(19)
(11)EP 2 809 468 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
17.06.2020 Bulletin 2020/25

(21)Application number: 13705026.6

(22)Date of filing:  29.01.2013
(51)International Patent Classification (IPC): 
B22F 9/14(2006.01)
C23C 14/00(2006.01)
H01J 37/32(2006.01)
B22F 1/00(2006.01)
(86)International application number:
PCT/NL2013/050049
(87)International publication number:
WO 2013/115644 (08.08.2013 Gazette  2013/32)

(54)

SPARK ABLATION DEVICE AND METHOD FOR GENERATING NANOPARTICLES

FUNKENABLATIONSVORRICHTUNG UND VERFAHREN ZUR HERSTELLUNG VON NAOPARTIKELN

DISPOSITIF D'ABLATION PAR ÉTINCELLE ET MÉTHODE DE FABRICATION DE NANOPARTICULES


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 31.01.2012 NL 2008208

(43)Date of publication of application:
10.12.2014 Bulletin 2014/50

(73)Proprietor: VSParticle Holding B.V.
2629 JD Delft (NL)

(72)Inventors:
  • SCHMIDT-OTT, Andreas
    NL-2600 AA Delft (NL)
  • PFEIFFER, Tobias Vincent
    NL-2600 AA Delft (NL)

(74)Representative: Van Breda, Jacobus 
Octrooibureau Los & Stigter B.V. Weteringschans 96
1017 XS Amsterdam
1017 XS Amsterdam (NL)


(56)References cited: : 
US-A- 4 645 895
US-A1- 2003 230 554
US-A1- 2005 034 668
US-A1- 2008 143 260
US-A1- 2001 003 272
US-A1- 2005 034 668
US-A1- 2005 061 785
US-A1- 2008 166 500
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description


    [0001] The invention relates to a spark ablation device and to a method for generating nanoparticles.

    [0002] Ablation devices based on electrode vaporisation by spark discharge are known in the prior art; see e.g. S. Schwyn et al., J. Aerosol Sci, 1988, 19(5), 639. The spark generator of such devices typically comprises a power source, an RLC circuit (i.e. a circuit comprising a resistor, an inductor and a capacitor) and a pair of electrodes. The capacitor is continually charged by the power source; when the breakdown voltage is reached, discharge occurs between the electrodes. The spark discharge is repetitive, and between sparks there is no discharge. Components and conditions are chosen such that the energy of the discharge is sufficient to cause electrode ablation. Electrode ablation is the evaporation/vaporisation of the electrode through the presence of plasma i.e. as a result of heating and ion bombardment. The power of the discharge is the product of voltage and current.

    [0003] Disadvantages of state of the art devices and methods for spark ablation are: (a) their limited nanoparticle production rates: typical maximum production rates are in the range of milligrams per hour. This is due to the low spark repetition frequencies of conventional spark generator circuits; (b) as the frequency is increased local heating of the electrodes occurs as subsequent sparks hit the same point on the electrode surface; this leads to emission of (relative to nanoparticles) large particles formed from dispersions of melted material; (c) above a certain frequency, discharge becomes continuous and particle generation stops or desired particle characteristics are lost.

    [0004] Each of US2005/034668 and US2008/166500 disclose a spark ablation device for generating nanoparticles comprising a spark generator; the spark generator comprising first and second electrodes and at least one power source which is arranged to be operative for maintaining a discharge between the first and second electrodes. A spark generator is an electrical circuit arranged for generating sparks between electrodes of the spark generator. In the device of US2005/034668 the electrodes are hollow and connected to a gas supply. Further in this device a ring shaped electromagnet is applied providing a magnetic field in the discharge area between the first and second electrodes. Since in such a ring shaped electromagnet the magnetic field lines pass through in parallel with the core axis of the magnet, the magnetic field lines in US2005/034668 are predominantly parallel with the electrical field lines that entertain the discharge.

