(19)
(11)EP 2 805 587 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
26.06.2019 Bulletin 2019/26

(21)Application number: 13707712.9

(22)Date of filing:  14.01.2013
(51)International Patent Classification (IPC): 
H05B 37/02(2006.01)
(86)International application number:
PCT/IB2013/050326
(87)International publication number:
WO 2013/108167 (25.07.2013 Gazette  2013/30)

(54)

MODULATION OF LIGHT EMITTED BY A LIGHTING DEVICE, USING PLURALITY OF DIFFERENT MODULATION PERIODS

MODULATION DER LICHTSTRAHLUNG EINER BELEUCHTUNGSVORRICHTUNG MIT MEHREREN UNTERSCHIEDLICHEN MODULATIONSPERIODEN

MODULATION DE LA LUMIÈRE ÉMISE PAR UN DISPOSITIF D'ÉCLAIRAGE, EN UTILISANT PLUSIEURS DE FRÉQUENCES DE MODULATION


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 17.01.2012 US 201261587298 P
16.02.2012 US 201261599459 P

(43)Date of publication of application:
26.11.2014 Bulletin 2014/48

(73)Proprietor: Signify Holding B.V.
5656 AE Eindhoven (NL)

(72)Inventors:
  • FERI, Lorenzo
    NL-5656AE Eindhoven (NL)
  • NIJSSEN, Stephanus Joseph Johannes
    NL-5656AE Eindhoven (NL)
  • GRITTI, Tommaso
    NL-5656AE Eindhoven (NL)
  • RAJAGOPALAN, Ruben
    NL-5656AE Eindhoven (NL)
  • DE BRUIJN, Frederik Jan
    NL-5656AE Eindhoven (NL)

(74)Representative: van Eeuwijk, Alexander Henricus Waltherus et al
Signify Netherlands B.V. Intellectual Property High Tech Campus 7
5656 AE Eindhoven
5656 AE Eindhoven (NL)


(56)References cited: : 
EP-A1- 2 088 836
WO-A1-2008/050293
WO-A1-2010/116299
WO-A2-2009/090511
WO-A1-2007/099472
WO-A1-2008/050294
WO-A2-2006/111930
US-B1- 6 198 230
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    FIELD OF THE INVENTION



    [0001] The present invention relates to the field of lighting systems, and in particular to a lighting device in a lighting system and methods corresponding thereto.

    BACKGROUND OF THE INVENTION



    [0002] The advent of integrated lighting installations, consisting of an ever growing number of individually controllable light sources, lighting devices, luminaires, lighting arrangements and the like with advanced rendering capabilities, may be regarded as transforming lighting systems for both professional and consumer markets. This brings a desire for an intuitive control capable of fully exploiting the rendering capabilities of the complete lighting infrastructure. Several approaches have been proposed to control light sources, lighting devices, luminaires, lighting arrangements and the like.

    [0003] Optical free space communications, i.e. visible light (VL) and infra-red (IR) communications, for the selection and advanced control of light sources has previously been proposed, and will be referred to as coded light (CL). In general, coded light has been proposed to enable advanced control of light sources. Coded light is based on embedding of data, inter alia invisible identifiers, in the light output of the light sources. Coded light may thus be defined as the embedding of data and identifiers in the light output of a visible light source, wherein the embedded data and/or identifier preferably do not influence the primary lighting function of the light source. Hence, any modulation of the emitted light pertaining to data and/or identifier should be substantially invisible to humans. This allows for applications such as interactive scene setting, commissioning and re-commissioning of networked lighting systems. Coded light may be used in communications applications wherein one or more light sources in a coded lighting system are configured to emit coded light and thereby communicate information to a receiver.

    [0004] One example for controlling light sources, lighting devices, luminaires, lighting arrangements and the like involves the concept of point and control; this approach exploits the principle of coded light and a remote control unit capable of detecting the code of the light source or luminaire toward which the remote control unit is pointed and thereby to identify the light source or luminaire emitting the coded light. Such a remote control unit typically comprises one or more photodiodes for detecting the coded light emitted by the light source or luminaire. Alternatively the remote control unit may comprise a camera for detecting the coded light. One implementation of the concept of point and control involves having light sources or luminaires sending a unique coded light signal. Different light sources or luminaires send a different signal (i.e. signals with different embedded unique identifiers). One example of signals suitable for this purpose is pulse width modulation (PWM). The point and control approach shows the advantage of using coded light as a mean for a user to be able to select a luminaire by simply pointing the remote control unit towards it. As noted above this approach employs a photodiode in order to detect the coded light message of each luminaire. It has been proposed to detect and decode coded light by means of a standard camera.

    [0005] European patent application EP11159149.1 relates to a system and method for detecting data embedded into the light output of illumination light detection systems. The light detection system captures light outputted from a scene in a 2D image, and temporal shifted line instances serve as light sample moments. The temporal shift between the capture of consecutive rows on the light detection means during the image capture process gives rise to a line-wise variation in pixel values for those areas in the final captured image of the scene that correspond to parts of the objects that are illuminated with said modulated light source or to the light source itself. The line-wise variation in pixel values constitute a pattern of horizontal lines superimposed on top of the image at illuminated objects. The decoding of the message, i.e. the embedded code, in the encoded light requires the recovery of a 1-dimensional (ID) signal that is associated with the original intensity variations of the modulated light source.

    SUMMARY OF THE INVENTION



    [0006] The inventors of the enclosed embodiments have identified a number of disadvantages with the above noted concepts. For example, it has been found that fundamental limitation of the cameras typically embedded in portable electronic devices, such as (but not limited to) mobile communications devices (such as mobile phones, smartphones, tablet computers, and laptop computers) renders detection of coded light not always reliable and/or reproducible.

    [0007] It is an object of the present invention to overcome these problems, and to provide a lighting device and a lighting system comprising a number of lighting devices that are arranged such that the risk of the coded light emitted by the lighting devices being undetected is reduced.

    [0008] The present invention is defined by the appended independent claim 1.

    [0009] According to one aspect of the present invention, there is provided a lighting device comprising: a light emitter arranged to emit light with a periodic modulation which embeds information into the light; and a light driver arranged to drive the light emitter by providing an indicator to the light emitter , the indicator relating to the modulation of the light to be emitted by the light emitter and the light emitter being arranged to emit the light modulated according to said indicator; wherein the light driver is arranged to drive the light emitter to emit the light with said information being embedded at a plurality of different modulation periods according to the indicator.

