck-boost DC to DC converter. The buck-boost DC to DC converter comprises a buck converter that converts an input voltage Vin to a lower output voltage Vout and a boost converter that converts an input voltage Vin to a higher output voltage Vout. The buck-boost converter may be called non-inverting when the sign of the input voltage Vin is maintained.

    [0004] The buck-boost DC to DC converter has to provide a constant output voltage Vout. Therefore, a transition between an operation of the buck converter (buck mode) and an operation of the boost converter (boost mode) is necessary when the input voltage Vin drops from a starting value that is higher than the desired output voltage Vout to a final value that is lower than the desired output voltage level Vout. This transition from buck mode to boost mode and vice versa must be managed smoothly and efficiently.

    [0005] DE 2 323 482 A1 describes a buck-boost-converter, wherein an output voltage of the buck-boost-converter is compared with a first reference voltage Uref1 to generate a control signal for the buck-converter. Furthermore, the output voltage of the buck-boost-converter is compared with a second reference voltage Uref2 to generate a control signal for the boost-converter. The first reference voltage Uref1 is larger than the second reference voltage Uref2. A threshold switch, e.g., a Schmidt-Trigger, is used to suppress an unwanted fast oscillation of the control signals for the buck-converter and the boost-converter.

    [0006] DE 100 54 339 A1 describes a buck-boost-converter. The buck-boost-converter is controlled based on two different reference voltages that are compared with a scaled output voltage of the buck-boost-converter to generate independent control signals for controlling the buck-converter and the boost-converter. A first switch for controlling the buck-converter is already closed when the second switch for controlling the boost-converter becomes closed. The first control signal for the buck-converter must be additionally present before the second control signal for the boost-converter is generated.

    [0007] US 2012/0001610 A1 describes a buck-boost-converter. The buck-boost-converter comprises an additional bypass switch to avoid an excess switching loss when the output voltage of the buck-boost-converter equals an input voltage of the buck-boost-converter.

    [0008] US 2009/0295343 A1 describes another buck-boost-converter.

    [0009] JP 2008-092779 discloses a means for avoiding unstable outputs, in a power supply control system, capable of stepping up and stepping down of the input voltage.

    Summary of the invention



    [0010] The present invention provides a DC to DC converter and a method to operate a DC to DC converter as described in the accompanying claims.

    [0011] Specific embodiments of the invention are set forth in the dependent claims.

    [0012] These and other aspects of the invention will be apparent from and elucidated with reference to the embodiments described hereinafter.

    Brief description of the drawings



    [0013] Further details, aspects and embodiments of the invention will be described, by way of example only, with reference to the drawings. In the drawings, like reference numbers are used to identify like or functionally similar elements. Elements in the figures are illustrated for simplicity and clarity and have not necessarily been drawn to scale.

    Figure 1 schematically shows a circuit diagram of a first example of a DC to DC converter.

    Figure 2 schematically shows an example of a cranking pulse.

    Figure 3 schematically shows a further circuit diagram of a second example of a DC to DC converter.

    Figure 4 schematically shows a diagram of an example of duty-cycles of a DC to DC converter and a corresponding output voltage Vout of this DC to DC converter as a function of an input voltage Vin.

    Figure 5 schematically shows a diagram of examples of an error voltage of a buck converter Verr_buck and a corresponding control signal as a function of time.

    Figure 6 schematically shows an example of an output signal of an LS control circuit as a function of time.

    Figure 7 schematically shows a diagram of examples of an input voltage Vin and an output voltage Vout of a DC to DC converter as a function of time.

    Figure 8 shows a diagram of an example of an output voltage Vout of a DC to DC converter as a function of time.

    Figure 9 shows a diagram of an example of a PWM signal of a boost converter as a function of time.

    Figure 10 shows a diagram of an example of an input voltage Vin provided to a DC to DC converter as a function of time.


    Detailed description of the preferred embodiments



    [0014] Because the illustrated embodiments of the present invention may for the most part, be implemented using electronic components and circuits known to those skilled in the art, details will not be explained in any greater extent than that considered necessary as illustrated above, for the understanding and appreciation of the underlying concepts of the present invention and in order not to obfuscate or distract from the teachings of the present invention.

    [0015] Although the definition of term hereinafter should not be construed as limiting, the term as used are understood to comprise at least the following.

    [0016] In the context of this specification, the term "switching element" may be used for any electronic element, for example, a generic switch or a transistor that can be changed in its state between "on" and "off".

    [0017] The term "on" in connection with the switching element may describe the used electronic element in its closed or conducting state. Further, the term "off" in connection with the switching element may describe the used electronic element in its open or isolating state.

    [0018] Referring to Figure 1, a circuit diagram of a first example of a DC to DC converter 10 is schematically shown. The DC to DC converter 10 according to Figure 1 may comprise a buck converter 12 and a boost converter 14. The DC to DC converter 10 may be supplied with an input voltage Vin. The input voltage Vin may be converted to an output voltage Vout by the DC to DC converter 10. An output of the DC to DC converter 10 may be connected with a load 46, and an optional capacitor 44 may be provided parallel to the load 46 as part of the DC to DC converter 10. A capacity of the capacitor 44 may be chosen with respect to requirements of the load 46. For example, the capacity may be increased to minimize output voltage ripples. When the input voltage Vin is higher than the desired output voltage Vout, the buck converter 12 of the DC to DC converter 10 may be active to reduce the input voltage Vin. This operating mode may be called "buck mode". When the input voltage Vin is lower than the desired output voltage Vout, the boost converter 14 of the DC to DC converter 10 may be active to increase the input voltage Vin. This operating mode may be called "boost mode". The functional principals of the buck converter 12 and the boost converter 14 are apparent to a person skilled in the art and will not be explained here in any further detail. Since the DC to DC converter 10 comprises the buck converter 12 and the boost converter 14, it may be called a buck-boost DC to DC converter.