    [0005] US 2003/0230554 discloses an apparatus for synthesizing nanopowders, which comprises in anode electrode and a cathode electrode which are comprised of precursor material, and which are substantially axially aligned but spaced apart within a gaseous atmosphere; and a power supply which is in electrical communication with the anode electrode and the cathode electrode, and which effects a high-power pulsed electrical discharge to ablate said anode electrode and said cathode electrode to produce said nanopowders.

    [0006] US 2005/0061785 relates to a method and system for synthesizing nanopowders with reduced nanoparticles agglomeration, which comprises at least one member of a nanopowder precursor material immersed in a gaseous atmosphere; means for applying a magnetic field to said at least one member in near proximity of an area of interaction of said at least one member with a plasma; power means in an electrical connection with said at least one member and said means for applying a high magnetic field for creating said plasma in the presence of said high magnetic field to produce said nanopowder; and means for applying a coating precursor material to said nanopowder to reduce nanoparticle agglomeration.

    [0007] US2008/0143260 relates to a vacuum plasma generator for providing a plasma discharge for treating workpieces by way of a pulsed plasma process in a vacuum chamber. In such plasma processes it is often desirable to superimpose a pulse voltage onto a DC operated plasma discharge. Although the apparatus is used under vacuum and does not have an outlet to gather any evaporated matter, it is considered to be suitable for generating nanoparticles when used under appropriate conditions.

    [0008] It is an object of the invention to provide a spark ablation device and method which overcome one or more problems of the devices and methods of the prior art. The object of the invention is achieved by providing a device according to claim 1 and a method according to claim 6. Spark ablation involves applying electrical energy to create sparks between pairs of electrodes. Electrode material is vaporised at the electrode or electrodes from which each high-energy spark originates. Under suitable conditions, nanoparticles are formed from the vaporized material. Nanoparticles as understood in this application are particles having a diameter up to a maximum of about 1 µm.

    [0009] In a first aspect, the invention relates to a spark ablation device for generating nanoparticles provided with an inlet/outlet for gas and comprising a spark generator; the spark generator comprising first and second electrodes and at least one power source which is arranged to be operative for maintaining a discharge between the first and second electrodes, wherein the power source comprises a continuous DC or AC power source, supplemented with a source for pulsed power, and wherein the device is provided with an outlet for the generated nanoparticles, and said power source is configured for repetitively and intermittently varying its power output between a first energy level wherein a continuous discharge is maintained between the electrodes of the spark ablation device and a second energy level higher than the first energy level for ablating at least a portion of the electrodes, and wherein the first energy level is selected at a level insufficient to generate nanoparticles, and the second energy level is selected at a level to unavoidably generate nanoparticles.

    [0010] Providing an at least substantially continuous discharge or simmer discharge between the electrodes and superimposing a pulsed discharge thereover results in a number of advantages: (i) lower voltages can be applied as the break-down voltage between the electrodes does not have to be reached; (ii) each spark has the same "starting" conditions, thus constant particle characteristics and a narrow distribution of particle sizes can be achieved; (iii) very short, high power discharge pulses are possible, but with the average power being low enough to avoid cooling problems; (iv) sufficiently high pulse energies can be used to allow simultaneous evaporation of materials of different boiling points wherein the electrodes are sintered electrodes; (v) the RLC circuits commonly applied allow repetition frequencies up to only 1000 Hz, whereas for the method and device of the present invention this limit is not applicable and thus much higher nanoparticle production rates are possible, such as at least a factor of 10 greater; (vi) for most electrode arrangements, the position where the simmer discharge meets the electrodes fluctuates; subsequent sparks do not strike repetitively at the same point on the electrodes which would otherwise lead to non-even evaporation and formation of liquid pools and therewith large particles, and; (vii) the average electric field in the spark generator is smaller than with conventional circuits, because the otherwise required break-down voltage between the electrodes does not need to be reached. This reduces particle loss by electrostatic precipitation.

    [0011] It is possible to implement the functionality of the spark ablation device such that only a single power source is needed. According to the invention, the at least one power source comprises a pulse generator for repetitively increasing the energy of the discharge. Various examples of suitable pulse generators are known to a person of skill in the art.