    [0010] In embodiments, the light emitter may be arranged to emit light to be detected by an image capturing unit; and the light driver may be arranged to drive the light emitter to avoid that at least one of the modulation periods corresponds to a frequency blind spot produced by an acquisition process of the image capturing unit.

    [0011] In embodiments, the light driver may be arranged to change between the different modulation periods over time.

    [0012] In a first embodiment, there may be provided a lighting device for emitting modulated light, comprising a light driver arranged to provide an indicator to a light emitter of said lighting device, the indicator relating to modulation of light to be emitted by the light emitter in one of at least two states, the light driver thereby driving the light emitter; and a light emitter arranged to emit modulated light according to said indicator, wherein the modulation is periodic within each state, wherein in a first state said modulation has a period T11, and wherein in a second state said modulation has a period T12 ≠ T11, wherein T11 and T12 take values within an interval [T10 - ΔT1/2, T10 + ΔT1/2], where T10 > 0 is a time constant and where ΔT1 > 0 is a time offset chosen such that visible flicker in the emitted modulated light is avoided.

    [0013] Since the frequency of the modulation changes over time, a lighting device arranged according to the first aspect advantageously enables the emitted modulated light to be detectable by an image capturing unit capturing images at a given fixed exposure time setting. Thus, advantageously such a lighting device prevent a rolling shutter camera from being blind to information included in the modulated light emitted by the lighting device.

    [0014] According to a second embodiment, there is provided a lighting system comprising a number N of lighting devices according to the first aspect, wherein each lighting device is associated with its own unique constant Ti, i = 1 ... N, wherein the modulation for each lighting device is periodic within each state, wherein in a first state said modulation for light source i has a period Ti1, and wherein in a second state said modulation for light source i has a period Ti2 ≠ Ti1, wherein Ti1 and Ti2 take values within an interval [Ti0 - ΔTi/2, Ti0 + ΔTi/2], where Ti0 > 0 is a time constant for light source i and where ATi > 0 is a time offset for light source i chosen such that visible flicker in the emitted modulated light is avoided.

    [0015] In third, alternative or additional embodiment, the light driver may be arranged to drive the light emitter to emit light modulated with a plurality of different modulation periods simultaneously.

    [0016] In embodiments the light emitter may be arranged to emit light to be detected by a detecting unit; and the modulation frequencies may be spaced apart by an amount at least corresponding to an undetectable width of a blind spot in a detection spectrum of the detecting unit, so at least so that at least one of the modulation periods is always detectable regardless of where at least one other of the other falls in the detection spectrum relative to the one or more blind spots..

    [0017] In embodiments, the modulation frequencies may be spaced apart to avoid an inter-modulation effect between any of the modulation frequencies being within a human perceptible range. In embodiments at least one of the modulation frequencies has no harmonic relationship with at least one other of the modulation frequencies.

    [0018] In embodiments the plurality of modulation frequencies may be emitted by a same light source of said light emitter. Alternatively, the light emitter may comprise a plurality of light sources within a same luminaire, and each of the plurality of modulation frequencies may be emitted by a respective one of the light sources. It is noted that the present disclosure envisages all possible combinations of features recited in the claims. Further, the third embodiment may be combined with the first or second embodiment.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0019] The above and other aspects of the present invention will now be described in more detail, with reference to the appended drawings showing embodiment(s) of the invention.

    Fig. 1 illustrates a lighting system according to embodiments;

    Fig. 2 illustrates a lighting device according to embodiments;

    Fig. 3 schematically illustrates emitted light signals;

    Fig. 4 illustrates the spectrum of the light signals of Fig. 3;

    Fig. 5 schematically illustrates low-pass filter characteristics of an image capturing unit;

    Fig. 6 schematically illustrates low-pass filter characteristics of an image capturing unit together with the spectrum of Fig. 4;

    Fig. 7 schematically illustrates emitted light signals;

    Fig. 8 illustrates the spectrum of the light signals of Fig. 7;

    Fig. 9 schematically illustrates low-pass filter characteristics of an image capturing unit together with the spectrum of Fig. 8;

    Fig. 10 schematically illustrates low-pass filter characteristics of an image capturing unit together an alternative for a signal spectrum; and

    Fig. 11 schematically illustrates low-pass filter characteristics of an image capturing unit together another alternative for a signal spectrum.


    DETAILED DESCRIPTION



    [0020] The below embodiments are provided by way of example so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. Like numbers refer to like elements throughout. The devices disclosed in the below embodiments will be described in an operation context.

    [0021] Operation of a lighting system will now be disclosed with reference to the lighting system 1 of Fig. 1. The lighting system 1 of Fig. 1 comprises at least one lighting device arranged to emit coded light, schematically denoted by lighting devices with reference numerals 2a, 2b, 2c. The at least one lighting device 2a, 2b, 2c may be a luminaire and/or be part of a lighting control system. The lighting system 1 may thus be denoted as a coded lighting system. As will be further disclosed with reference to Fig. 2 the lighting device 2a, 2b, 2c comprises at least a light driver and a light emitter. A luminaire may comprise at least one such lighting device 2a, 2b, 2c. The term "lighting device" means a device that is used for providing light in a room, for purpose of illuminating objects in the room. A room is in this context typically an apartment room or an office room, a gym hall, an indoor retail, environment, a theatre scene, a room in a public place or a part of an outdoor environment, such as a part of a street. Each lighting device 2a, 2b, 2c is capable of emitting coded light, as schematically illustrated by arrows 3a, 3b, 3c. The emitted light thus comprises a modulated part associated with coded light comprising information sequences. The modulated light may comprise additional embedded data. For example, the data may comprise a unique identifier of the lighting device. The emitted light may also comprise an un-modulated part associated with an illumination contribution. Each lighting device 2a, 2b, 2c may be associated with a number of light (or lighting) settings, inter alia pertaining to the illumination contribution of the lighting device, such as colour, colour temperature, intensity and frequency of the emitted light. In general terms the illumination contribution of the lighting device may be defined as a time-averaged output of the light emitted by the lighting device 2a, 2b, 2c. Fig. 3 schematically illustrates the light signal 3a, 3b, 3c emitted by a lighting device 2a, 2b, 2c which is assigned a base tone with frequency f = 1/T0. The base tone is emitted according to pulse width modulation with frequency f = 1/T0. The resulting signal (tone) is thus a single train of pulses. For multiprimary lighting devices 2a, 2b, 2c (e.g. LEDs with separate RGB channels) the resulting signal (tone) is the linear combination of various trains of pulses (one per primary color), all with the same base frequency. Fig. 4 shows the corresponding spectrum |H(f(z))| being the absolute value of the Fourier transform of the frequency representation of the light signal of Fig. 3.

