(19)
(11)EP 2 810 368 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
03.03.2021 Bulletin 2021/09

(21)Application number: 13743001.3

(22)Date of filing:  23.01.2013
(51)International Patent Classification (IPC): 
H03L 7/099(2006.01)
H03B 5/12(2006.01)
(86)International application number:
PCT/KR2013/000537
(87)International publication number:
WO 2013/115518 (08.08.2013 Gazette  2013/32)

(54)

VOLTAGE CONTROLLED OSCILLATOR USING VARIABLE CAPACITOR AND PHASE LOCKED LOOP USING THE SAME

SPANNUNGSGESTEUERTER OSZILLATOR MIT VARIABLEM KONDENSATOR UND PHASENREGELKREIS DAMIT

OSCILLATEUR COMMANDÉ EN TENSION UTILISANT UN CONDENSATEUR VARIABLE ET BOUCLE À VERROUILLAGE DE PHASE UTILISANT CELUI-CI


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 30.01.2012 KR 20120008866

(43)Date of publication of application:
10.12.2014 Bulletin 2014/50

(73)Proprietor: Samsung Electronics Co., Ltd.
Suwon-si, Gyeonggi-do 443-742 (KR)

(72)Inventor:
  • LEE, Jong-Woo
    Seongnam-si Gyeonggi-do 463-722 (KR)

(74)Representative: Nederlandsch Octrooibureau 
P.O. Box 29720
2502 LS The Hague
2502 LS The Hague (NL)


(56)References cited: : 
WO-A1-00/67325
JP-A- 2005 303 582
US-A1- 2005 174 184
US-A1- 2008 297 267
US-A1- 2010 102 894
US-A1- 2010 283 551
CN-A- 101 207 364
US-A1- 2003 067 360
US-A1- 2008 012 654
US-A1- 2009 066 431
US-A1- 2010 271 137
US-A1- 2011 267 150
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    Technical Field



    [0001] The present invention relates to a Voltage Controlled Oscillator (VCO). More particularly, the present invention relates to a VCO for determining an output frequency by controlling a capacitor value in a cardinal manner.

    Background Art



    [0002] A VCO is a device for outputting a frequency that depends on an externally applied voltage. The VCO is primarily used for an analog sound synthesis apparatus, a mobile communication terminal, and the like. The VCO used for a sound synthesis apparatus generates a sine wave, a sawtooth wave, a pulse wave, a square wave, a triangle wave, and the like to generate a basic sound. The VCO is used for a Phase Locked Loop (PLL) module in a mobile communication terminal to serve as a local oscillator for converting a frequency into a Radio Frequency (RF) or an Intermediate Frequency (IF).

    [0003] The VCO includes an inductor (L), a capacitor (C), and a negative-gm unit. In an LC-VCO, for realizing negative-gm, an N-type Metal-Oxide-Semiconductor (NMOS) transistor and a P-type Metal-Oxide-Semiconductor (PMOS) transistor are connected in a cross-coupled pair. Because the LC-VCO can obtain a negative-gm that is twice greater than a structure that uses only an NMOS, power consumption may be reduced.

    [0004] In addition, in an LC-VCO circuit, a resonance frequency has a value inversely proportional to

    According to the related art, an inductor is fixed as a constant, and an output frequency is controlled by changing a capacitor value. A frequency range is set using a capacitor band having a binary structure and a switch device, and a fine frequency control is performed using a varactor diode, and the like.

    [0005] According to the related art, a frequency of a VCO in a wireless terminal corresponds to a log scale. The frequency of the VCO is proportional to

    depending on a digital code (k) and changes non-linearly in the log scale.

    [0006] FIG. 1 is a graph illustrating a frequency of a voltage controlled oscillator that depends on a digital code according to the related art.

    [0007] Referring to FIG. 1, an x axis represents a digital code value determining a capacitor value, and a y axis represents an output frequency of a VCO that depends on a capacitor value which varies according to a digital code value.

