(19)
(11)EP 2 807 358 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
06.05.2020 Bulletin 2020/19

(21)Application number: 13774928.9

(22)Date of filing:  16.01.2013
(51)Int. Cl.: 
F02C 7/36  (2006.01)
F02K 3/06  (2006.01)
(86)International application number:
PCT/US2013/021681
(87)International publication number:
WO 2013/154636 (17.10.2013 Gazette  2013/42)

(54)

GEARED TURBOMACHINE FAN AND COMPRESSOR ROTATION

GETRIEBETURBOMASCHINENLÜFTER UND KOMPRESSORROTATION

SOUFFLANTE DE TURBOMACHINE À ENGRENAGES ET ROTATION DE COMPRESSEUR


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 24.01.2012 US 201213356940

(43)Date of publication of application:
03.12.2014 Bulletin 2014/49

(60)Divisional application:
16171498.5 / 3085927
20160895.7

(73)Proprietor: United Technologies Corporation
Farmington, CT 06032 (US)

(72)Inventors:
  • SHERIDAN, William G.
    Southington Connecticut 06489 (US)
  • MCCUNE, Michael E.
    Colchester Connecticut 06415 (US)

(74)Representative: Dehns 
St. Bride's House 10 Salisbury Square
London EC4Y 8JD
London EC4Y 8JD (GB)


(56)References cited: : 
EP-A2- 1 227 255
US-A1- 2008 120 839
US-A1- 2009 090 096
US-B1- 6 464 401
EP-A2- 1 921 290
US-A1- 2008 149 445
US-A1- 2009 314 881
US-B2- 6 732 502
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    BACKGROUND



    [0001] This disclosure relates to a geared turbomachine having a compressor rotor and a fan rotor that rotate together.

    [0002] Turbomachines, such as gas turbine engines, typically include a fan section, a turbine section, a compressor section, and a combustor section. Turbomachines may employ a geared architecture connecting the fan section and the turbine section. The compressor section typically includes at least a high-pressure compressor and a low-pressure compressor. The compressors include rotors that rotate separately from a rotor of fan. To maximize performance of such turbomachines, various recent engine architectures have been proposed in which the fan rotates in a first direction and at a first speed as compared to a low pressure compressor which rotates in the opposite direction and at a higher speed. These recent engine architectures can also be improved.

    [0003] A prior art high bypass ratio geared turbomachine having the features of the preamble to claim 1 is disclosed in EP 1 921 290. Another turbomachine according to the prior art is known in the document US2008/0149445 A1.

    SUMMARY



    [0004] From one aspect, the present invention provides a high-bypass ratio geared turbomachine according to claim 1.

    [0005] In a further non-limiting embodiment of any of the foregoing high-bypass ratio geared turbomachine embodiments, the fan may include a shaft that is rotatably supported by a plurality of tapered bearings.

    [0006] In a further non-limiting embodiment of any of the foregoing high-bypass ratio geared turbomachine embodiments, at least one thrust bearing may rotatably support the turbine shaft, and the at least one thrust bearing may be located axially between the geared architecture and a turbine secured to the turbine shaft.

    [0007] In a further non-limiting embodiment of any of the foregoing high-bypass ratio geared turbomachine embodiments, the at least one thrust bearing may be a bi-directional tapered bearing.

    [0008] In a further non-limiting embodiment of any of the foregoing high-bypass ratio geared turbomachine embodiments, the geared architecture may be a planetary geared architecture.

    [0009] From another aspect, the present invention provides a method of operating a high-bypass ratio turbomachine according to claim 8.

    DESCRIPTION OF THE FIGURES



    [0010] The various features and advantages of the disclosed examples will become apparent to those skilled in the art from the detailed description. The figures that accompany the detailed description can be briefly described as follows:

    Figure 1 shows a highly schematic view of a portion of an example turbomachine.

    Figure 2 shows a schematic view of another example turbomachine.