    [0022] The system 1 further comprises a device termed a remote control unit 4 arranged to receive and detect the coded light emitted by the lighting devices 2a, 2b, 2c in the system 1. The remote control unit 4 will be described in terms of a number of functional blocks. The remote control unit 4 comprises an image capturing unit 5 having an image sensor for detecting the light emitted by the lighting device(s) 2a, 2b, 2c in the system 1, for example by capturing images comprising coded light. Recent development, such as exemplified by European patent application EP11159149.1, has shown the possibility to detect coded light with the use of standard cameras. The image capturing unit 5 may be embodied as (part of) a camera. The remote control unit 4 further comprises a processing unit 6 operatively coupled to the image capturing unit 5. The processing unit 6 analyzes images captured by the image capturing unit 5 and from the captured images identifies coded light as transmitted by the lighting device 2a, 2b, 2c. The remote control unit 4 further comprises a transmitter 7 operatively coupled to the processing unit 6. The transmitter 7 may be arranged to communicate with the lighting device(s) 2a, 2b, 2c, as schematically illustrated by reference numerals 8a and 8b. The remote control unit 4 may be part of a mobile communications device (such as a mobile phone, a smartphone, a tablet computer, or a laptop computer).

    [0023] Typically the image capturing unit 5 is arranged to capture images at one of a plurality of different exposure times, or shutter speeds. With a fixed exposure time Texp the acquisition process of the image capturing unit 5 produces a low pass filtering effect on the acquired light signal whereby the cut-off frequency (in Hertz) of the low pass filter is determined by the shutter speed value Texp (in seconds). In more detail, when the light signal 3a, 3b, 3c from a lighting device 2a, 2b, 2c reaches the image capturing unit 5, the image capturing unit 5 acquires the light signal 3a, 3b, 3c. During the acquisition process, the rolling shutter exposes each line of the image sensor of the image capturing unit 5 to the light for a time Texp. This acquisition process thus produces a low pass filtering effect on the acquired light signal. Fig. 5 schematically illustrates the low-pass filter characteristic |H(f(z))| being the absolute value of the Fourier transform of the frequency representation of the acquisition process of an image capturing unit 5 having a rolling shutter camera with an exposure time Texp.

    [0024] Thus in case one or more of the lighting device 2a, 2b, 2c emits coded light at frequencies corresponding to the zero crossings (corresponding to multiples of the shutter speed value Texp) in the low-pass filter characteristic |H(f(z))| of the shutter speed of the image capturing unit 5, the image capturing unit 5 may not be able to record, or even to receive, the coded light. In other words, in order to have a reliable detection of coded light, it is necessary that the period of the signals used by the lighting devices 2a, 2b, 2c for visible light communications, for example, are not a multiple of the exposure time, else the image capturing unit 5 is "blind" to it.

    [0025] From Fig. 5, it is clear that the presence of blind spots corresponds to multiples of f = 1/Texp where the low-pass filter has zeros. Thus, a tone with base frequency f = 1/T0 = 1/Texp, as illustrated by spikes "↑" in Fig. 6, goes undetected.

    [0026] Further functionality and properties of the lighting device 2a, 2b, 2c will be described next with further references to Fig. 2. In order to overcome the above problems, a lighting device 2a, 2b, 2c emits coded light having a tone whose period varies slightly over time, or in other words it 'shivers' or fluctuates over time. Each lighting device i, where i= 1... N in a system of N lighting devices, shivers between at least two tones. By Ti1 is denoted one of the shivering tones for lighting device i, and by Ti2 is denoted another of the shivering tones for lighting device i. Thus, Ti1 ≠ Ti2 for lighting device i. The unique identifier as embedded in the data of the emitted modulated light for lighting device i may be represented by a frequency f = 1/Ti0, where Ti0 is the base period for the base tone around which the shivering tones fluctuate. Thus Ti0 ≠ Ti1 ≠ Ti2.

    [0027] The lighting device 2a, 2b, 2c comprises a light driver 13. The lighting device 2a, 2b, 2c also comprises a light emitter 14. The light driver 13 is arranged to provide the light emitter 14 with an indicator. The indicator may be provided by means of an electrical signal. Alternatively the indicator may be provided by means of a mechanical switch or relay. The indicator relates to modulation of light to be emitted by the light emitter 14 in one of at least two states. The indicator thus determines according to which one of the at least two states the light emitted by the light emitter 14 in current operation is to be emitted. The light driver 13 is thereby arranged to drive the light emitter 14. Further, the light emitter 14 is arranged to emit modulated light according to the indicator. Preferably the modulated light is transmitted using pulse-width-modulation.

    [0028] Fig. 7 illustrates the light signal sent by a lighting device 2a, 2b, 2c that is arranged to emit a shivering tone with base frequency f = 1/T0 (in case only one lighting device is considered the index i may be dropped - in other words: T10 = T0 for N = 1). The resulting PWM light signal has a period that fluctuates around the base period T0. For simplicity a lighting device 2a, 2b, 2c with a single primary (wherein the light emitter 14 comprises of white LEDs) and the resulting signal (tone) is a single train of pulses. For the case of multiprimary lighting devices 2a, 2b, 2c (e.g. RGB) the resulting signal (shivering tone) is the linear combination of various trains of pulses (one per primary), all with the same base frequency. Fig. 8 illustrates the corresponding spectrum |H(f(z))| being the absolute value of the Fourier transform of the frequency representation of the light signal of Fig. 7 where each shivering tone is illustrated by a spike "↑".

    [0029] In Fig. 9 the resulting shivering tones (i.e. the spikes "↑") are illustrated in combination with the low-pass characteristics of the image capturing unit 5. Even for 1/T0 = 1/Texp, some of the shivering tones will not fall in the blind spot and can therefore be detected.

    [0030] In embodiments there are K shivering tones Ti1, Ti2, ... TiK for each lighting device i. Thus in practice there are not only two states but K different states representing K different shivering tones for each lighting device i. In such a case the indicator for each lighting device i thus relates to modulation of light to be emitted by the light emitter 14 in one of K states. In such a case the indicator thus determines according to which one of the K states the light emitted by the light emitter 14 in current operation is to be emitted.

    [0031] Each lighting device i is associated with a time offset ΔTi and a nominal time period Ti0. Preferably, each lighting device has its own nominal period. That is, Ti ≠ Tj for i ≠ j. In addition, each lighting device may be associated with its own time offset. That is, ATi ≠ ΔTj for i ≠ j. This may ease the detection and reception of information messages from different lighting devices.