    [0019] In the example of Figure 1, the buck converter 12 may comprise a HS (high side) diode 38, a HS switching element 30, and an inductor 42. The boost converter 14 may comprise a LS (low side) diode 40, a LS switching element 36, and the inductor 42. Thus, the inductor 42 may be commonly used by the buck converter 12 and the boost converter 14. The HS switching element 30 and the LS switching element 36 may be triggered by a control unit not shown in Figure 1.

    [0020] The HS switching element 30 and a LS switching element 36 may be, for example, metal oxide semiconductor field-effect transistors (MOSFETs). However, any other electronic element that is capable of being used as a switching element may be used. Further, it may be possible to replace the HS diode 38 and the LS diode 40 by a different electronic element that may fulfil the same function, for example, an appropriate triggered transistor. The input voltage Vin may be provided by a battery. The DC to DC converter 10 shown in Figure 1 may be called non-inverting because it maintains the sign of the input voltage Vin.

    [0021] Referring now to Figure 2, an example of a cranking pulse is schematically shown as a function of time. The term "cranking pulse" describes a high voltage drop that may occur with a discharged battery when the driver attempts to start up the car. Initially, at a time t1 the battery voltage Vbatt may have its normal value Vnorm. At a time t2, the driver may attempt to start the car. As a result, the battery voltage Vbatt may drop to a low value Vmin within the short time interval t3-t2 before it returns to Vnorm at a time t4. However, it is very important to keep any supply voltage provided to automotive electronics connected to the battery at a certain stable voltage level to avoid damage to the electronics and unpredictable data processing. The desired supply voltage for the automotive electronics may lie between Vnorm and Vmin. Thus, it may be necessary to convert the supply voltage provided by the battery with a buck-boost DC to DC converter, wherein a transition between a buck mode and a boost mode is necessary when the supply voltage provided by the battery equals the desired supply voltage for the automotive electronics. This transition must be smooth without any voltage or current peaks at the output of the DC to DC converter.

    [0022] Referring to Figure 3, a further circuit diagram of a second example of a DC to DC converter 10 is schematically shown. The DC to DC converter 10 according to Figure 3 is a buck-boost converter and comprises a buck converter 12, a boost converter 14, and a control unit 16. The basic set-ups of the buck converter 12 and the boost converter 14 as shown in Figure 3 correspond to the buck converter 12 and the boost converter 14 already known from Figure 1. However, the circuits are closed by connecting the LS switching element 36, the HS diode 38, and the capacitor 44 to a ground 60.

    [0023] The control unit 16 may be arranged to trigger the HS switching element 30 and the LS switching element 36. As in Figure 1, the HS switching element 30 and the LS switching element 36 may be MOSFETs. However, the use of different electronic elements as HS switching element 30 and LS switching element 36 are apparent to a person skilled in the art.

    [0024] The control unit 16 may comprise a first error amplifier 48, a second error amplifier 50, a first comparator 52, a second comparator 54, a third comparator 56, a HS control circuit 26, a HS driver circuit 28, a LS control circuit 32, and a LS driver circuit 34. Additionally, the control unit 16 may optionally comprise a filter 58. The first error amplifier 48, the first comparator 52, the HS control circuit 26, and the HS driver circuit 32 may be used to trigger the HS switching element 30. The second error amplifier 50, the second comparator 54, the third comparator 56, the LS control circuit 32, and the LS driver circuit 34 may be used to trigger the LS switching element 36. The functionality of the control unit 16 will be explained in the following.

    [0025] A feedback output voltage Vout_FB may be provided to the first error amplifier 48 and the second error amplifier 50 of the control unit 16. The feedback output voltage Vout_FB may be, for example, the output voltage Vout of the DC to DC converter 10 scaled by a first resistor 62 and a second resistor 64. The first error amplifier 48 and the second error amplifier 50 may be, for example, operational amplifiers with a differential input and a single-ended output. The feedback output voltage Vout_FB and a reference voltage of the buck converter Vref_buck may be used as input signals for the first error amplifier 48. The first error amplifier 48 provides an error voltage of the buck converter Verr_buck at its output. The output signal of the first error amplifier 48 may be used as a negative feedback signal for the feedback output voltage Vout_FB at the appropriate input of the first error amplifier 48.

    [0026] Similarly, the feedback output voltage Vout_FB and a reference voltage of the boost converter Vref_boost may be used as differential input signals for the second error amplifier 50. The second error amplifier 50 provides an error voltage of the boost converter Verr_boost based on the differential input signals. The output signal of the second error amplifier 50 may be used as a negative feedback signal for the feedback output voltage Vout_FB at the appropriate input of the second error amplifier 50. Thus, the control unit 16 is arranged to calculate an error voltage of the buck converter Verr_buck based on a feedback output voltage Vout_FB of the DC to DC converter 10 and a reference voltage of the buck converter Vref_buck. Further, the control unit 16 is arranged to calculate an error voltage of the boost converter Verr_boost based on the feedback output voltage Vout_FB of the DC to DC converter 10 and the reference voltage of the boost converter Vref_boost. The reference voltage of the boost converter Vref_boost may be shifted by an offset Voffset as compared to the reference signal of the buck converter Vref_buck. The reference voltage of the buck converter Vref_buck may define the desired output voltage Vout of the DC to DC converter 10 when operating in buck mode. Analogously, the reference voltage of the boost converter Vref_boost may define the desired output voltage Vout of the DC to DC converter 10 when operating in boost mode. Due to the offset Voffset, the output voltage Vout of the DC to DC converter 10 may change from Vref_buck to Vref_boost when changing from buck mode to boost mode and vice versa. The reference voltage of the buck converter Vref_buck may usually be larger than the reference voltage of the boost converter Vref_boost. In this case, the difference between the reference voltage of the buck converter Vref_buck and the reference voltage of the boost converter Vref_boost may generate a hysteresis around the transition between buck mode and boost mode. The hysteresis may avoid quick oscillations of the DC to DC converter 10 between buck mode and boost mode.