    [0012] As mentioned above the at least one power source comprises a continuous DC power source or a continuous AC power source, supplemented with pulsed power from the same or another power source. The continuous power source may comprise one or more elements that can store electrical energy, such as a capacitor or a coil. The pulsed power source has the function of periodically supplying energy for the production of nanoparticles as well as periodically providing recharging energy for the said elements that can store electrical energy. Preferably the at least one power source is selected to be (a) a current source, or (b) a voltage source.

    [0013] In a further preferred embodiment, the spark ablation device further comprises an ignition circuit for initial ignition of the continuous discharge.

    [0014] According to the invention, the first and/or second electrodes are hollow and connected or connectable to a gas supply.

    [0015] Hollow electrodes that are connected or are connectable to a gas supply, are advantageous since they allow the addition or removal of reactants or products e.g. nanoparticles once formed are removed via one or both of the electrodes. The gas flow can be held at a temperature providing effective cooling of the electrodes to avoid heating problems. The tube shape of the electrodes provides an additional advantage when combined with a magnetic field, as described below, because the resulting toroidal gap allows spinning of the discharge within this torus.

    [0016] According to US2005/034668 the spark generator may comprise means to provide a magnetic field in a discharge area between the first and second electrodes. In this known device the magnetic field lines are predominantly parallel to the electrical field lines.

    [0017] In a third aspect of the invention the means to provide a magnetic field provide a magnetic field with field lines that are substantially perpendicular to the electrical field lines that cause the discharge between the electrodes, so as to influence the location on the first and second electrodes at which discharge occurs. It is possible that the magnetic field lines of the magnetic field are oriented oblique with respect to the electrical field lines between the electrodes, provided that there is a notable component of these field lines that are substantially perpendicular to the electrical field lines causing the discharge between the electrodes.

    [0018] Through providing a magnetic field with magnetic field lines that are at least in part predominantly perpendicular to the electrical field lines, the position at which the continuous discharge meets the electrodes is constantly varied. This results in the pulsed discharges occurring at different positions and ensures a more even electrode evaporation. Wherein the electrodes are hollow (tube-shaped) and the spark generator comprises means to provide said magnetic field relative to the first and/or second electrodes, this advantageously permits spinning of the discharge.

    [0019] The means to provide a magnetic field may be either a permanent magnet or magnets, an electric magnet or magnets, or a combination thereof.

    [0020] Wherein the means for providing a magnetic field are embodied as electric magnets, this allows the magnetic field to be switched on only during certain periods in each cycle. The magnetic field can then for example be switched off during the pulse discharges so as to prevent them from being disturbed thereby. Permanent magnets constitute a mechanically simpler solution.

    [0021] In a fourth aspect, the invention relates to a method for generating nanoparticles with a spark ablation device comprising electrodes for providing sparks by repetitively providing pulsed energy to the electrodes, wherein a substantially continuous discharge is maintained between the electrodes of the spark ablation device, the energy level of which discharge is intermittently increased from a first energy level to a second energy level higher than the first energy level for ablating a portion of the electrodes.

    [0022] The invention will hereafter be further elucidated with reference to the drawing of Figure 1 showing schematically an example of a spark ablation device according to the invention. It should be appreciated that this example is provided for illustrative purposes only and is not to be considered limiting of the invention.

    [0023] With reference to the drawing:
    Figure 1 shows a spark ablation device 1 for generating nanoparticles comprising a spark generator 2; nanoparticles are generated in the region A. It is remarked that although not specifically shown, the device also includes an outlet for the generated nanoparticles.

    [0024] The spark generator comprising first and second electrodes 3a, 3b, and the spark generator 2 further comprises at least one power source 4 which is arranged to be operative at a first energy level for maintaining a discharge between the first and second electrodes 3a, 3b. The power source 4 is configured for repetitively varying its power output between a first energy level and a second energy level to arrange that a substantially continuous discharge is maintained between the electrodes 3a, 3b of the spark ablation device 1 at the first energy level. The energy level of the discharge is intermittently increased from said first energy level to a second energy level higher than the first energy level for ablating at least a portion of the electrodes 3a, 3b.