    [0032] For a system with only one lighting device, i.e. where N = 1, the modulation in a first state has a period T11 (the first shivering tone), and the modulation in a second state has a period T12 ≠ T11 (the second shivering tone), wherein T11 and T12 take values within an interval [T10 - ΔT1/2, T10 + ΔT1/2], where T10 > 0 is the time constant (the nominal time period for the single lighting device) and where ATi > 0 is the time offset (for single lighting device). If only two tones T11 and T12 are used, it may be beneficial that the light output is symmetric, in other words that T12 - T10 = T10 - T11 for T12 > T11. This may simplify the construction of the light emitter 14.

    [0033] In general, the combination of parameters Ti0 and ΔTi is chosen such that visible flicker in the modulated light emitted by the emitter 14 is avoided. More particularly, restricting the lower end point of the interval, Ti0 - ΔTi/2, to be higher than a certain frequency may be beneficial in order to avoid flicker in the visible light. Restricting the upper end point of the interval, Ti0 + ΔTi/2, to be lower than a certain frequency may be beneficial in order to keep the signals away from regions in the frequency representation where the low-pass filter attenuation is too severe for practical situations. The indicator as provided by the light driver 13 thus contains information relating to the current state (i.e. at which shivering tone the modulated light should be emitted).

    [0034] For example a lighting device i that is assigned a base tone with period Ti will transmit a tone that over time changes slightly within the range [Ti0-ΔTi/2, Ti0+ΔTi/2]. With ATi>0 this will thus avoid that a tone of any a lighting device i is emitted at any nominal period Ti0. Hence Ti0 is allowed to correspond to a blind spot of the above disclosed image capturing unit 5. Keeping ΔTi0 << T20 - T10, for T20 > T10, where T10 and T20 are two time-wise adjacent time constants, provides sufficient separation between the tones of different lighting devices 2a, 2b, 2c.

    [0035] The alternation between the K different states may be determined in different ways. For example, according to one embodiment the light driver 13 is arranged to aperiodically alternate the modulation between the K different states. For example, according to another embodiment the light driver 13 is arranged to alternates the modulation between the K different states according to a predetermined sequence. The modulation may alternates between the K states according to a random variable. The modulation may be associated with one and the same state in at least two adjacent pulse width modulation periods. For example, each lighting device 2a, 2b, 2c may keep the PWM period constant for a time Tc equal to several PWM periods. This means that the generated PWM signal when observed for a sufficiently short time will appear to have a constant repetition period. For example Tc = 1/30Hz, given that 30Hz is the frame rate of a video camera. The shivering pattern can be the same for all the lighting device 2a, 2b, 2c or it can be different. In the latter case every lighting device 2a, 2b, 2c has a different Tc and jumps from one repetition period to another one (always within the above defined range) according to a different pattern (jump to a different period within the boundaries). The shivering pattern can be pre-assigned in the lighting devices 2a, 2b, 2c or it can be randomly generated in the lighting device 2a, 2b, 2c.

    [0036] The person skilled in the art realizes that the present invention by no means is limited to the preferred embodiments described above. On the contrary, many modifications and variations are possible within the scope of the appended claims. For instance, the disclosed remote control unit 4 and at least one luminaire comprising at least one lighting device 2a, 2b, 2c and being controllable by the remote control unit 4 may be provided as an arrangement.

    [0037] As discussed, recent developments have shown the possibility to detect coded light with the use of standard cameras. For example, the present invention is applicable to the detection of coded light with a rolling-shutter camera. In a rolling-shutter image sensor, each subsequent image row is acquired with a small time delay with respect to the prior row. As a consequence, high-frequent temporal light flicker translates into spatial patterns of horizontal stripes. The rate at which subsequent rows are captured is referred to as the line rate fline. As the line rate of most image sensors is relatively high (typically more than 10 kHz), the image sensor is capable of capturing light modulations that are sufficiently high to be imperceptible to humans.

    [0038] It has been shown above how the value of the exposure time causes blind spots in the spectrum of detectable frequencies. Any frequency of which an integer number of cycles fits in the exposure time interval causes the integrated light modulation to cancel out. In the Fourier domain these blind frequency spots in fact coincide with the sinc-shaped frequency response that is the Fourier transform of the rectangular time window during which the light integration took place (Figure 5 shows the magnitude of the sinc-shaped frequency response due to and exposure time Texp).

    [0039] In general, any repetitive signal, e.g. a repeated data packet, can be characterized by the sum of a harmonic signal with a fundamental frequency and additional harmonic signal components of that fundamental frequency. As such the invention is also applicable to repetitive signals in general, both to packets and waveforms.

    [0040] Most integrated cameras in mobile devices do not provide an option to fix the exposure value of the camera. As a consequence, the camera is not capable to detect a coded light signal in case one of the spectral blind spots due to the momentary exposure time coincides with the lamp frequency. In general, for repetitive signals, the camera becomes unable to detect one or more harmonic components that are associated with the repetitive light signal. In general this leads to incorrect detections or even a loss of signal detection.

    [0041] Also in case the modulation frequency of a PWM signal or one or multiple frequency components of a repetitive signal is close to a spectral blind spot, that signal component is not fully cancelled but still too weak for proper signal detection.

    [0042] In the present disclosure, a lighting device for emitting modulated light and a lighting system comprising at least one such lighting device are disclosed. For example, the lighting device may be arranged such that its emitted modulated light is detectable by a standard rolling shutter speed camera. In order to do so the lighting device may be arranged such that the frequency of its emitted modulated light shivers around a base, or center, frequency. For example the modulated light may be transmitted using pulse-width-modulation. In this case the resulting pulse-width-modulation light signal thus has a period that fluctuates around the base period, and the parameters determining the shivering of the modulated light may be chosen such that visible flicker in the emitted modulated light is avoided.

    [0043] However, the scope of the invention need not be limited to such embodiments. As has been explained, the invention lies in reducing the risk that coded light goes undetected. This is achieved by modulating light from a given lighting device with a plurality K of different modulation frequencies (where K is at least two and in embodiments greater than two). In the above embodiments, the different modulation frequencies are implemented by varying the frequency in a "shivering" pattern, but it will be appreciated given the disclosure herein that the idea of reducing of the risk of the modulation going undetected through can be implemented with any arrangement of different modulation frequencies. The following describes an alternative embodiment whereby the light is modulated such that multiple frequency components are generated simultaneously, preferably so that in any given situation at least one modulation frequency will always fall outside any blind spot of the exposure time (i.e. there will never be a situation in which all frequencies coincide with a blind spot).