    [0027] When the input voltage Vin of the DC to DC converter 10 lies between the reference voltage of the buck converter Vref_buck and the reference voltage of the boost converter Vref_boost, the HS switching element 30 of the buck converter 12 is always on (i.e., conducting or closed), and the LS switching element 36 is always off (i.e., isolating or open). Therefore, the efficiency of the DC to DC converter 10 is increased because the HS switching element 30 and the LS switching element 36 are not triggered in this region and do not cause switching losses. Additionally, the output voltage Vout of the DC to DC converter 10 may equal its input voltage Vin and input current without additional ripples or peaks.

    [0028] The error voltage of the buck converter Verr_buck may be provided to the first comparator 52 together with a time-dependent sensing voltage Vsens. The time-dependent sensing voltage Vsens may be generated based on a pulsating voltage Vpulse and a further voltage, for example, by adding the pulsating voltage Vpulse to the further voltage. The further voltage may be, for example, a voltage that represents the input current of the DC to DC converter 10. The DC to DC converter 10 may, for example, operate in a current mode. A current pattern, i.e., a current ramp, may be sensed at the HS switching element 30. The sensed current pattern may be transformed to a voltage pattern by a resistor, and the resulting voltage pattern that may correspond to the current pattern may be the pulsating voltage Vpulse. The pulsating voltage Vpulse may be, for example, a sawtooth voltage or a triangle voltage. The pulsating voltage Vpulse may be called a "slope compensation" that allows for the stability of the DC to DC converter 10 at all possible duty cycles between 0 and 100%. The first comparator 52 may provide a first PWM signal 20 at its output. Thus, the control unit 16 may be arranged to calculate the first PWM signal 20 by comparing the time-dependent sensing voltage Vsens with the error voltage of the buck converter Verr_buck. The first PWM signal 20 may substantially define a duty-cycle of the buck converter 12. The shape of the first PWM signal 20 may be, for example, rectangular. The HS control circuit 26 may be used to generate an input signal for the HS driver circuit 28 that may trigger the HS switching element 30 of the buck converter 12. The first PWM signal 20 and a clock signal 24 may be used as input signals for the HS control circuit 26. The HS control circuit 26 may be, for example, a flip-flop which has the first PWM signal 20 and the clock signal 24 as input signals.

    [0029] A second PWM signal 22 may be provided by the second comparator 54 which has the error voltage of the boost converter Verr_boost and the time-dependent sensing voltage Vsens as input signals. Thus, the control unit 16 may be arranged to calculate the second PWM signal 22 by comparing the time-dependent sensing voltage Vsens with the error voltage of the boost converter Verr_boost. Just like the first PWM signal 20, the second PWM signal 22 may be, for example, rectangular. The second PWM signal 22 and the clock signal 24 may be used as input signals for the LS control circuit 32 that provides an output signal to a LS driver circuit 34. The LS driver circuit 34 may trigger the LS switching element 36 of the boost converter 14. An additional control signal 18 may optionally be provided to the LS control circuit 32. The LS control circuit 32 may be, for example, a flip-flop. The control unit 16 may be described as a current mode PWM controller when the further voltage represents the input current of the DC to DC controller 10.

    [0030] The control signal 18 may be used as an additional input signal that overwrites an output signal of the LS control circuit 32 which is generated on the basis of the second PWM signal 22 and the clock signal 24. Thus, the control signal 18 may activate or deactivate (i.e., engage or disengage) the boost converter 14. The second PWM signal 22 may substantially represent a duty-cycle of the boost converter 14. In particular, the second PWM signal 22 may define when the LS switching element 36 is in its open state (or conducting) or in its closed state (off of isolating). The control signal 18 may be generated directly or indirectly by the second comparator 54 that uses the error voltage of the buck converter Verr_buck and a threshold voltage Vout_of_range as input signals. The filter 58 may be optionally used for smoothing the generated control signal 18.

    [0031] As mentioned before, the control signal 18 may be used to engage or disengage the boost converter 14. When the error voltage of the buck converter Verr_buck is higher than the threshold voltage Vout_of_range, the boost converter 14 may be engaged. When the error voltage of the buck converter Verr_buck is lower than the threshold voltage Vout_of_range, the boost converter 14 may be disengaged. Thus, the control unit 16 may be arranged to calculate the control signal 18 to engage and disengage the boost converter 14 based on the error voltage of the buck converter Verr_buck. The buck converter 12 is the main operating circuit, and the boost converter 14 can operate as an optional auxiliary circuit when the input voltage Vin of the DC to DC converter 10 is too low.

    [0032] The reference voltage of the buck converter Vref_buck may define the desired output voltage Vout of the buck converter 12 in buck mode. Thus, the error voltage of the buck converter Verr_buck may decrease when the feedback output voltage Vout_FB of the DC to DC converter 10 increases. For example, the error voltage of the buck converter Verr_buck may tend to 0 when the feedback output voltage Vout_FB of the DC to DC converter 10 is higher than the reference voltage of the buck converter Vref_buck, and the error voltage of the buck converter Verr_buck may reach an upper peak value of the time-dependent sensing voltage Vsens when the feedback output voltage Vout_FB of the DC to DC converter 10 equals the reference voltage of the buck converter Vref_buck. In the same way, the error voltage of the boost converter Verr_boost may define the desired output voltage Vout of the boost converter 14 in boost mode, and the error voltage of the boost converter Vref_boost may tend to 0 or fall below a lower peak value of the time-dependent sensing voltage Vsens when the reference voltage of the boost converter Vref_boost equals the feedback output voltage Vout_FB of the DC to DC converter 10.

    [0033] The duty-cycle of the buck converter 12 increases when the error voltage of the buck converter Verr_buck increases. The threshold voltage Vout_of_range may be chosen such that the duty-cycle of the buck converter 12 reaches 100 percent before the error voltage of the buck converter Verr_buck becomes larger than the threshold voltage Vout_of_range. Additionally, the error voltage of the boost converter Verr_boost may be chosen such that the duty-cycle of the boost converter 14 is larger than 0 percent when the boost converter 14 is engaged by the control signal 18. This means that the LS switching element 36 of the boost converter 14 may be periodically triggered when the boost converter 14 is engaged and that a small variation of the input voltage Vin does not significantly change the duty-cycle when the boost converter is engaged. This may avoid the generation of peaks in the output voltage Vout and the output current during the transition from buck mode to boost mode and vice versa. Thus, the electromagnetic compatibility of the DC to DC converter 10 is good.