    [0008] FIG. 1 illustrates an example in which when the digital code changes from 1 to 256, a frequency of a VCO changes by 0.1∼3 GHz. As illustrated in FIG. 1, as a digital code increases, the frequency of the VOC decreases non-linearly in the log scale.

    [0009] Assuming that a digital control code is k and a capacitor minimum unit is C0, capacitance of a capacitor bank becomes kC0, and accordingly the frequency of the VCO has a value proportional to

    Because capacitance change of a varactor diode is less than 100 fF, a minimum unit C0 should be smaller than 100 fF, and a capacitor band of about 16 bits is required to have a range controlling all of 0.7∼3 GHz which are commercial wireless terminal frequencies. However, when a capacitor band becomes 16 bits, a phase noise characteristic is deteriorated very much by parasitic capacitance by a switch device. In addition, accuracy is lowered by a capacitor band change of 216. Therefore, a circuit is designed using two or more VCOs that depend on a frequency range so that the controller is controlled depending on a 7∼8-bit control code.

    [0010] However, because two or more VCOs are used, a circuit area increases at least twofold. Consequently, manufacturing costs increase and power efficiency of the circuit is reduced.

    [0011] Therefore, a need exists for an apparatus, system and method for providing a VCO circuit that effectively controls a frequency via a capacitor bank whose frequency range linearly corresponds to dB unit given as a log scale.

    [0012] The above information is presented as background information only to assist with an understanding of the present disclosure. No determination has been made, and no assertion is made, as to whether any of the above might be applicable as prior art with regard to the present invention.

    [0013] Document US 2009/066431 A1 a wide-band voltage controlled oscillator that includes a cross-connected transistors for providing a stable oscillating signal, an inductor unit for providing an inductance for determining a resonance frequency, a varactor bank including a plurality of switchable variable-capacitance elements parallely connected to the inductor unit and having a varactor capacitance varying with the first switching signal and a tuning voltage, a subsection capacitor bank including a plurality of switchable capacitor elements parallely connected to the inductor unit and having predetermined capacitances for grouping frequency sections, and a binary-weighted capacitor bank including a plurality of binary-weighted capacitor arrays parallel connected to the inductor unit and a bank selector for selecting one of the binary-weighted capacitor arrays, wherein each binary-weighted capacitor arrays includes a plurality of parallely connected switchable capacitor elements selectively switched on by a third switching signal to determine a variable weighted capacitance of the tunable binary-weighted capacitor bank.

    [0014] Similarly, documents US 2005/174184 A1, WO 00/67325 A1, US 2010/102894 A1, US 2011/267150 A1, US 2010/271137 A1 disclose voltage controlled oscillators with a variable capacitance based on binary weighted capacitance values.

    Disclosure of Invention


    Solution to Problem



    [0015] Aspects of the present invention are to address at least the above-mentioned problems and/or disadvantages and to provide at least the advantages described below. Accordingly, an aspect of the present invention is to provide a Voltage Controlled Oscillator (VCO) circuit that can effectively control a frequency via a capacitor bank whose frequency range linearly corresponds to dB unit given as a log scale.

    [0016] In accordance with an aspect of the present invention, a variable capacitor is provided as defined in claim 1.

    [0017] In accordance with another aspect of the present invention, a VCO is provided according to claim 4.

    [0018] In accordance with another aspect of the present invention, a Phase Locked Loop (PLL) is provided according to claim 5.

    [0019] Other aspects, advantages, and salient features of the invention will become apparent to those skilled in the art from the following detailed description, which, taken in conjunction with the annexed drawings, discloses exemplary embodiments of the invention.

    Brief Description of Drawings



    [0020] The above and other aspects, features, and advantages of certain exemplary embodiments of the present invention will be more apparent from the following description taken in conjunction with the accompanying drawings in which:

    FIG. 1 is a graph illustrating a frequency of a voltage controlled oscillator that depends on a digital code according to the related art;

    FIG. 2 is a circuit diagram illustrating a Voltage Controlled Oscillator (VCO) for exponentially controlling a capacitor value determining a frequency according to an exemplary embodiment of the present invention;

    FIG. 3 is a view illustrating a variable capacitor bank exponentially controlled according to an exemplary embodiment of the present invention;

    FIG. 4 is a block diagram illustrating a Phase Locked Loop (PLL) module according to an exemplary embodiment of the present invention; and

    FIG. 5 is a graph illustrating a frequency relation between a digital code and a VCO determining a variable capacitor value according to an exemplary embodiment of the present invention.