    [0044] In embodiments, a repetitive signal is generated such that it contains two dominant frequencies. E.g. one way to generate such a signal is to sum at least two different signals, each with a different dominant frequency. Figures 10 and 11 depict the signal spectrum of a number of possible frequency allocations, produced by a sum of different signals with different frequencies. Each of the commonly labeled frequency components are associated with one single light source, e.g. (referring to the numerals of Figure 1) the components labeled A being from a first light source 2a, the components labeled B being from a second light source 2b, and the components labeled C being from a third light source 2c. In the examples of Figures 10 and 11, of the signal A both components are detectable, of the signal B the lower frequency component is lost, and of the signal C the higher frequency component is lost.

    [0045] Figure 10 shows one example using two neighboring frequencies per lamp. The modulation frequencies are close together, but spaced far apart enough that at least one of the modulation frequencies is always detectable regardless of where at least one other of the other falls in the detection spectrum relative to the one or more blind spots. That is, for two neighboring frequencies, they are not so close that they ever both fall in a blind spot. Close to a blind spot a frequency undergoes a suppression equal to the magnitude of the sinc-shaped frequency response associated with that particular exposure time Texp , so a threshold may be applied to the y-axis of the sinc-shaped detection spectrum and the frequency range around each blind spot that stays below that threshold may be considered to be a "forbidden" zone for frequencies. Therefore the minimum spacing between modulation frequencies may be arranged to correspond to a certain window around the node of the blind spot, for instance defined by a certain fraction or percentage height of the detection spectrum. E.g. if around a given blind spot (say the one at 1/Texp) the coded light signal is only detectable where the detection spectrum is above a certain threshold height (e.g. a certain percentage of the maximum in terms of received power), the spacing between the modulation frequencies will be at least the distance from the frequency location of the zero node in the detection spectrum to a frequency location corresponding to this minimum detection threshold. That way even if one of the modulation frequencies falls exactly in the centre (node) of the blind spot, the other modulation frequency will still fall at a frequency location in the detection spectrum corresponding to the minimum detection threshold. The particular detection threshold may depend on the apparatus in question.

    [0046] Such embodiments are potentially beneficial to the detection algorithm. However, in practice any nonlinearities in the light generation may cause one or more additional, low frequency signal components that fall within the human perceptible range. Such (unwanted) low frequency components are due to an intermodulation effect, which can occur when the two (intentional) signal components are too close together. Hence in embodiments, the modulation may be generated with widely spaced frequency components to avoid this effect, at least so that any intermodulation frequency falls outside the human perceptible range. An example of more widely spaced modulation frequencies is shown schematically in Figure 11.

    [0047] If the two (or more) modulation frequencies are spaced widely apart, they will not fall in the same blind spot, but without planning there still is a chance they will fall in different blind spots. E.g. one could fall at the node at 1/Texp and one at the next node at 2/Texp, or at 3/Texp, etc. So to reduce the risk of hitting more than one blind spot, in embodiments the two (or more) frequency components are generated so as not to have an harmonic relationship, at least in that one is not an integer multiple of another. In embodiments, one is also not a half integer multiple of another. In further embodiments, one is not n/3 times the other and/or is not n/4 times the other, etc. where n is an integer. In general one frequency may be arranged so that it is not n/m times the other, where the denominator m is an integer and is smaller than a threshold on the denominator (effectively there is a minimum degree to which the relationship is irrational or aharmonic).

    [0048] As mentioned, one way to generate multiple signal components is to sum the components and use the summed signal to drive a single elementary light source, e.g. single lamp. An alternative embodiment to generate multiple signal components from a single luminaire is to use different elementary light sources housed or integrated in the same luminaire, e.g. a plurality of LEDs, and to assign different signals to the different LEDs within the luminaire, again with the same constraints.

    [0049] Again, it will be appreciated that the above embodiments have been described only by way of example. For instance, the invention is applicable in a wide range of applications, such as detection of coded light with camera based devices such as smartphones and tablet computers, camera-based coded light detection (e.g. for light installation in the consumer and professional domain), personalized light control, light-based object labeling, and light based indoor navigation.

    [0050] The invention is not limited to use in relation to a remote control or control system for controlling the lighting device or devices. In other embodiments the coded light techniques disclosed herein may be used to provide information in any circumstances to any suitable capturing unit, e.g. in only one direction from the lighting device to the capturing unit rather than as part of a control loop, or to exchange information one some other basis than a master/slave control relationship or the like.

    [0051] Further, the applicability of the invention is not limited to avoiding blind spots due to rolling shutter techniques, or to blind spots in any particular filtering effect or detection spectrum. It will be appreciated that the use of different modulation frequencies can reduce the risk of modulation going undetected due to frequency blind spots resulting from any side effect or limitation of any detection device being used to detect the modulated light

    [0052] In embodiments, the invention is not limited to the use of either time varying modulation frequencies or simultaneous modulation frequencies. In embodiments the lighting device may alternate between two or more different states, at least one (and potentially some or all) of which use two simultaneous modulation components with different frequencies.

    [0053] Further, it will be appreciated that where the above has been described in terms of modulation frequency, this can equivalently be expressed in terms of modulation period, and vice versa.

    [0054] Further, in the invention is not limited to symmetrical upper and lower limits +/-ΔTi/2 around the base tone. In other embodiments, the window may be asymmetrical about the nominal base tone, and/or there need not be the same number of modulations frequencies above the base tone as below. Indeed, in embodiments it is not necessary that any one modulation frequency is singled out as being the centre or "base" tone.

    [0055] Other variations to the disclosed embodiments can be understood and effected by those skilled in the art in practicing the claimed invention, from a study of the drawings, the disclosure, and the appended claims. In the claims, the word "comprising" does not exclude other elements or steps, and the indefinite article "a" or "an" does not exclude a plurality. A single processor or other unit may fulfill the functions of several items recited in the claims. The mere fact that certain measures are recited in mutually different dependent claims does not indicate that a combination of these measured cannot be used to advantage. A computer program may be stored/distributed on a suitable medium, such as an optical storage medium or a solid-state medium supplied together with or as part of other hardware, but may also be distributed in other forms, such as via the Internet or other wired or wireless telecommunication systems. Any reference signs in the claims should not be construed as limiting the scope.


    Claims

    1. A lighting device (2a, 2b, 2c) comprising:

    - a light emitter (14) arranged to emit light with a periodic modulation which embeds information into the light; and

    - a light driver (13) arranged to drive the light emitter by providing an indicator to the light emitter , the indicator relating to the modulation of the light to be emitted by the light emitter and the light emitter (14) being arranged to emit the light modulated according to said indicator;

    wherein the light driver (13) is arranged to drive the light emitter to emit the light, with said information being embedded, at a plurality of different modulation periods according to said indicator.
     