    DETAILED DESCRIPTION



    [0011] Referring to Figure 1, an example geared turbomachine 10 includes a first shaft 11 that provides a rotating input to a geared architecture 12. Rotating the geared architecture 12 rotates a second shaft 13. The example geared architecture 12 has a gear ratio that causes the second shaft 13 to rotate at a slower speed than the first shaft 11.

    [0012] A compressor rotor 14 and a fan rotor 15 are coupled to the second shaft 13. Rotating the second shaft 13 rotates the rotors 14 and 15 at the same rotational speed and in the same direction. In this example, the compressor rotor 14 forms a portion of an axial compressor.

    [0013] Figure 2 schematically illustrates another example turbomachine, which is a gas turbine engine 20 in this example. The gas turbine engine 20 is a two-spool turbofan gas turbine engine that generally includes a fan section 22, a compressor section 24, a combustion section 26, and a turbine section 28. Other examples may include an augmentor section (not shown) among other systems or features.

    [0014] In the example engine 20, the fan section 22 drives air along a bypass flowpath while the compressor section 24 drives air along a core flowpath. Compressed air from the compressor section 24 communicates through the combustion section 26. The products of combustion expand through the turbine section 28.

    [0015] The example engine 20 generally includes a low-speed spool 30 and a high-speed spool 32 mounted for rotation about an engine central longitudinal axis A relative to an engine static structure 36.

    [0016] Although depicted as a two-spool turbofan gas turbine engine in the disclosed non-limiting embodiment, it should be understood that the concepts described herein are not limited to use with turbofans. That is, the teachings may be applied to other types of turbomachines and turbine engines including three-spool architectures.

    [0017] The low-speed spool 30 and the high-speed spool 32 are rotatably supported by several bearing systems 38a-38d. It should be understood that various bearing systems 38a-38d at various locations may alternatively, or additionally, be provided.

    [0018] The low-speed spool 30 includes an inner shaft 40 that interconnects a geared architecture 48 and a low-pressure turbine rotor 46. The inner shaft 40 is a turbine shaft as the inner shaft 40 is connected directly to the low-pressure turbine rotor 46. Rotating the geared architecture 48 rotatably drives a fan rotor 42 and a low-pressure compressor rotor 44 at a lower speed than the low-speed spool 30.

    [0019] The high-speed spool 32 includes an outer shaft 50 that interconnects a high-pressure compressor rotor 52 and high-pressure turbine rotor 54.

    [0020] In this example, the low-pressure compressor rotor 44 and the high-pressure compressor rotor 52 are both rotors of axial compressors, and there are no other types of compressors within the compressor section 24 of the engine 20.

    [0021] The combustion section 26 includes a circumferentially distributed array of combustors 56 generally arranged axially between the high-pressure compressor rotor 52 and the high-pressure turbine rotor 54.

    [0022] A mid-turbine frame 58 of the engine static structure 36 is generally arranged axially between the high-pressure turbine rotor 54 and the low-pressure turbine rotor 46. The mid-turbine frame 58 supports the bearing systems 38c and 38d in the turbine section 28. The mid-turbine frame 58 includes airfoils 60 within the path of the core airflow.

    [0023] The inner shaft 40 and the outer shaft 50 are concentric and rotate via the bearing systems 38b-38d about the engine central longitudinal axis A, which is collinear with the longitudinal axes of the inner shaft 40 and the outer shaft 50.

    [0024] In the example engine 20, the core airflow is compressed by the compressor section 24, mixed and burned with fuel in the combustors 56, then expanded within the turbine section 28. The high-pressure turbine rotor 54 and the low-pressure turbine rotor 46 rotatably drive the respective high-speed spool 32 and low-speed spool 30 in response to the expansion.