    [0025] For repetitively increasing the energy of the discharge the at least one power source 4 comprises a pulse generator 5. The at least one power source 4 comprises for instance a continuous DC power source and/or a continuous AC power source, supplemented with a source for pulsed power, wherein preferably the at least one power source is selected to be either (a) a current source, or (b) a voltage source.

    [0026] According to the invention, the first and second electrodes 3a, 3b are hollow i.e. they are provided with conduits 6a, 6b running the length of each electrode 3a, 3b, and connected to a gas supply G. Also an (additional) inlet/outlet for the gas will be present. Such an arrangement allows the addition or removal of reactants or products e.g. nanoparticles once formed are removed via one or both of the electrodes 3a, 3b. One or more additional gas flows into and/or out of zone A may further be provided for the same purpose.

    [0027] According to one of the aspects of the invention, the spark ablation device 1 comprises means to provide a magnetic field (not shown) arranged relative to the first and second electrodes 3a, 3b to influence the location on the electrodes 3a, 3b at which the discharge occurs. The means to provide a magnetic field provide a magnetic field with field lines preferably substantially perpendicular to the discharge.

    [0028] The magnets could be embodied as rings around the electrodes. Permanent ring-shaped or tube-shaped magnets magnetized in the direction of the axis of the electrodes are suitable. Alternatively, electrical coils providing a magnetic field could be used and positioned accordingly.

    [0029] It is expressly pointed out that the inventive merit that is embodied in the invention is exclusively determined by the appended claims. In connection therewith the claims should not be deemed limited to merely the provided schematic example of an embodiment of the invention. On the contrary, the discussed embodiment merely serves to elucidate possible ambiguities in the claims without intention to restrict the scope of protection of the claims to this embodiment only.


    Claims

    1. A spark ablation device (1) for generating nanoparticles provided with an inlet/outlet for gas and comprising a spark generator (2); the spark generator comprising first and second electrodes (3a, 3b), wherein the first and/ or second electrodes are hollow and connected or connectable to a gas supply, and at least one power source (4) which is arranged to be operative for maintaining a discharge between the first and second electrodes (3a, 3b), wherein the power source (4) comprises a continuous DC or AC power source, supplemented with a source for pulsed power, characterized in that the device is provided with an outlet for the generated nanoparticles, wherein the generated nanoparticles are removed via one or both of the electrodes (3a, 3b) and said power source is configured for repetitively and intermittently varying its power output between a first energy level wherein a continuous discharge is maintained between the electrodes (3a, 3b) of the spark ablation device (1) and a second energy level higher than the first energy level for ablating at least a portion of the electrodes (3a, 3b), and wherein the first energy level is selected at a level insufficient to generate nanoparticles, and the second energy level is selected at a level to unavoidably generate nanoparticles, wherein the at least one power source (4) comprises a pulse generator (2) for repetitively increasing the energy of the discharge.
     
    2. A spark ablation device according claim 1, characterized in that the at least one power source (4) comprises (a) a current source, or (b) a voltage source.
     
    3. A spark ablation device according to one or more of the preceding claims, characterized in that the spark ablation device comprises an ignition circuit for initial ignition of the continuous discharge.
     
    4. A spark ablation device according to one or more of the preceding claims, wherein the spark generator (2) further comprises means to provide a magnetic field in a discharge area between the first and second electrodes (3a, 3b), characterized in that the means to provide a magnetic field provide a magnetic field with field lines perpendicular to the electrical field lines causing the discharge between the electrodes (3a, 3b) so as to influence the location on the first and second electrodes (3a, 3b) at which discharge occurs.
     
    5. A spark ablation device according to claim 4, characterized in that the electrodes are provided with magnets or electrical coils to provide the magnetic field lines.
     