    2. The lighting device of claim 1, wherein:

    the light emitter is arranged to emit light to be detected by an image capturing unit; and

    the light driver is arranged to drive the light emitter to avoid that at least one of the modulation periods corresponds to a frequency blind spot produced by an acquisition process of the image capturing unit.


     
    3. The lighting device of claim 1 or 2, wherein the light driver is arranged to change between the different modulation periods over time.
     
    4. The lighting device according to claim 1, wherein said data comprises a unique identifier of said lighting device.
     
    5. The lighting device according to claim 4, wherein said unique identifier is represented by a frequency f = 1 / T10.
     
    6. The lighting device according to any preceding claim, wherein said modulation is pulse width modulation.
     
    7. The lighting device according to any preceding claim, wherein said light emitter is further arranged to emit un-modulated light associated with an illumination contribution of said emitted modulated light.
     
    8. The lighting device of any preceding claim, wherein the light driver (13) is arranged to drive the light emitter (14) in at least two different states wherein the modulation is periodic within each state; and
    wherein in a first state said modulation has a period T11, and wherein in a second state said modulation has a period T12 ≠ T11, wherein T11 and T12 take values within an interval [T10 - ΔT1/2, T10 + ΔT1/2], where T10 > 0 is a time constant and where ΔT1 > 0 is a time offset chosen such that visible flicker in the emitted modulated light is avoided.
     
    9. The lighting device according to claim 8, wherein said light driver is arranged to aperiodically alternate said modulation between said first state and said second state.
     
    10. The lighting device according to claim 8 or 9, wherein said light driver is arranged to alternates said modulation between said first state and said second state according to a predetermined sequence.
     
    11. The lighting device according to any of claims 8 to 9, wherein said modulation alternates between said first state and said second state according to a random variable.
     
    12. The lighting device according to claim 7 and 8, wherein said modulation is associated with one and the same state in at least two adjacent pulse width modulation periods.
     
    13. The lighting device according to any of claims 8 to 12, wherein T12 - T10 = T10 - T11 for T12 > T11.
     
    14. The lighting device of any of claims 1 to 7, wherein the light driver (13) is arranged to drive the light emitter to emit light modulated with a plurality of different modulation periods simultaneously.
     
    15. The lighting device of claim 14, wherein the light emitter is arranged to emit light to be detected by a detecting unit; and
    the modulation frequencies are spaced apart by an amount at least corresponding to an undetectable width of a blind spot in a detection spectrum of the detecting unit, so that at least one of the modulation periods is always detectable regardless of where at least one other of the other falls in the detection spectrum relative to the one or more blind spots.
     
    16. The lighting device of claim 14 or 15, wherein the modulation frequencies are spaced apart to avoid an inter-modulation effect between any of the modulation frequencies being within a human perceptible range.
     
    17. The lighting device of any of claims 14 to 16, wherein at least one of the modulation frequencies is not an integer multiple of at least one other of the modulation frequencies.
     
    18. The lighting device of any preceding claim, wherein the plurality of modulation frequencies are emitted by a same light source of said light emitter.
     
    19. The lighting device of any claims 1 to 17, wherein the light emitter comprises a plurality of light sources within a same luminaire, and each of the plurality of modulation frequencies is emitted by a respective one of the light sources.
     
    20. A lighting system (1) comprising a number N of lighting devices (2a, 2b, 2c) according to any one of the preceding claims, wherein each lighting device is associated with its own unique constant Ti, i = 1 ... N, wherein the modulation for each lighting device is periodic within each state, wherein in a first state said modulation for light source i has a period Ti1, and wherein in a second state said modulation for light source i has a period Ti2 ≠ Ti1, wherein Ti1 and Ti2 take values within an interval [Ti0 - ΔT1/2, Ti0 + ΔTi/2], where Ti0 > 0 is a time constant for light source i and where ΔTi > 0 is a time offset for light source i chosen such that visible flicker in the emitted modulated light is avoided.
     
    21. The lighting system according to claim 20, where ATi ≠ ΔTj for i ≠ j.
     
    22. The lighting system according to claim 20 or 21, where Ti ≠ Tj for i ± j.
     
    23. The light system according to claim 20, 21 or 22, where:
    ΔTi0 <<T20 - T10, for T20 > T10 where T10 and T20 are two time-wise adjacent time constants.
     


    Ansprüche

    1. Beleuchtungsvorrichtung (2a, 2b, 2c), umfassend:

    - einen Lichtemitter (14), der so eingerichtet ist, dass er Licht mit einer periodischen Modulation emittiert, die Informationen in das Licht einbettet; sowie

    - einen Lichttreiber (13), der so eingerichtet ist, dass er den Lichtemitter durch Zuführen eines Indikators zu dem Lichtemitter ansteuert, wobei der Indikator auf die Modulation des von dem Lichtemitter zu emittierenden Lichts bezogen ist und der Lichtemitter (14) so eingerichtet ist, dass er das gemäß diesem Indikator modulierte Licht emittiert;

    wobei der Lichttreiber (13) so eingerichtet ist, dass er den Lichtemitter so ansteuert, dass dieser das Licht mit diesen in mehreren verschiedenen Modulationsperioden gemäß diesem Indikator einzubettenden Informationen emittiert.
     
    2. Beleuchtungsvorrichtung nach Anspruch 1, wobei:

    der Lichtemitter so eingerichtet ist, dass er von einer Bilderfassungseinheit zu detektierendes Licht emittiert; und

    der Lichttreiber so eingerichtet ist, dass er den Lichtemitter so ansteuert, dass vermieden wird, dass mindestens eine der Modulationsperioden einem durch einen Erfassungsprozess der Bilderfassungseinheit erzeugten Blind-Spot der Frequenz entspricht.


     
    3. Beleuchtungsvorrichtung nach Anspruch 1 oder 2, wobei der Lichttreiber so eingerichtet ist, dass er im Laufe der Zeit zwischen den verschiedenen Modulationsperioden wechselt.
     
    4. Beleuchtungsvorrichtung nach Anspruch 1, wobei diese Daten eine eindeutige Kennung dieser Beleuchtungsvorrichtung umfassen.
     
    5. Beleuchtungsvorrichtung nach Anspruch 4, wobei diese eindeutige Kennung durch eine Frequenz f = 1 / T10 dargestellt ist.
     