    [0025] In some non-limiting examples, the engine 20 is a high-bypass geared aircraft engine. In a further example, the engine 20 has a fan bypass ratio that is greater than about six (6:1). In a still further example, the engine 20 has a fan bypass ratio that is greater than about eight (8:1). The overall compression ratio of such the example engine 20 is greater than 40 (40:1) in some examples, and the pressure ratio of the high-pressure compressor is greater than 20 (20:1).

    [0026] The geared architecture 48 of the example engine 20 includes an epicyclic gear train, such as a planetary geared architecture or other geared architecture. The example epicyclic gear train has a gear reduction ratio of greater than about 2.3 (2.3:1).

    [0027] The low-pressure turbine pressure ratio is pressure measured prior to inlet of low-pressure turbine as related to the pressure at the outlet of the low-pressure turbine (and prior to an exhausting from the engine 20). In one non-limiting embodiment, the bypass ratio of the engine 20 is greater than about ten (10:1), the fan diameter is significantly larger than that of the low pressure compressor, and the low-pressure turbine has a pressure ratio that is greater than about 5 (5:1). The geared architecture 48 of this embodiment is an epicyclic gear train with a gear reduction ratio of greater than about 2.5 (2.5:1). Examples of the geared architecture 48 include star architectures and planetary architectures. It should be understood, however, that the above parameters are only exemplary of one embodiment of a geared architecture engine and that the present disclosure is applicable to other gas turbine engines including direct drive turbofans.

    [0028] In some embodiments of the example engine 20, a significant amount of thrust is provided by the bypass flow B due to the high bypass ratio. The fan section 22 of the engine 20 is designed for a particular flight condition--typically cruise at about 0.8 Mach and about 35,000 feet (10.7 km). This flight condition, with the engine 20 at its best fuel consumption, is also known as bucket cruise Thrust Specific Fuel Consumption (TSFC). TSFC is an industry standard parameter of fuel consumption per unit of thrust.

    [0029] Fan Pressure Ratio is the pressure ratio across a blade of the fan section 22 (without the use of a Fan Exit Guide Vane system). The low Fan Pressure Ratio according to one non-limiting embodiment of the example engine 20 is less than 1.45 (1.45:1).

    [0030] Low Corrected Fan Tip Speed is the actual fan tip speed divided by an industry standard temperature correction of "T" / 518.70.5. T represents the ambient temperature in degrees Rankine. The Low Corrected Fan Tip Speed according to one non-limiting embodiment of the example engine 20 is less than about 1150 fps (351 m/s).

    [0031] In the example engine 20, the fan rotor 42 and the low-pressure compressor rotor 44 are directly connected to a shaft 62. One axial end of the shaft 62 is directly connected to a carrier gear 64 of the geared architecture 48. The fan rotor 42 and the low-pressure compressor rotor 44 rotate at the same speed and in the same direction with the shaft 62 when the shaft 62 is driven by the carrier gear 64 of the geared architecture 48. The shaft 62 is rotated together with the carrier gear 64 when the geared architecture 48 is rotatably driven by the inner shaft 40 of the low-speed spool 30. The shaft 62 is considered a fan shaft in this example, because the fan rotor 42 is connected to the shaft 62.

    [0032] Rotating the fan rotor 42 and the low-pressure compressor rotor 44 with the shaft 62 facilitates positioning the low-pressure compressor of the compressor section 24 relatively axially close to the fan section 22. The low-pressure compressor rotor 44 (and thus the low-pressure compressor) is axially forward of a fan frame 68 in this example. The fan frame 68 extends radially across a fan bypass passage of the engine 20. The fan frame 68 supports an outer duct 70 of the engine 20 relative to an engine core.

    [0033] Bearings 38a rotatably support the shaft 62. The bearings 38a are tapered in this example. Tapered bearings mounted as shown in Figure 2 will react to the fan 42 thrust loads as well as any radial or moment loads applied to shaft 62 which come from fan 42. In another example, bearings 38a can be a ball and roller bearing combination. This combination will also react any thrust, radial or moment loads from the fan 42 to the shaft 62. One skilled in the art and having the benefit of this disclosure may arrive at other bearing configurations that support reaction loads applied to shaft 62

    [0034] Other bearings 38b rotatably support the low-speed spool 30 near the geared architecture 48. The bearings 38b are thrust bearings in this example. In one specific example, the bearings 38b are bi-directional tapered thrust bearings. In another specific example, the bearings 38b are ball thrust bearings.