    6. A method for generating nanoparticles with a spark ablation device (1) comprising a first and a second electrodes (3a, 3b) for providing sparks by repetitively providing pulsed energy to the electrodes (3a, 3b), and by providing gas to an inlet/outlet of the spark ablation device (1), wherein the first and/ or the second electrodes are hollow and connected to a gas supply, characterized in that a continuous discharge or simmer discharge is maintained between the electrodes (3a, 3b) of the spark ablation device (1) at a first energy level derived from a continuous DC or AC power source, and supplementing pulsed power from the same or another power source, for repetitively varying power output between a first energy level and a second energy level to arrange that a continuous discharge is maintained between the electrodes (3a, 3b) of the spark ablation device at the first energy level, and wherein the energy level of the discharge is intermittently increased from said first energy level to a second energy level higher than the first energy level for ablating at least a portion of the electrodes (3a, 3b), wherein the first energy level is selected at a level insufficient to generate nanoparticles, and the second energy level is selected at a level to unavoidably generate nanoparticles, and providing the generated nanoparticles to an outlet of the spark ablation device (1), wherein the generated nanoparticles are removed via one or both of the electrodes (3a, 3b) and wherein the energy of the discharge is intermittently increased by providing electrical pulses to the electrodes (3a, 3b).
     
    7. A method according to claim 6, characterized in that the electrodes (3a, 3b) of the spark ablation device (1) are subjected to a magnetic field for maintaining uniform ablation of the electrodes (3a, 3b) of the spark ablation device (1).
     


    Ansprüche

    1. Funkenablationsvorrichtung (1) zum Erzeugen von Nanopartikeln, die mit einem Einlass/Auslass für Gas versehen ist und einen Funkengenerator (2) aufweist;
    wobei der Funkengenerator erste und zweite Elektroden (3a,3b) aufweist, wobei die ersten und/oder zweiten Elektroden hohl und mit einer Gasversorgung verbunden oder verbindbar sind, und mit wenigstens einer Energiequelle (4), die dafür vorgesehen ist, eine Entladung zwischen den ersten und zweiten Elektroden (3a,3b) funktionsfähig aufrechterhalten zu können, wobei die Energiequelle (4) eine Dauerausgangs-Gleichstrom- oder -Wechselstrom-Energiequelle aufweist, die mit einer Quelle für gepulsten Strom versehen ist, dadurch gekennzeichnet, dass
    die Vorrichtung mit einem Auslass für die erzeugten Nanopartikel versehen ist, wobei die erzeugten Nanopartikel mittels einer oder beiden der Elektroden (3a,3b) entfernt werden, und wobei die Energiequelle so ausgebildet ist, dass sie in der Lage ist, ihre Leistungsabgabe zwischen einem ersten Energieniveau, in dem eine kontinuierliche Entladung zwischen den Elektroden (3a,3b) der Funkenablationsvorrichtung (1) aufrechterhalten wird, und einem zweiten Energieniveau, das höher ist als das erste Energieniveau, zum Abtragen wenigstens eines Teils der Elektroden (3a,3b) sich wiederholend und intermittierend zu variieren, und wobei das erste Energieniveau auf einem solchen Niveau ausgewählt ist, das nicht ausreichend ist, um Nanopartikel zu erzeugen, und wobei das zweite Energieniveau auf einem solchen Niveau ausgewählt ist, um zwangsläufig Nanopartikel zu erzeugen, wobei die wenigstens eine Energiequelle (4) einen Pulsgenerator (2) zum sich wiederholenden Erhöhen der Energie des Entladens aufweist.
     
    2. Funkenablationsvorrichtung nach Anspruch 1,
    dadurch gekennzeichnet, dass
    die wenigstens eine Energiequelle (4) a) eine Stromquelle oder b) eine Spannungsquelle aufweist.
     
    3. Funkenablationsvorrichtung nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    die Funkenablationsvorrichtung einen Zündkreis zum erstmaligen Zünden der kontinuierlichen Entladung aufweist.
     
    4. Funkenablationsvorrichtung nach einem der vorhergehenden Ansprüche, wobei der Funkengenerator (2) des Weiteren eine Einrichtung zum Erzeugen eines Magnetfelds in einem Entladungsbereich zwischen den ersten und zweiten Elektroden (3a,3b) aufweist,
    dadurch gekennzeichnet, dass
    die Einrichtung zum Erzeugen eines Magnetfelds ein Magnetfeld mit Feldlinien erzeugt, die senkrecht zu den elektrischen Feldlinien sind, welche die Entladung zwischen den Elektroden (3a,3b) bewirken, um die Stelle auf den ersten und zweiten Elektroden (3a,3b) zu beeinflussen, an denen die Entladung auftritt.
     