    6. Beleuchtungsvorrichtung nach einem der vorangegangenen Ansprüche, wobei diese Modulation eine Pulsbreitenmodulation ist.
     
    7. Beleuchtungsvorrichtung nach einem der vorangegangenen Ansprüche, wobei dieser Lichtemitter weiterhin so eingerichtet ist, dass er einem Beleuchtungsbeitrag dieses emittierten, modulierten Lichts zugeordnetes, unmoduliertes Licht emittiert.
     
    8. Beleuchtungsvorrichtung nach einem der vorangegangenen Ansprüche, wobei der Lichttreiber (13) so eingerichtet ist, dass er den Lichtemitter (14) in mindestens zwei verschiedenen Zuständen ansteuert, wobei die Modulation innerhalb jedes Zustands periodisch ist; und
    wobei in einem ersten Zustand diese Modulation eine Periode T11 aufweist, und wobei in einem zweiten Zustand diese Modulation eine Periode T12 ≠ T11 aufweist, wobei T11 und T12 Werte innerhalb eines Intervalls [T10 - ΔTi/2, T10 + ΔT1/2] annehmen, wobei T10 > 0 eine Zeitkonstante ist, und wobei ΔT1 > 0 ein Zeitversatz ist, der so gewählt wird, dass sichtbares Flimmern in dem emittierten, modulierten Licht vermieden wird.
     
    9. Beleuchtungsvorrichtung nach Anspruch 8, wobei dieser Lichttreiber so eingerichtet ist, dass er diese Modulation zwischen diesem ersten Zustand und diesem zweiten Zustand aperiodisch abwechselnd durchführt.
     
    10. Beleuchtungsvorrichtung nach Anspruch 8 oder 9, wobei dieser Lichttreiber so eingerichtet ist, dass er diese Modulation zwischen diesem ersten Zustand und diesem zweiten Zustand entsprechend einer vorgegebenen Sequenz abwechselnd durchführt.
     
    11. Beleuchtungsvorrichtung nach einem der Ansprüche 8 bis 9, wobei diese Modulation zwischen diesem ersten Zustand und diesem zweiten Zustand entsprechend einer Zufallsvariablen wechselt.
     
    12. Beleuchtungsvorrichtung nach Anspruch 7 und 8, wobei diese Modulation ein und demselben Zustand in mindestens zwei nebeneinanderliegenden Pulsbreitenmodulationsperioden zugeordnet ist.
     
    13. Beleuchtungsvorrichtung nach einem der Ansprüche 8 bis 12, wobei T12 - T10 = T10 - T11 für T12 > T11.
     
    14. Beleuchtungsvorrichtung nach einem der Ansprüche 1 bis 7, wobei der Lichttreiber (13) so eingerichtet ist, dass er den Lichtemitter so ansteuert, dass dieser mit mehreren verschiedenen Modulationsperioden gleichzeitig moduliertes Licht emittiert.
     
    15. Beleuchtungsvorrichtung nach Anspruch 14, wobei der Lichtemitter so eingerichtet ist, dass er von einer Detektoreinheit zu detektierendes Licht emittiert; und
    die Modulationsfrequenzen einen Abstand aufweisen, der zumindest einer undetektierbaren Breite eines Blind-Spot in einem Detektionsspektrum der Detektoreinheit entspricht, so dass mindestens eine der Modulationsperioden immer detektierbar ist, unabhängig davon, wo mindestens eine andere der weiteren in das Detektionsspektrum relativ zu dem einen oder mehreren Blind-Spots fällt.
     
    16. Beleuchtungsvorrichtung nach Anspruch 14 oder 15, wobei die Modulationsfrequenzen voneinander beabstandet sind, um einen Intermodulationseffekt zwischen einer der sich innerhalb eines von Menschen wahrnehmbaren Bereichs befindenden Modulationsfrequenzen zu vermeiden.
     
    17. Beleuchtungsvorrichtung nach einem der Ansprüche 14 bis 16, wobei mindestens eine der Modulationsfrequenzen kein ganzzahliges Vielfaches von mindestens einer anderen der Modulationsfrequenzen ist.
     
    18. Beleuchtungsvorrichtung nach einem der vorangegangenen Ansprüche, wobei die mehreren Modulationsfrequenzen von einer gleichen Lichtquelle dieses Lichtemitters emittiert werden.
     
    19. Beleuchtungsvorrichtung nach einem der Ansprüche 1 bis 17, wobei der Lichtemitter mehrere Lichtquellen innerhalb einer gleichen Leuchte umfasst und jede der mehreren Modulationsfrequenzen von einer jeweiligen der Lichtquellen emittiert wird.
     
    20. Beleuchtungssystem 1 mit einer Anzahl N von Beleuchtungsvorrichtungen (2a, 2b, 2c) nach einem der vorangegangenen Ansprüche, wobei jede Beleuchtungsvorrichtung ihrer eigenen eindeutigen Konstanten Ti, i = 1 ... N zugeordnet ist, wobei die Modulation für jede Beleuchtungsvorrichtung innerhalb jedes Zustands periodisch ist, wobei in einem ersten Zustand diese Modulation für Lichtquelle i eine Periode Ti1 aufweist, und wobei in einem zweiten Zustand diese Modulation für Lichtquelle i eine Periode Ti2 ≠ Ti1, wobei Ti1 und Ti2 Werte innerhalb eines Intervalls [T10 - ΔTi/2, Ti0 + ATi/2] annehmen, wobei Ti0 > 0 eine Zeitkonstante für Lichtquelle i ist, und wobei ΔT1 > 0 ein Zeitversatz für Lichtquelle i ist, der so gewählt wird, dass sichtbares Flimmern in dem emittierten, modulierten Licht vermieden wird.
     
    21. Beleuchtungssystem nach Anspruch 20, wobei ΔTi ≠ ΔTj für i ≠ j.
     
    22. Beleuchtungssystem nach Anspruch 20 oder 21, wobei Ti ≠ Tj für i ≠ j.
     
    23. Beleuchtungssystem nach Anspruch 20, 21 oder 22, wobei:
    ΔTi0 << T20 - T10, für T20 > T10, wobei T10 und T20 zwei zeitlich nebeneinanderliegende Zeitkonstanten sind.
     


    Revendications

    1. Dispositif d'éclairage (2a, 2b, 2c) comprenant :

    - un émetteur de lumière (14) agencé pour émettre de la lumière avec une modulation périodique qui incorpore des informations dans la lumière ; et

    - un pilote de lumière (13) agencé pour piloter l'émetteur de lumière en fournissant un indicateur à l'émetteur de lumière, l'indicateur se rapportant à la modulation de la lumière à émettre par l'émetteur de lumière et l'émetteur de lumière (14) étant agencé pour émettre la lumière modulée selon ledit indicateur ;

    dans lequel le pilote de lumière (13) est agencé pour piloter l'émetteur de lumière pour émettre la lumière avec lesdites informations incorporées, à une pluralité de périodes de modulation différentes selon ledit indicateur.
     