    [0021] Throughout the drawings, like reference numerals will be understood to refer to like parts, components and structures.

    Best Mode for Carrying out the Invention



    [0022] The following description with reference to the accompanying drawings is provided to assist in a comprehensive understanding of exemplary embodiments of the invention as defined by the claims and their equivalents. It includes various specific details to assist in that understanding but these are to be regarded as merely exemplary. Accordingly, those of ordinary skill in the art will recognize that various changes and modifications of the embodiments described herein can be made without departing from the scope of the invention. In addition, descriptions of well-known functions and constructions are omitted for clarity and conciseness.

    [0023] The terms and words used in the following description and claims are not limited to the bibliographical meanings, but, are merely used by the inventor to enable a clear and consistent understanding of the invention. Accordingly, it should be apparent to those skilled in the art that the following description of exemplary embodiments of the present invention are provided for illustration purpose only and not for the purpose of limiting the invention as defined by the appended claims and their equivalents.

    [0024] It is to be understood that the singular forms "a," "an," and "the" include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to "a component surface" includes reference to one or more of such surfaces.

    [0025] Hereinafter, a Voltage Controlled Oscillator (VCO) for determining an output frequency by controlling a capacitor value in a cardinal manner is described.

    [0026] FIG. 2 is a circuit diagram illustrating a Voltage Controlled Oscillator (VCO) for exponentially controlling a capacitor value determining a frequency according to an exemplary embodiment of the present invention.

    [0027] Referring to FIG. 2, the VCO 200 includes a resonance circuit 220 for oscillating a frequency that depends on first and second control voltages VC1 and VC2, and first and second amplifier circuits 210 and 230 for differentially amplifying an oscillation frequency output from the resonance circuit 220.

    [0028] The first amplifier circuit 210 includes first and second PMOS transistor PM1 and PM2, and the second amplifier circuit 230 includes first and second NMOS transistors NM1 and NM2. The resonance circuit 220 includes a variable capacitor 222 and an inductor 224 connected in parallel.

    [0029] A connection relation of each element is described below in more detail.

    [0030] The first PMOS transistor PM1 is connected between a power voltage VOD and a first node N1, and the second PMOS transistor PM2 is connected between the power voltage VDD and a second node N2. Also, the resonance circuit 220 including the variable capacitor 222 and the inductor 224 is connected between the first node N1 and the second node N2.

    [0031] The first NMOS transistor NM1 is connected between the first node N1 and a third node N3, and the second NMOS transistor NM2 is connected between the second node N2 and the third node N3. Also, a bias current is supplied between the third node N3 and a ground terminal GND.

    [0032] According to exemplary embodiments of the present invention, the first PMOS transistor PM1 and the second PMOS transistor PM2 are cross-coupled with the second NMOS transistor NM2 and the first NMOS transistor NM1, respectively, which is described below specifically.

    [0033] A drain terminal of the first NMOS transistor NM1 is connected to a gate terminal of the second PMOS transistor PM2, and a drain terminal of the second NMOS transistor NM2 is connected to a gate terminal of the first PMOS transistor PM1. Also, a drain terminal of the first PMOS transistor PM1 is connected to a gate terminal of the second NMOS transistor NM2, and a drain terminal of the second PMOS transistor PM2 is connected to a gate terminal of the first NMOS transistor NM1.

    [0034] For example, the first NMOS transistor NM1 and the second NMOS transistor NM2 are cross-coupled with the second PMOS transistor PM2 and the first PMOS transistor PM1, respectively, via the resonance circuit 220.