    [0034] It may be possible to use the control signal 18 as an additional input signal for the HS control circuit 26. In this case, the control signal 18 may be used as a master signal that overwrites the normal output signal of the HS control circuit 26 generated on the basis of the first PWM signal 20 and the clock signal 24. Thus, the control signal 18 may be used to permanently set the HS switching element 30 on. This may secure that the buck converter 12 is deactivated when the boost converter is activated. Using the control signal 18 as an additional input signal for the HS control circuit 26 may be useful when the threshold voltage Vout_of_range is chosen such that the duty-cycle of the buck converter 12 does not reach 100 percent before the error voltage of the buck converter Verr_buck becomes larger than the threshold voltage Vout_of_range.

    [0035] The DC to DC converter shown in Figure 3 may be designed as a system on a die, wherein at least parts of the DC to DC converter, for example, the buck converter 12, the boost converter 14, or the control unit 16, are implemented on a single die. The single die may comprise, for example, a silicon substrate.

    [0036] Referring now to Figure 4, a diagram of an example of duty-cycles of a DC to DC converter and a corresponding output voltage Vout of this DC to DC converter is shown as a function of the input voltage Vin. The diagram is divided in three different regions as will be explained in the following. It can be seen from Figure 4 that the desired output voltage Vout of the buck converter may be about 6.5 volt. In region I, the duty-cycle of the buck converter Dbuck increases when the input voltage Vin of the DC to DC converter decreases. For example, the duty-cycle of the buck converter Dbuck may reach 100 percent at an input voltage Vin of approximately 6.5 volt (i.e., the desired output voltage of the buck converter in this example). The duty-cycle of the boost converter Dboost is 0 in region I. Therefore, the DC to DC converter is in buck mode. A duty-cycle of the buck converter Dbuck of 100 percent means that its HS switching element known from Figures 1 and 3 is permanently on. When the input voltage Vin of the DC to DC converter further decreases, the error voltage of the buck converter Verr_buck increases further, but the duty-cycle of the buck converter Dbuck has already reached its maximum value. This leads to a decreasing output voltage Vout of the DC to DC converter 10 in region II. The duty-cycle of the boost converter Dboost may reach a value larger than 0 in region II. However, the boost converter may not yet be engaged because the error voltage of the buck converter Verr_buck has not yet reached the value of the threshold voltage Vout_of_range and the DC to DC converter stays in buck mode. The error voltage of the buck converter Verr_buck may reach the threshold voltage Vout_of_range at the beginning of region III, and the buck converter may engage the boost converter by generating the control signal. The DC to DC converter switches to boost mode.

    [0037] Due to the appropriate offset Voffset between the reference voltage of the buck converter Vref_buck and the reference voltage of the boost converter Vref_boost in connection with the generation of the control signal, the duty-cycle of the boost converter Dboost does not start with 0 percent when the boost converter is engaged with entrance of region III. However, due to the offset Voffset, the output voltage Vout of the DC to DC converter changes from the reference value of the buck converter Vref_buck to the reference value of the boost converter Vref_boost. The buck converter is regulating the output voltage Vout of the DC to DC converter and provides good performance versus load in region I and region II. The boost converter is regulating the output voltage Vout of the DC to DC converter in region III.

    [0038] Referring now to Figure 5, a diagram of examples of an error voltage of a buck converter Verr_buck and a corresponding control signal 18 is shown as a function of time. Figures 5, 6 and 7 share a common time axis. As can be seen, at a time t between 1.1 ms and 1.15 ms, the error voltage of the buck converter Verr_buck may reach the threshold voltage of the buck converter Vout_of_range, and a value of the control signal 18 may switch from 0 to 1 volt. In the example of Figure 5, the control signal 18 is shown as a voltage signal.

    [0039] Referring now to Figure 6, an example of an output signal of the LS control circuit is shown as a function of time. The buck converter may engage the boost converter when the control signal 18 shown in Figure 5 switches from 0 to 1. The output signal of the LS control circuit may periodically change its value according to the second PWM signal for the boost converter. The output signal of the LS control circuit may be used directly or indirectly via a LS driver circuit as a signal for triggering the LS switching element of the boost converter. Thus, the function shown in Figure 6 may substantially represent a PWM signal for the boost converter.

    [0040] Referring now to Figure 7, an example of an input voltage Vin and an output voltage Vout of a DC to DC converter is shown as a function of time. The input voltage Vin drops from an initial value larger than 7 volt at a time t=1.00 ms to a final value smaller than 6 volt at a time t=1.20 ms. At a time t=1.10 ms, the input voltage Vin intersects the output voltage Vout. At this time, the HS switching element of the buck converter may be permanently on, and the buck converter is no longer capable of regulating the output voltage Vout of the DC to DC converter in the case of a further voltage drop. In consequence, the output voltage Vout of the DC to DC converter may decrease as the input voltage Vin of the DC to DC converter decreases. At the same time, as can be seen in Figure 5, the error voltage of the buck converter Verr_buck may increase until the control signal 18 switches from 0 to 1, and the boost converter may be engaged by the buck converter. The output voltage Vout of the DC to DC converter becomes stabilised at approximately 6.25 volt by the boost converter. The output voltage Vout of the DC to DC converter may pulsate a little in boost mode. However, there are neither voltage nor current peaks, and the deviation of the output voltage Vout from the reference voltage of the buck converter Vref_buck or from the reference voltage of the boost converter Vref_boost may be less than 5 percent. Thus, the electronic elements of the DC to DC converter and/or of the connected load may be dimensioned small because they are not exposed to unwanted peaks. In particular, transistors used as switching elements in the DC to DC converter may have a lower breakdown voltage.