    2. Dispositif d'éclairage selon la revendication 1, dans lequel :

    l'émetteur de lumière est agencé pour émettre de la lumière destinée à être détectée par une unité de capture d'image ; et

    le pilote de lumière est agencé pour piloter l'émetteur de lumière afin d'éviter qu'au moins l'une des périodes de modulation ne corresponde à une zone de masquage de fréquence produite par un processus d'acquisition de l'unité de capture d'image.


     
    3. Dispositif d'éclairage selon la revendication 1 ou 2, dans lequel le pilote de lumière est agencé pour changer entre les différentes périodes de modulation au fil du temps.
     
    4. Dispositif d'éclairage selon la revendication 1, dans lequel lesdites données comprennent un identificateur unique dudit dispositif d'éclairage.
     
    5. Dispositif d'éclairage selon la revendication 4, dans lequel ledit identificateur unique est représenté par une fréquence f = 1 / T10.
     
    6. Dispositif d'éclairage selon une quelconque revendication précédente, dans lequel ladite modulation est une modulation de largeur d'impulsion.
     
    7. Dispositif d'éclairage selon une quelconque revendication précédente, dans lequel ledit émetteur de lumière est en outre agencé pour émettre une lumière non modulée associée à une contribution d'illumination de ladite lumière modulée émise.
     
    8. Dispositif d'éclairage selon une quelconque revendication précédente, dans lequel le pilote de lumière (13) est agencé pour piloter l'émetteur de lumière (14) dans au moins deux états différents dans lequel la modulation est périodique au sein de chaque état ; et
    dans lequel dans un premier état ladite modulation a une période T11, et dans lequel dans un deuxième état ladite modulation a une période T12 ≠ T11, dans lequel T11 et T12 prennent des valeurs au sein d'un intervalle [T10 - ΔT1/2, T10 + ΔT1/2], où T10 > 0 est une constante de temps et où ΔT1 > 0 est un décalage temporel choisi de telle sorte qu'un scintillement visible dans la lumière modulée émise est évité.
     
    9. Dispositif d'éclairage selon la revendication 8, dans lequel ledit pilote de lumière est agencé pour alterner de manière apériodique ladite modulation entre ledit premier état et ledit deuxième état.
     
    10. Dispositif d'éclairage selon la revendication 8 ou 9, dans lequel ledit pilote de lumière est agencé pour alterner ladite modulation entre ledit premier état et ledit deuxième état selon une séquence prédéterminée.
     
    11. Dispositif d'éclairage selon l'une quelconque des revendications 8 à 9, dans lequel ladite modulation alterne entre ledit premier état et ledit deuxième état selon une variable aléatoire.
     
    12. Dispositif d'éclairage selon la revendication 7 et 8, dans lequel ladite modulation est associée à un seul et même état dans au moins deux périodes adjacentes de modulation de largeur d'impulsion.
     
    13. Dispositif d'éclairage selon l'une quelconque des revendications 8 à 12, dans lequel T12 - T10 = T10 - T11 pour T12 > T11.
     
    14. Dispositif d'éclairage selon l'une quelconque des revendications 1 à 7, dans lequel le pilote de lumière (13) est agencé pour piloter l'émetteur de lumière pour émettre une lumière modulée avec une pluralité de périodes de modulation différentes simultanément.
     
    15. Dispositif d'éclairage selon la revendication 14, dans lequel l'émetteur de lumière est agencé pour émettre de la lumière destinée à être détectée par une unité de détection ; et
    les fréquences de modulation sont espacées d'une quantité correspondant au moins à une largeur indétectable d'une zone de masquage dans un spectre de détection de l'unité de détection, de sorte qu'au moins l'une des périodes de modulation est toujours détectable indépendamment de l'endroit où au moins une autre de l'autre se situe dans le spectre de détection par rapport à la ou aux zones de masquage.
     
    16. Dispositif d'éclairage selon la revendication 14 ou 15, dans lequel les fréquences de modulation sont espacées afin d'éviter un effet d'intermodulation entre l'une quelconque des fréquences de modulation au sein d'une plage perceptible par un humain.
     
    17. Dispositif d'éclairage selon l'une quelconque des revendications 14 à 16, dans lequel au moins l'une des fréquences de modulation n'est pas un multiple entier d'au moins une autre des fréquences de modulation.
     
    18. Dispositif d'éclairage selon une quelconque revendication précédente, dans lequel la pluralité de fréquences de modulation sont émises par une même source lumineuse dudit émetteur de lumière.
     
    19. Dispositif d'éclairage selon l'une quelconque des revendications 1 à 17, dans lequel l'émetteur de lumière comprend une pluralité de sources lumineuses au sein d'un même luminaire, et chacune parmi la pluralité de fréquences de modulation est émise par l'une respective des sources lumineuses.
     
    20. Système d'éclairage (1) comprenant un nombre N de dispositifs d'éclairage (2a, 2b, 2c) selon l'une quelconque des revendications précédentes, dans lequel chaque dispositif d'éclairage est associé à sa propre constante unique Ti, i = 1 ... N, dans lequel la modulation pour chaque dispositif d'éclairage est périodique au sein de chaque état, dans lequel dans un premier état ladite modulation pour la source lumineuse i a une période Ti1, et dans lequel dans un deuxième état ladite modulation pour une source lumineuse i a une période Ti2 ≠ Ti1, et dans lequel Ti1 et Ti2 prennent des valeurs au sein d'un intervalle [T10 - ΔTi/2, Ti0 + ΔTi/2], où Ti0 > 0 est une constante de temps pour une source lumineuse i et où ΔTi > 0 est un décalage temporel pour une source lumineuse i choisi de telle sorte qu'un scintillement visible dans la lumière modulée émise est évité.
     
    21. Système d'éclairage selon la revendication 20, où ΔTi ≠ ΔTj pour i ≠ j.
     
    22. Système d'éclairage selon la revendication 20 ou 21, où Ti ≠ Tj pour i ≠ j.
     
    23. Système d'éclairage selon la revendication 20, 21 ou 22, où :
    ΔTi0 << T20 - T10, pour T20 > T10 où T10 et T20 sont deux constantes de temps adjacentes en termes de temps.
     




    Drawing

















    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description