    [0035] The voltage controlled oscillator 200 according to exemplary embodiments of the present invention having the above construction generates resonance via the resonance circuit 220 including the inductor 222 and the variable capacitor 224 depending on an input voltage, and outputs a frequency corresponding to the input voltage. A value of the variable capacitor 222 is controlled exponentially, and a resonance frequency is determined depending on a value of the variable capacitor 222.

    [0036] The exponentially controlled variable capacitor 222 is described below in detail with reference to FIG. 3.

    [0037] The following exemplary embodiment of the present invention illustrates a case in which capacitance of a unit capacitor changes exponentially up to 420 times depending on a 3-bit digital code. This dynamic range is a range that is realizable when 9 bits are used in the case in which a binary capacitor bank according to the related art is used.

    [0038] Exemplary embodiments of the present invention include a capacitor bank structure that can exponentially increase a gain with respect to a digital code of N bits equal to or greater than 2 bits. Exemplary embodiments of the present invention are described using an example of an operation with a 3-bit digital control code of b0, b1, and b2.

    [0039] FIG. 3 is a view illustrating a variable capacitor bank exponentially controlled according to an exemplary embodiment of the present invention.

    [0040] Referring to FIG. 3, the variable capacitor includes a plurality of capacitor segments and a plurality of switch segments determining connection of the plurality of capacitor segments. Switching of a first switch device is connected by a first bit of the 3-bit digital code, switching of a second switch device is connected by a second bit of the 3-bit digital code, and switching of a fourth switch device is connected by a third bit of the 3-bit digital code. Also, switching of a third switch device is connected by a result of an AND operation of the first bit and the second bit of the digital code, switching of a fifth switch device is connected by a result of an AND operation of the first bit and the third bit of the digital code, switching of a sixth switch device is connected by a result of an AND operation of the second bit and the third bit of the digital code, and switching of a seventh switch device is connected by a result of an AND operation of the first bit, the second bit, and the third bit of the digital code.

    [0041] According to exemplary embodiments of the present invention, with respect to a digital code k, a synthesized capacitance capacity may be generalized by Equation (1).

    where C0 is a unit capacitance for a digital code = 0, N is the number of bits representing a digital code, and Z is a compression constant determining capacitance between two digital codes. For example, a compression constant Z determines a difference between capacitance for a first digital code value and capacitance for a second digital code value.

    [0042] An exemplary embodiment of the present invention sets N=3 and Z=3.

    [0043] In the case in which a digital code input is 0 (b2b1b0=000), only a basically connected upper unit capacitor is connected, so that a synthesized capacitance becomes C. At this point, all of the first switch device to the seventh switch device are turned off.

    [0044] In the case in which the digital code is 1 (b2b1b0=001), capacitors are connected via a switch device b0, so that capacitance becomes 2.37C (e.g., synthesized capacitance = C+1.37C). At this point, only the first switch device is turned on and the rest of the switch devices are turned off.

    [0045] In the case in which the digital code is 2 (b2b1b0=010), a switch device b1 is turned on, so that a synthesized capacitance becomes 5.63C (e.g., synthesized capacitance = C+4.63C). At this point, only the second switch device is turned on and the rest of the switch devices are turned off.

    [0046] In the case in which the digital code is 3 (b2b1b0=011), both switch devices b0 and b1 are turned on, so that a synthesized capacitance becomes 13.34C (e.g., synthesized capacitance = C+1.37C+4.63C+6.34C). At this point, the first switch device, the second switch device, and the third switch device are turned on, and the fourth switch device to the seventh switch device are turned off. The third switch device is switched by a result of an AND operation of a first bit (b0) and a second bit (b1). For example, the third switch device is turned on only when both b0 and b1 are 1.

    [0047] In the case in which the digital code is 4 (b2b1b0=100), a switch device b2 is turned on, so that a synthesized capacitance becomes 31.6C (e.g., synthesized capacitance = C+30.6C). At this point, only the fourth switch device is turned on and the rest of the switch devices are turned off.

    [0048] In the case in which the digital code is 5 (b2b1b0=101), b0 and b2 are turned on, so that a synthesized capacitance becomes 74.87C (e.g., synthesized capacitance = C+1.37C+30.6C+41.9C). At this point, only the first switch device and the fourth switch device are turned on and the rest of the switch devices are turned off.