    [0041] Referring now to Figures 8, 9, and 10 which share a common time axis, Figures 8 to 10 show the transition between the development of the input voltage Vin and the corresponding output voltage Vout of the DC to DC converter at the transition from buck mode to boost mode in more detail. As can be seen from Figure 9, the duty-cycle of the boost converter increases with the decrease of the input voltage Vin, and the duty-cycle of the boost converter does not start with 0 percent.

    [0042] The invention may also be implemented in a computer program for running on a computer system, at least including code portions for performing steps of a method according to the invention when run on a programmable apparatus, such as a computer system or enabling a programmable apparatus to perform functions of a device or system according to the invention.

    [0043] A computer program is a list of instructions such as a particular application program and/or an operating system. The computer program may for instance include one or more of: a subroutine, a function, a procedure, an object method, an object implementation, an executable application, an applet, a servlet, a source code, an object code, a shared library/dynamic load library and/or other sequence of instructions designed for execution on a computer system.

    [0044] The computer program may be stored internally on computer readable storage medium or transmitted to the computer system via a computer readable transmission medium. All or some of the computer program may be provided on transitory or non-transitory computer readable media permanently, removably or remotely coupled to an information processing system. The computer readable media may include, for example and without limitation, any number of the following: magnetic storage media including disk and tape storage media; optical storage media such as compact disk media (e.g., CD-ROM, CD-R, etc.) and digital video disk storage media; nonvolatile memory storage media including semiconductor-based memory units such as FLASH memory, EEPROM, EPROM, ROM; ferromagnetic digital memories; MRAM; volatile storage media including registers, buffers or caches, main memory, RAM, etc.; and data transmission media including computer networks, point-to-point telecommunication equipment, and carrier wave transmission media, just to name a few.

    [0045] A computer process typically includes an executing (running) program or portion of a program, current program values and state information, and the resources used by the operating system to manage the execution of the process. An operating system (OS) is the software that manages the sharing of the resources of a computer and provides programmers with an interface used to access those resources. An operating system processes system data and user input, and responds by allocating and managing tasks and internal system resources as a service to users and programs of the system.

    [0046] The computer system may for instance include at least one processing unit, associated memory and a number of input/output (I/O) devices. When executing the computer program, the computer system processes information according to the computer program and produces resultant output information via I/O devices.

    [0047] In the foregoing specification, the invention has been described with reference to specific examples of embodiments of the invention.

    [0048] For example, the semiconductor substrate described herein can be any semiconductor material or combinations of materials, such as gallium arsenide, silicon germanium, silicon-on-insulator (SOI), silicon, monocrystalline silicon, the like, and combinations of the above.

    [0049] The connections as discussed herein may be any type of connection suitable to transfer signals from or to the respective nodes, units or devices, for example via intermediate devices. Accordingly, unless implied or stated otherwise, the connections may for example be direct connections or indirect connections. The connections may be illustrated or described in reference to being a single connection, a plurality of connections, unidirectional connections, or bidirectional connections. However, different embodiments may vary the implementation of the connections. For example, separate unidirectional connections may be used rather than bidirectional connections and vice versa. Also, plurality of connections may be replaced with a single connection that transfers multiple signals serially or in a time multiplexed manner. Likewise, single connections carrying multiple signals may be separated out into various different connections carrying subsets of these signals. Therefore, many options exist for transferring signals.

    [0050] Although specific conductivity types or polarity of potentials have been described in the examples, it will be appreciated that conductivity types and polarities of potentials may be reversed.

    [0051] Each signal described herein may be designed as positive or negative logic. In the case of a negative logic signal, the signal is active low where the logically true state corresponds to a logic level 0. In the case of a positive logic signal, the signal is active high where the logically true state corresponds to a logic level one. Note that any of the signals described herein can be designed as either negative or positive logic signals. Therefore, in alternate embodiments, those signals described as positive logic signals may be implemented as negative logic signals, and those signals described as negative logic signals may be implemented as positive logic signals.

    [0052] Furthermore, the terms "assert" or "set" and "negate" (or "deassert" or "clear") are used herein when referring to the rendering of a signal, status bit, or similar apparatus into its logically true or logically false state, respectively. If the logically true state is a logic level one, the logically false state is a logic level 0. And if the logically true state is a logic level 0, the logically false state is a logic level one.

    [0053] Those skilled in the art will recognize that the boundaries between logic blocks are merely illustrative and that alternative embodiments may merge logic blocks or circuit elements or impose an alternate decomposition of functionality upon various logic blocks or circuit elements. Thus, it is to be understood that the architectures depicted herein are merely exemplary, and that in fact many other architectures can be implemented which achieve the same functionality. For example, the first comparator, HS control circuit, and the HS driver circuit may be replaced by a single HS amplifier circuit triggering the HS switching element directly.

    [0054] Any arrangement of components to achieve the same functionality is effectively "associated" such that the desired functionality is achieved. Hence, any two components herein combined to achieve a particular functionality can be seen as "associated with" each other such that the desired functionality is achieved, irrespective of architectures or intermedial components. Likewise, any two components so associated can also be viewed as being "operably connected," or "operably coupled," to each other to achieve the desired functionality.

    [0055] Furthermore, those skilled in the art will recognize that boundaries between the above described operations merely illustrative. The multiple operations may be combined into a single operation, a single operation may be distributed in additional operations and operations may be executed at least partially overlapping in time. Moreover, alternative embodiments may include multiple instances of a particular operation, and the order of operations may be altered in various other embodiments.

    [0056] Also for example, in one embodiment, the illustrated examples may be implemented as circuitry located on a single integrated circuit or within a same device. For example, the buck converter, the boost converter, and the control unit may be implemented as a single circuitry. Alternatively, the examples may be implemented as any number of separate integrated circuits or separate devices interconnected with each other in a suitable manner. For example, the buck converter and the boost converter may be implemented on a single integrated circuitry and the control unit may be implemented on a different integrated circuitry.

    [0057] Also for example, the examples, or portions thereof, may implemented as soft or code representations of physical circuitry or of logical representations convertible into physical circuitry, such as in a hardware description language of any appropriate type.