    [0035] Notably, the example bearings 38b are located axially between the geared architecture 48 and the low-pressure turbine rotor 46, and are positioned axially closer to the geared architecture 48 than the low-pressure turbine rotor 46.

    [0036] Positioning the bearings 38b in this area has some performance advantages in the unlikely event that the inner shaft 40 fractures. After such a fracture of the inner shaft 40, axially displacing the low-pressure turbine rotor 46 relative to other portions of the engine 20 is often desired. The axial displacement after a fracture will cause the low-pressure turbine rotor 46 to desirably clash.

    [0037] Fractures of the inner shaft 40 that are axially forward of the bearings 38b may not result in clash because the bearings 38b (which are thrust bearings) hold the axial position of the fractured portion. Positioning the bearings 38b axially near the geared architecture 48 increases the axial locations aft the bearings 38b, and thus the potential fracture locations of the inner shaft 40 that will result in clash. The bearing 38c and 38d, in this example, would permit axial displacement after a fracture.

    [0038] In some examples, the torsional strength of the inner shaft 40 is less than the torsional strength of the other drive shaft within the engine 20 (including the geared architecture 48). Thus, in the event of, for example, an overload of the fan rotor 42, the inner shaft 40 will fail before other areas of the engine 20.

    [0039] The preceding description is exemplary rather than limiting in nature. Variations and modifications to the disclosed examples may become apparent to those skilled in the art that do not necessarily depart from the essence of this disclosure. Thus, the scope of legal protection given to this disclosure can only be determined by studying the following claims.


    Claims

    1. A high-bypass ratio geared turbomachine, comprising:
    a compressor section (24), the compressor section (24) providing at least a low-pressure compressor and a high-pressure compressor, wherein a rotor of the low-pressure compressor (44) rotates together with a rotor of a fan (42) at the same speed and in the same direction,
    characterised in that:

    the low-pressure compressor (44) comprises a single rotor; and

    a low-pressure turbine shaft (40) rotates a geared architecture (48) to rotate the rotor of the low-pressure compressor (44) and the rotor of the fan (42) at a lower speed than the low-pressure turbine shaft (40).


     
    2. The high-bypass ratio geared turbomachine of claim 1, wherein the fan (42) includes a shaft (62) that is rotatably supported by a plurality of tapered bearings (38a).
     
    3. The high-bypass ratio geared turbomachine of any preceding claim, wherein at least one thrust bearing (38b-38d) rotatably supports the turbine shaft (40), and the at least one thrust bearing (38b-38d) is located axially between the geared architecture (48) and a turbine (28) secured to the turbine shaft (40).
     
    4. The high-bypass ratio geared turbomachine of claim 3, wherein the at least one thrust bearing (38b-38d) is a bi-directional tapered bearing.
     
    5. The high-bypass ratio geared turbomachine of any preceding claim, wherein the geared architecture (48) is a planetary geared architecture.
     
    6. The high-bypass ratio geared turbomachine of claim 5, wherein the fan rotor (42) and the low-pressure compressor rotor (44) are directly connected to a second shaft (62), and one axial end of the second shaft (62) is directly connected to a carrier gear (64) of the geared architecture (48).
     
    7. The high-bypass ratio geared turbomachine of any preceding claim, wherein the low-pressure compressor rotor (44) is axially forward of a fan frame (68) that extends radially across a fan bypass passage of the turbomachine.
     