    [0049] In the case in which the digital code is 6 (b2b1b0=110), b1 and b2 are turned on, so that a synthesized capacitance becomes 177.93C (e.g., synthesized capacitance = C+4.63C+30.6C+141.7C). At this point, the second switch device, the fourth switch device, and the sixth switch device are turned on, and the rest of the switch devices are turned off. The sixth switch device is switched by a result of an AND operation of the second bit (b1) and the third bit (b2). For example, the sixth switch device is turned on only when both b1 and b3 are 1.

    [0050] In the case in which the digital code is 7 (b2b1b0=111), all of the switch devices are turned on, so that a synthesized capacitance becomes 421.7C (e.g., synthesized capacitance = C+1.37C+4.63C+6.34C+30.6C+41.9C+141.7C+194C). At this point, all of the first switch device to the seventh switch device are turned on. Here, the seventh switch device is switched by a result of an AND operation of the first bit (b0), the second bit (b1), and the third bit (b2). For example, the seventh switch device is turned on only when all of b0, b1, and b2 are 1.

    [0051] This may be generalized below. In case in which k = 4 × b2 + 2 × b1 + b0, a synthesized capacitance is expanded using a Taylor series, and when b2N=b2, b1N=b1, and b0N=b0 are input with consideration of a fact that all of b2, b1, and b0 are 1 or 0, Equation (2) is obtained.



    [0052] As illustrated in Equation (2), when a capacitor bank increases exponentially, a reciprocal of a square root of a capacitor bank capacity also has an exponential characteristic. Therefore, the capacitor bank becomes a structure that increases or decreases exponentially depending on a digital code so that the capacitor bank may be linear to a log scale.

    [0053] FIG. 4 is a block diagram illustrating a Phase Locked Loop PLL module according to an exemplary embodiment of the present invention.

    [0054] Referring to FIG. 4, the PLL module includes a phase comparator 400, a loop filter 410, and a Voltage Controlled Oscillator (VCO).

    [0055] The phase comparator 400 measures a difference between a phase of a received input signal and a phase of a signal fed back from the Voltage Controlled Oscillator (VCO) so as to output a voltage that is proportional to the phase difference to the loop filter 410.

    [0056] The loop filter 410 is a low pass filter and removes a high frequency component of the phase difference between the two signals output from the phase comparator 400, and provides a control voltage for reducing the phase difference to the VCO.

    [0057] The VCO generates a frequency that depends on a control voltage from the loop filter 410. For example, a variable capacitor value such as the variable capacitor value generated by the variable capacitor bank of FIG. 3 is removed exponentially depending on a control voltage from the loop filter 410, so that a resonance frequency is determined.

    [0058] A PLL operation is described. A phase difference detected by the phase comparator 400 changes to a DC voltage via a low pass filter, and is provided to the VCO. The VCO includes the resonance circuit including the inductor and the variable capacitor, so that when a DC voltage corresponding to the phase difference is input, capacitance of the variable capacitor changes to generate an oscillation frequency change by an LC resonance circuit. Therefore, an output frequency fixed at the phase of an input reference frequency is generated.

    [0059] FIG. 5 is a graph illustrating a frequency relation between a digital code and a VCO determining a variable capacitor value according to an exemplary embodiment of the present invention.

    [0060] Referring to FIG. 5, an example of controlling frequencies of 0.01∼3 GHz using control codes of digital codes 1 to 16 is illustrated. In FIG. 5, a frequency can be controlled using a 4-bit control code rather than an 8-bit control code of FIG. 1, and a frequency range becomes ten times in terms of a log scale. As described above, a frequency efficiency may be maximized via a capacitor bank control linear to the log scale.

    [0061] As described above, exemplary embodiments of the present invention have an advantage of increasing a frequency control range without increasing the number of control code bits by controlling a frequency control of the VCO exponentially depending on a digital code. For example, the frequency control of the VCO is controlled such that the frequency varies linearly with respect to a log scale.