    5. Funkenablationsvorrichtung nach Anspruch 4,
    dadurch gekennzeichnet, dass
    die Elektroden mit Magneten oder elektrischen Spulen versehen sind, um die Magnetfeldlinien zu erzeugen.
     
    6. Verfahren zum Erzeugen von Nanopartikeln mittels einer Funkenablationsvorrichtung (1), die eine erste und eine zweite Elektrode (3a,3b) zum Erzeugen von Funken durch wiederholtes Erzeugen von gepulster Energie zu den Elektroden (3a,3b) und durch Zuführen von Gas zu einem Einlass/Auslass der Funkenablationsvorrichtung (1) aufweist, wobei die ersten und/oder die zweiten Elektroden (3a,3b) hohl und mit einer Gasversorgung verbunden sind,
    dadurch gekennzeichnet, dass
    eine kontinuierliche Entladung oder langsame Entladung zwischen den Elektroden (3a,3b) der Funkenablationsvorrichtung (1) auf einem ersten Energieniveau, das von einer Dauerausgangs-Gleichstrom- oder -Wechselstrom-Energiequelle erlangt wird, aufrechterhalten wird, und gepulste Leistung von derselben oder einer anderen Energiequelle zugeführt wird, um die Leistungsabgabe zwischen einem ersten Energieniveau und einem zweiten Energieniveau sich wiederholend zu variieren, um zu erreichen, dass eine kontinuierliche Entladung zwischen den Elektroden (3a,3b) der Funkenablationsvorrichtung auf dem ersten Energieniveau aufrechterhalten wird, und wobei das Energieniveau der Entladung von dem ersten Energieniveau zu einem zweiten Energieniveau, das höher als das erste Energieniveau ist, intermittierend erhöht wird, um wenigstens einen Teil der Elektroden (3a,3b) abzutragen, wobei das erste Energieniveau auf einem solchen Niveau ausgewählt wird, das nicht ausreichend ist, um Nanopartikel zu erzeugen, und wobei das zweite Energieniveau auf einem solchen Niveau ausgewählt wird, dass zwangsläufig Nanopartikel erzeugt werden, und Zuführen der erzeugten Nanopartikel zu einem Auslass der Funkenablationsvorrichtung (1), wobei die erzeugten Nanopartikel mittels einer oder beider der Elektroden (3a,3b) entfernt werden, und wobei die Energie der Entladung intermittierend durch Erzeugen von elektrischen Pulsen zu den Elektroden (3a,3b) erhöht wird.
     
    7. Verfahren nach Anspruch 6,
    dadurch gekennzeichnet, dass
    die Elektroden (3a,3b) der Funkenablationsvorrichtung (1) einem Magnetfeld ausgesetzt werden, um einen gleichmäßigen Abtrag der Elektroden (3a,3b) der Funkenablationsvorrichtung (1) aufrecht zu erhalten.
     


    Revendications

    1. Dispositif d'ablation par étincelle (1) destiné à générer des nanoparticules muni d'une admission/d'une évacuation destinées à un gaz et comprenant un générateur d'étincelle (2) ; le générateur d'étincelle comprenant une première et une seconde électrodes (3a, 3b), où la première et/ou la seconde électrodes sont creuses et sont reliées ou peuvent être reliées à une alimentation en gaz, et au moins une source d'énergie (4) qui est prévue pour maintenir une décharge entre la première et la seconde électrodes (3a, 3b), où la source d'énergie (4) comprend une source d'énergie CC ou CA continue, complétée par une source d'énergie pulsée, le dispositif étant caractérisé en ce qu'il est muni d'une évacuation destinée aux nanoparticules générées, où les nanoparticules générées sont supprimées via l'une ou les deux des électrodes (3a, 3b) et ladite source d'énergie est configurée pour faire varier de manière répétée et intermittente sa puissance de sortie entre un premier niveau d'énergie selon lequel une décharge continue est maintenue entre les électrodes (3a, 3b) du dispositif d'ablation par étincelle (1) et un second niveau d'énergie supérieur au premier niveau d'énergie afin d'ablater au moins une partie des électrodes (3a, 3b), et où le premier niveau d'énergie est choisi à un niveau insuffisant pour générer des nanoparticules, et le second niveau d'énergie est choisi à un niveau de façon qui génère inévitablement des nanoparticules, où l'au moins une source d'énergie (4) comprend un générateur d'impulsion (2) destiné à augmenter de manière répétée l'énergie de la décharge.
     