    [0058] Also, the invention is not limited to physical devices or units implemented in non-programmable hardware but can also be applied in programmable devices or units able to perform the desired device functions by operating in accordance with suitable program code, such as mainframes, minicomputers, servers, workstations, personal computers, notepads, personal digital assistants, electronic games, automotive and other embedded systems, cell phones and various other wireless devices, commonly denoted in this application as 'computer systems'.

    [0059] However, other modifications, variations and alternatives are also possible. The specifications and drawings are, accordingly, to be regarded in an illustrative rather than in a restrictive sense.


    Claims

    1. A DC to DC converter (10) comprising
    a buck converter (12),
    a boost converter (14), and
    a control unit (16),
    wherein the control unit (16) is arranged to calculate an error voltage of the buck converter Verr_buck based on a feedback output voltage Vout_FB of the DC to DC converter (10) and a reference voltage of the buck converter Vref_buck, and
    wherein the control unit (16) is arranged to calculate an error voltage of the boost converter Verr_boost based on the feedback output voltage Vout_FB of the DC to DC converter (10) and a reference voltage of the boost converter Vref_boost, wherein the reference voltage of the boost converter Vref_boost is shifted by an offset Voffset as compared to the reference voltage of the buck converter Vref_buck, wherein the control unit (16) is arranged to calculate a control signal (18) to engage and disengage the boost converter (14) based on the error voltage of the buck converter Verr_buck, and
    wherein the control unit (16) is arranged to engage the boost converter (14) when the error voltage of the buck converter Verr_buck is higher than a threshold voltage Vout_of_range, and to disengage the boost converter (14) when the error voltage of the buck converter Verr_buck is lower than the threshold voltage Vout_of_range.
     
    2. The DC to DC converter (10) as claimed in claim 1,
    wherein the control unit (16) is arranged to calculate a time-dependent sensing voltage Vsens based on an input voltage Vin of the DC to DC converter (10) and a pulsating voltage Vpuls, and
    wherein the control unit (16) is further arranged to calculate a first PWM signal (20) by comparing the time-dependent sensing voltage Vsens with the error voltage of the buck converter Verr_buck and to calculate a second PWM signal (22) by comparing the time-dependent sensing voltage Vsens with the error voltage of the boost converter Verr_boost.
     
    3. The DC to DC converter (10) as claimed in claim 2, wherein the control unit (16) is arranged to provide the first PWM signal (20) and a clock signal (24) as input signals for a HS control circuit (26) that triggers a HS driver circuit (28) for controlling a HS switching element (30) of the buck converter (12).
     
    4. The DC to DC converter (10) as claimed in claim 2 or claim 3, wherein the control unit (16) is arranged to provide the second PWM signal (22), a clock signal (24) and the control signal (18) as input signals for a LS control circuit (32) that triggers a LS driver circuit (34) for controlling a LS switching element (36) of the boost converter (14).
     
    5. A system on a die comprising a DC to DC converter (10) as claimed in any of the preceding claims.
     
    6. A method to operate a DC to DC converter (10) comprising a buck converter (12), a boost converter (14), and a control unit (16),
    wherein the control unit (16) calculates an error voltage of the buck converter Verr_buck based on a feedback output voltage Vout_FB of the DC to DC converter (10) and a reference voltage of the buck converter Vref_buck, and
    wherein the control unit (16) calculates an error voltage of the boost converter Verr_boost based on the feedback output voltage Vout_FB of the DC to DC converter (10) and a reference voltage of the boost converter Vref_boost, wherein the reference voltage of the boost converter Vref_boost is shifted by an offset Voffset as compared to the reference voltage of the buck converter Vref_buck, wherein the control unit (16) calculates a control signal (18) to engage and disengage the boost converter (14) based on the error voltage of the buck converter Verr_buck, and
    wherein the control unit (16) engages the boost converter (14) when the error voltage of the buck converter Verr_buck is higher than a threshold voltage Vout_of_range, and disengages the boost converter (14) when the error voltage of the buck converter Verr_buck is lower than the threshold voltage Vout_of_range.
     
    7. The method as claimed in claim 6,
    wherein the control unit (16) calculates a time-dependent sensing voltage Vsens based on an input voltage Vin of the DC to DC converter (10) and a pulsating voltage Vpuls, and
    wherein the control unit (16) further calculates a first PWM signal (20) by comparing the time-dependent sensing voltage Vsens with the error voltage of the buck converter Verr_buck and calculates a second PWM signal (22) by comparing the time-dependent sensing voltage Vsens with the error voltage of the boost converter Verr_boost.
     
    8. The method as claimed in claim 7, wherein the first PWM signal (20) and a clock signal (24) are provided as input signals for a HS control circuit (26) that triggers a HS driver circuit (28) for controlling a HS switching element (30) of the buck converter (12).
     
    9. The method as claimed in claim 7 or claim 8, wherein the second PWM signal (22), a clock signal (24) and the control signal (18) are provided as input signals for a LS control circuit (32) that triggers a LS driver circuit (34) for controlling a LS switching element (36) of the boost converter (14).
     


    Ansprüche

    1. Ein DC/DC Wandler (10), aufweisend
    einen Abwärtswandler (12),
    einen Aufwärtswandler (14) und
    eine Steuereinheit (16),
    wobei die Steuereinheit (16) eingerichtet ist, eine Fehlerspannung des Abwärtswandlers Verrbuck basierend auf einer Feedback Ausgangsspannung Vout_FB des DC/DC Wandlers (10) und einer Referenzspannung des Abwärtswandlers Vref_buck zu berechnen, und
    wobei die Steuereinheit (16) eingerichtet ist, eine Fehlerspannung des Aufwärtswandlers Verr_boost basierend auf der Feedback Ausgangsspannung Vout_FB des DC/DC Wandlers (10) und einer Referenzspannung des Aufwärtswandlers Vref_boost zu berechnen, wobei die Referenzspannung des Aufwärtswandlers Vref_boost um einen Offset Voffset verglichen mit der Referenzspannung des Abwärtswandlers Vref_buck verschoben ist, wobei die Steuereinheit (16) eingerichtet ist, ein Steuersignal (18) zu berechnen, um den Aufwärtswandler (14) basierend auf der Fehlerspannung des Abwärtswandlers Verr_buck zu aktivieren oder zu deaktivieren, und
    wobei die Steuereinheit (16) eingerichtet ist, den Aufwärtsswandler (14) zu aktivieren, wenn die Fehlerspannung des Abwärtswandlers Verr_buck größer als eine Schwellenspannung Vout of_range ist, und um den Aufwärtswandler (14) zu deaktivieren, wenn die Fehlerspannung des Abwärtswandlers Verr_buck kleiner als die Schwellenspannung Vout_of_range ist.
     