    8. A method of operating a high-bypass ratio turbomachine, comprising:

    rotating a geared architecture (48) with a first shaft (40);

    rotating a second shaft (62) with the geared architecture (48); and

    rotating a fan rotor (42) together with a compressor rotor of a low-pressure compressor (44) with the second shaft (62), wherein the rotor of the low-pressure compressor (44) and the rotor of the fan (42) rotate at the same speed and in the same direction, characterised in that:

    the low-pressure compressor (44) comprises a single rotor; and

    the first shaft (40) rotates the geared architecture (48) to rotate the rotor of the low-pressure compressor (44) and the rotor of the fan (42) at a lower speed than the first shaft (40), wherein the first shaft (40) is a low-pressure turbine shaft.


     


    Ansprüche

    1. Getriebeturbomaschine mit hohem Nebenstromverhältnis, Folgendes umfassend:

    einen Kompressorabschnitt (24), wobei der Kompressorabschnitt (24) mindestens einen Niederdruckkompressor und einen Hochdruckkompressor bereitstellt, wobei ein Rotor des Niederdruckkompressors (44) zusammen mit einem Rotor eines Lüfters (42) mit derselben Geschwindigkeit und in dieselbe Richtung rotiert,

    dadurch gekennzeichnet, dass:

    der Niederdruckkompressor (44) einen einzelnen Rotor umfasst; und

    eine Niederdruckturbinenwelle (40) einen Getriebeaufbau (48) rotiert, um den Rotor des Niederdruckkompressors (44) und den Rotor des Lüfters (42) mit einer niedrigeren Geschwindigkeit als die Niederdruckturbinenwelle (40) zu rotieren.


     
    2. Getriebeturbomaschine mit hohem Nebenstromverhältnis nach Anspruch 1, wobei der Lüfter (42) eine Welle (62) beinhaltet, die rotierbar durch eine Vielzahl von Kegelrollenlagern (38a) gestützt wird.
     
    3. Getriebeturbomaschine mit hohem Nebenstromverhältnis nach einem der vorhergehenden Ansprüche, wobei mindestens ein Drucklager (38b-38d) die Turbinenwelle (40) rotierbar stützt, und sich das mindestens eine Drucklager (38b-38d) axial zwischen dem Getriebeaufbau (48) und einer Turbine (28) befindet, die an der Turbinenwelle (40) befestigt ist.
     
    4. Getriebeturbomaschine mit hohem Nebenstromverhältnis nach Anspruch 3, wobei das mindestens eine Drucklager (38b-38d) ein bidirektionales Kegelrollenlager ist.
     
    5. Getriebeturbomaschine mit hohem Nebenstromverhältnis nach einem der vorhergehenden Ansprüche, wobei der Getriebeaufbau (48) ein Planetengetriebeaufbau ist.
     
    6. Getriebeturbomaschine mit hohem Nebenstromverhältnis nach Anspruch 5, wobei der Lüfterrotor (42) und der Niederdruckkompressorrotor (44) direkt mit einer zweiten Welle (62) verbunden sind, und ein axiales Ende der zweiten Welle (62) direkt mit einem Trägerzahnrad (64) des Getriebeaufbaus (48) verbunden ist.
     
    7. Getriebeturbomaschine mit hohem Nebenstromverhältnis nach einem der vorhergehenden Ansprüche, wobei sich der Niederdruckkompressorrotor (44) axial vor einem Lüfterrahmen (68) befindet, der sich radial über einen Lüfternebenstromkanal der Turbomaschine erstreckt.
     