    2. Dispositif d'ablation par étincelle selon la revendication 1, caractérisé en ce que l'au moins une source d'énergie (4) comprend (a) une source de courant, ou (b) une source de tension.
     
    3. Dispositif d'ablation par étincelle selon une ou plusieurs des revendications précédentes, le dispositif d'ablation par étincelle étant caractérisé en ce qu'il comprend un circuit d'allumage destiné à l'allumage initial de la décharge continue.
     
    4. Dispositif d'ablation par étincelle selon une ou plusieurs des revendications précédentes, dans lequel le générateur d'étincelle (2) comprend en outre un moyen destiné à fournir un champ magnétique dans une zone de décharge entre la première et la seconde électrodes (3a, 3b), caractérisé en ce que le moyen destiné à fournir un champ magnétique fournit un champ magnétique avec des lignes de champ perpendiculaires aux lignes de champ électrique provoquant la décharge entre les électrodes (3a, 3b) de façon à influencer l'emplacement sur la première et la seconde électrodes (3a, 3b) auquel la décharge se produit.
     
    5. Dispositif d'ablation par étincelle selon la revendication 4, caractérisé en ce que les électrodes sont munies d'aimants ou de bobines électriques destinés à fournir les lignes de champ magnétique.
     
    6. Procédé de génération de nanoparticules avec un dispositif d'ablation par étincelle (1) comprenant une première et une seconde électrodes (3a, 3b) destinées à fournir des étincelles en fournissant de manière répétée une énergie pulsée aux électrodes (3a, 3b), et en fournissant un gaz à une admission/évacuation du dispositif d'ablation par étincelle (1), où la première et/ou la seconde électrodes sont creuses et sont reliées à une alimentation en gaz, caractérisé en ce qu'une décharge continue ou une décharge d'entretien est maintenue entre les électrodes (3a, 3b) du dispositif d'ablation par étincelle (1) à un premier niveau d'énergie dérivé d'une source d'énergie CC ou CA continue, et en complétant par de l'énergie pulsée qui provient de la même source d'énergie ou d'une autre, afin de faire varier de manière répétée la puissance de sortie entre un premier niveau d'énergie et un second niveau d'énergie de sorte qu'une décharge continue soit maintenue entre les électrodes (3a, 3b) du dispositif d'ablation par étincelle au premier niveau d'énergie, et où le niveau d'énergie de la décharge est augmenté de manière intermittente en passant dudit premier niveau d'énergie à un second niveau d'énergie supérieur au premier niveau d'énergie afin d'ablater au moins une partie des électrodes (3a, 3b), où le premier niveau d'énergie est choisi à un niveau insuffisant pour générer des nanoparticules, et le second niveau d'énergie est choisi à un niveau qui génère inévitablement des nanoparticules, et en fournissant les nanoparticules générées à une évacuation du dispositif d'ablation par étincelle (1), où les nanoparticules générées sont supprimées via l'une ou les deux des électrodes (3a, 3b), et où l'énergie de la décharge est augmentée de manière intermittente en fournissant des impulsions électriques aux électrodes (3a, 3b).
     
    7. Procédé selon la revendication 6, caractérisé en ce que les électrodes (3a, 3b) du dispositif d'ablation par étincelle (1) sont soumises à un champ magnétique afin de maintenir une ablation uniforme des électrodes (3a, 3b) du dispositif d'ablation par étincelle (1).
     




    Drawing








    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description




    Non-patent literature cited in the description