    2. Der DC/DC-Wandler (10) gemäß Anspruch 1,
    wobei die Steuereinheit (16) eingerichtet ist, eine zeitabhängige Abtastspannung Vsens basierend auf einer Eingangsspannung Vin des DC/DC-Wandlers (10) und einer pulsierenden Spannung Vpuls zu berechnen, und
    wobei die Steuereinheit (16) ferner eingerichtet ist, ein erstes PWM Signal (20) mittels Vergleichens der zeitabhängigen Abtastspannung Vsens mit der Fehlerspannung des Abwärtswandlers Verr_buck zu berechnen und ein zweites PWM Signal (22) mittels Vergleichens der zeitabhängigen Abtastspannung Vsens mit der Fehlerspannung des Aufwärtswandlers Verr_boost zu berechnen.
     
    3. Der DC/DC Wandler (10) gemäß Anspruch 2, wobei die Steuereinheit (16) eingerichtet ist, das erste PWM Signal (20) und ein Taktsignal (24) als Eingangssignale für eine HS Steuerschaltung (26) bereitzustellen, die eine HS Treiberschaltung (28) zum Steuern eines HS Schaltelements (30) des Abwärtswandlers (12) auslöst.
     
    4. Der DC/DC Wandler (10) gemäß Anspruch 2 oder Anspruch 3, wobei die Steuereinheit (16) eingerichtet ist, das zweite PWM Signal (22), ein Taktsignal (24) und das Steuersignal (18) als Eingangssignale für eine LS Steuerschaltung (32) bereitzustellen, die eine LS Treiberschaltung (34) zum Steuern eines LS Schaltelements (36) des Aufwärtswandlers (14) auslöst.
     
    5. Ein System auf einem Chip, aufweisend einen DC/DC-Wandler (10), wie in einem der vorhergehenden Ansprüche beansprucht.
     
    6. Ein Verfahren zum Betreiben eines DC/DC Wandlers (10), der einen Abwärtswandler (12), einen Aufwärtswandler (14) und eine Steuereinheit (16) aufweist,
    wobei die Steuereinheit (16) eine Fehlerspannung des Abwärtswandlers Verr_buck basierend auf einer Feedback Ausgangsspannung Vout_FB des DC/DC Wandlers (10) und einer Referenzspannung des Abwärtswandlers Vref_buck berechnet, und
    wobei die Steuereinheit (16) eine Fehlerspannung des Aufwärtswandlers Verr_boost basierend auf der Feedback Ausgangsspannung Vout_FB des DC/DC Wandlers (10) und einer Referenzspannung des Aufwärtswandlers Vref_boost berechnet, wobei die Referenzspannung des Aufwärtswandlers Vref_boost um einen Offset Voffset verglichen mit der Referenzspannung des Abwärtswandlers Vref_buck verschoben ist, wobei die Steuereinheit (16) ein Steuersignal (18) berechnet, um den Aufwärtswandler (14) basierend auf der Fehlerspannung des Abwärtswandlers Verr_buck zu aktivieren oder zu deaktivieren, und
    wobei die Steuereinheit (16) den Aufwärtsswandler (14) aktiviert, wenn die Fehlerspannung des Abwärtswandlers Verr_buck größer als eine Schwellenspannung Vout_of_range ist, und den Aufwärtswandler (14) deaktiviert, wenn die Fehlerspannung des Abwärtswandlers Verr_buck kleiner als die Schwellenspannung Vout_of_range ist.
     
    7. Das Verfahren gemäß Anspruch 6,
    wobei die Steuereinheit (16) eine zeitabhängige Abtastspannung Vsens basierend auf einer Eingangsspannung Vin des DC/DC-Wandlers (10) und einer pulsierenden Spannung Vpuls berechnet und
    wobei die Steuereinheit (16) ferner ein erstes PWM Signal (20) mittels Vergleichens der zeitabhängigen Abtastspannung Vsens mit der Fehlerspannung des Abwärtswandlers Verr_buck berechnet und ein zweites PWM Signal (22) mittels Vergleichens der zeitabhängigen Abtastspannung Vsens mit der Fehlerspannung des Aufwärtswandlers Verr_boost berechnet.
     
    8. Das Verfahren gemäß Anspruch 7, wobei das erste PWM Signal (20) und ein Taktsignal (24) als Eingangssignale für eine HS Steuerschaltung (26) bereitgestellt werden, die eine HS Treiberschaltung (28) zum Steuern eines HS Schaltelements (30) des Abwärtswandlers (12) auslöst.
     
    9. Das Verfahren gemäß Anspruch 7 oder Anspruch 8, wobei das zweite PWM Signal (22), ein Taktsignal (24) und das Steuersignal (18) als Eingangssignale für eine LS Steuerschaltung (32) bereitgestellt werden, die eine LS Treiberschaltung (34) zum Steuern eines LS Schaltelements (36) des Aufwärtswandlers (14) auslöst.
     