    8. Verfahren zum Betreiben einer Turbomaschine mit hohem Nebenstromverhältnis, Folgendes umfassend:

    Rotieren eines Getriebeaufbaus (48) mit einer ersten Welle (40);

    Rotieren einer zweiten Welle (62) mit dem Getriebeaufbau (48); und

    Rotieren eines Lüfterrotors (42) zusammen mit einem Kompressorrotor eines Niederdruckkompressors (44) mit der zweiten Welle (62), wobei der Rotor des Niederdruckkompressors (44) und der Rotor des Lüfters (42) mit derselben Geschwindigkeit und in dieselbe Richtung rotieren, dadurch gekennzeichnet, dass:

    der Niederdruckkompressor (44) einen einzelnen Rotor umfasst; und

    die erste Welle (40) den Getriebeaufbau (48) rotiert, um den Rotor des Niederdruckkompressors (44) und den Rotor des Lüfters (42) mit einer niedrigeren Geschwindigkeit als die erste Welle (40) zu rotieren, wobei die erste Welle (40) eine Niederdruckturbinenwelle ist.


     


    Revendications

    1. Turbomachine à engrenages à taux de dilution élevé, comprenant :
    une section de compresseur (24), la section de compresseur (24) fournissant au moins un compresseur basse pression et un compresseur haute pression, dans laquelle un rotor du compresseur basse pression (44) tourne avec un rotor d'une soufflante (42) à la même vitesse et dans la même direction, caractérisée en ce que :

    le compresseur basse pression (44) comprend un rotor unique ; et

    un arbre de turbine basse pression (40) fait tourner une architecture à engrenages (48) pour faire tourner le rotor du compresseur basse pression (44) et le rotor de la soufflante (42) à une vitesse inférieure à celle de l'arbre de turbine basse pression (40).


     
    2. Turbomachine à engrenages à taux de dilution élevé selon la revendication 1, dans laquelle la soufflante (42) comporte un arbre (62) qui est supporté de manière rotative par une pluralité de paliers coniques (38a).
     
    3. Turbomachine à engrenages à taux de dilution élevé selon une quelconque revendication précédente, dans laquelle au moins un palier de poussée (38b-38d) supporte de manière rotative l'arbre de turbine (40), et l'au moins un palier de poussée (38b-38d) est situé axialement entre l'architecture à engrenages (48) et une turbine (28) fixée à l'arbre de turbine (40).
     
    4. Turbomachine à engrenages à taux de dilution élevé selon la revendication 3, dans laquelle l'au moins un palier de poussée (38b-38d) est un palier conique bidirectionnel.
     
    5. Turbomachine à engrenages à taux de dilution élevé selon une quelconque revendication précédente, dans laquelle l'architecture à engrenages (48) est une architecture à engrenages planétaires.
     
    6. Turbomachine à engrenages à taux de dilution élevé selon la revendication 5, dans laquelle le rotor de soufflante (42) et le rotor de compresseur basse pression (44) sont directement reliés à un second arbre (62), et une extrémité axiale du second arbre (62) est directement reliée à un pignon (64) de l'architecture à engrenages (48).
     
    7. Turbomachine à engrenages à taux de dilution élevé selon une quelconque revendication précédente, dans laquelle le rotor de compresseur basse pression (44) se trouve axialement à l'avant d'un cadre de soufflante (68) qui s'étend radialement à travers un passage de dérivation de soufflante de la turbomachine.
     
    8. Procédé de fonctionnement d'une turbomachine à engrenages à taux de dilution élevé, comprenant :

    la rotation d'une architecture à engrenages (48) avec un premier arbre (40) ;

    la rotation d'un second arbre (62) avec l'architecture à engrenages (48) ; et

    la rotation d'un rotor de soufflante (42) ainsi que d'un rotor de compresseur d'un compresseur basse pression (44) avec le second arbre (62), dans lequel le rotor du compresseur basse pression (44) et le rotor de la soufflante (42) tournent à la même vitesse et dans la même direction, caractérisé en ce que :

    le compresseur basse pression (44) comprend un rotor unique ; et

    le premier arbre (40) fait tourner l'architecture à engrenages (48) pour faire tourner le rotor du compresseur basse pression (44) et le rotor de la soufflante (42) à une vitesse inférieure à celle du premier arbre (40), dans lequel le premier arbre (40) est un arbre de turbine basse pression.


     




    Drawing






    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description