    Revendications

    1. Convertisseur C.C.-C.C.(10) comprenant
    un convertisseur abaisseur de tension (12),
    un convertisseur élévateur de tension (14), et
    une unité de commande (16),
    dans lequel l'unité de commande (16) est agencée pour calculer une tension d'erreur du convertisseur abaisseur de tension Verr_buck sur la base d'une tension de sortie de rétroaction Vout_FB du convertisseur C.C.-C.C. (10) et d'une tension de référence du convertisseur abaisseur de tension Vref_buck, et
    dans lequel l'unité de commande (16) est agencée pour calculer une tension d'erreur du convertisseur élévateur de tension Verr_boost sur la base de la tension de sortie de rétroaction Vout_FB du convertisseur C.C.-C.C. (10) et d'une tension de référence du convertisseur élévateur de tension Vref_boost, dans lequel la tension de référence du convertisseur élévateur de tension Vref_boost est décalée par un décalage Voffset par comparaison à la tension de référence du convertisseur abaisseur de tension Vref_buck, dans lequel l'unité de commande (16) est agencée pour calculer un signal de commande (18) pour activer et désactiver le convertisseur élévateur de tension (14) sur la base de la tension d'erreur du convertisseur abaisseur de tension Verr_buck, et
    dans lequel l'unité de commande (16) est agencée pour activer le convertisseur élévateur de tension (14) quand la tension d'erreur du convertisseur abaisseur de tension Verr_buck est supérieure à une tension seuil Vout_of_range, et pour désactiver le convertisseur élévateur de tension (14) quand la tension d'erreur du convertisseur abaisseur de tension Verr_buck est inférieure à la tension seuil Vout_of_range.
     
    2. Convertisseur C.C.-C.C. (10) selon la revendication 1,
    dans lequel l'unité de commande (16) est agencée pour calculer une tension de détection dépendant du temps Vsens sur la base d'une tension d'entrée Vin du convertisseur C.C.-C.C. (10) et d'une tension pulsatoire Vpuls, et
    dans lequel l'unité de commande (16) est agencée en outre pour calculer un premier signal de modulation de largeur d'impulsion (20) en comparant la tension de détection dépendant du temps Vsens à la tension d'erreur du convertisseur abaisseur de tension Verr_buck et pour calculer un second signal de modulation de largeur d'impulsion (22) en comparant la tension de détection dépendant du temps Vsens à la tension d'erreur du convertisseur élévateur de tension Verr_boost.
     
    3. Convertisseur C.C.-C.C. (10) selon la revendication 2, dans lequel l'unité de commande (16) est agencée pour fournir le premier signal de modulation de largeur d'impulsion (20) et un signal d'horloge (24) en tant que signaux d'entrée pour un circuit de commande côté haut (26) qui déclenche un circuit d'excitation côté haut (28) pour commander un élément de commutation côté haut (30) du convertisseur abaisseur de tension (12).
     
    4. Convertisseur C.C.-C.C. (10) selon la revendication 2 ou la revendication 3, dans lequel l'unité de commande (16) est agencée pour fournir le second signal de modulation de largeur d'impulsion (22), un signal d'horloge (24) et le signal de commande (18) comme signaux d'entrée pour un circuit de commande côté bas (32) qui déclenche un circuit d'excitation côté bas (34) pour commander un élément de commutation côté bas (36) du convertisseur élévateur de tension (14).
     
    5. Système sur puce comprenant un convertisseur C.C.-C.C. (10) selon l'une quelconque des revendications précédentes.
     
    6. Procédé de fonctionnement d'un convertisseur C.C.-C.C. (10) comprenant un convertisseur abaisseur de tension (12), un convertisseur élévateur de tension (14), et une unité de commande (16),
    dans lequel l'unité de commande (16) calcule une tension d'erreur du convertisseur abaisseur de tension Verr_buck sur la base d'une tension de sortie de rétroaction Vout_FB du convertisseur C.C.-C.C. (10) et d'une tension de référence du convertisseur abaisseur de tension Vref_buck, et
    dans lequel l'unité de commande (16) calcule une tension d'erreur du convertisseur élévateur de tension Verr_boost sur la base de la tension de sortie de rétroaction Vout_FB du convertisseur C.C.-C.C. (10) et d'une tension de référence du convertisseur élévateur de tension Vref_boost, dans lequel la tension de référence du convertisseur élévateur de tension Vref_boost est décalée par un décalage Voffset par comparaison à la tension de référence du convertisseur abaisseur de tension Vref_buck, dans lequel l'unité de commande (16) calcule un signal de commande (18) pour activer et désactiver le convertisseur élévateur de tension (14) sur la base de la tension d'erreur du convertisseur abaisseur de tension Verr_buck, et
    dans lequel l'unité de commande (16) active le convertisseur élévateur de tension (14) quand la tension d'erreur du convertisseur abaisseur de tension Verr_buck est supérieure à une tension seuil Vout_of_range, et désactive le convertisseur élévateur de tension (14) quand la tension d'erreur du convertisseur abaisseur de tension Verr_buck est inférieure à la tension seuil Vout_of_range.
     
    7. Procédé selon la revendication 6,
    dans lequel l'unité de commande (16) calcule une tension de détection dépendant du temps Vsens sur la base d'une tension d'entrée Vin du convertisseur C.C.-C.C. (10) et d'une tension pulsatoire Vpuls, et
    dans lequel l'unité de commande (16) calcule en outre un premier signal de modulation de largeur d'impulsion (20) en comparant la tension de détection dépendant du temps Vsens à la tension d'erreur du convertisseur abaisseur de tension Verr_buck et calcule un second signal de modulation de largeur d'impulsion (22) en comparant la tension de détection dépendant du temps Vsens à la tension d'erreur du convertisseur élévateur de tension Verr_boost.
     
    8. Procédé selon la revendication 7, dans lequel le premier signal de modulation de largeur d'impulsion (20) et un signal d'horloge (24) sont fournis en tant que signaux d'entrée pour un circuit de commande côté haut (26) qui déclenche un circuit d'excitation côté haut (28) pour commander un élément de commutation côté haut (30) du convertisseur abaisseur de tension (12).
     
    9. Procédé selon la revendication 7 ou la revendication 8, dans lequel le second signal de modulation de largeur d'impulsion (22), un signal d'horloge (24) et le signal de commande (18) sont fournis comme signaux d'entrée pour un circuit de commande côté bas (32) qui déclenche un circuit d'excitation côté bas (34) pour commander un élément de commutation côté bas (36) du convertisseur élévateur de tension (14).
     




    Drawing























    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description