    [0062] Also, exemplary embodiments of the present invention have an advantage of not only reducing manufacturing costs by efficiently controlling digital information to reduce a circuit area, but also raising a Quality factor of the VCO by reducing a side effect by parasitic capacitance and parasitic resistance of a switch device with respect to a wide operation range.

    [0063] While the invention has been shown and described with reference to certain exemplary embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope of the invention as defined by the appended claims and their equivalents.


    Claims

    1. A variable capacitor (222) comprising:

    a capacitor bank comprising a plurality of capacitor segments connected in parallel; and

    a plurality of switch segments configured to control connection states of the plurality of capacitor segments by a control code (b0, b1, b2),

    wherein the capacitor bank provides a capacitance from a set of candidate capacitances in response to the connection states,

    wherein the capacitance provided by the capacitor bank is linearly changed on a log scale by increasing a value of the control code,

    wherein the set of candidate capacitances form a geometric series with a constant ratio between successive candidate capacitances,

    characterised in that the plurality of switch segments comprises seven switch segments and the control code comprises a 3-bit digital code, and

    wherein switching of a first switch segment is controlled by a first bit (b0) of the 3-bit digital code, switching of a second switch segment is controlled by a second bit (b1) of the 3-bit digital code, and switching of a fourth switch segment is controlled by a third bit (b2) of the 3-bit digital code, switching of a third switch segment is controlled by a result (b0b1) of an AND operation of the first bit and the second bit of the digital code, switching of a fifth switch segment is controlled by a result (b0b2) of an AND operation of the first bit and the third bit of the digital code, switching of a sixth switch segment is controlled by a result (b1b2) of an AND operation of the second bit and the third bit of the digital code, and switching of a seventh switch segment is controlled by a result (b0b1b2) of an AND operation of the first bit, the second bit, and the third bit of the digital code.


     
    2. The variable capacitor (222) of claim 1, wherein one of the candidate capacitances is provided by a combination of all of the plurality of capacitor segments.
     
    3. The variable capacitor (222) of claim 1, wherein the capacitor bank comprises a first capacitor segment that is connected regardless of the plurality of switch segments.
     
    4. A voltage controlled oscillator, VCO, (200) comprising:

    a resonance circuit (220) in which an inductor (224) and a variable capacitor (222) are connected in parallel to oscillate a frequency, the variable capacitor being the variable capacitor of any of claims 1 to 3; and

    a first amplifier circuit (210) and a second amplifier circuit (230) for amplifying an oscillation frequency output from the resonance circuit.


     
    5. A phase locked loop, PLL, comprising:

    a phase comparator (400) for measuring a phase difference between a phase of an input signal and a phase of a signal fed back from a voltage controlled oscillator, VCO, (420) to output a voltage proportional to the phase difference;

    a low pass filter (410) for removing a high frequency component of a phase difference between two signals output from the phase comparator (400) and for outputting a control voltage for reducing the phase difference; and

    the VCO (420) for oscillating a frequency according to the control voltage from the low pass filter (410),

    wherein the VCO (420) linearly controls the frequency according to a control code corresponding to the control voltage,

    wherein the VCO is according to claim 4.


     
    6. The PLL of claim 5, wherein the capacitance of the variable capacitor (222) is determined as one of the plurality of candidate capacitances when a connection state of one or more capacitor segments among the plurality of capacitor segments connected in parallel changes according to a control signal.
     


    Ansprüche

    1. Variabler Kondensator (222), welcher Folgendes umfasst:

    eine Kondensatorbank, die mehrere parallel geschaltete Kondensatorsegmente umfasst; und

    mehrere Schaltersegmente, die konfiguriert sind, um Verbindungszustände der mehreren Kondensatorsegmente durch einen Steuercode (b0, b1, b2) zu steuern,

    wobei die Kondensatorbank eine Kapazität aus einem Satz von Kandidatenkapazitäten als Antwort auf die Verbindungszustände bereitstellt,

    wobei die Kapazität, die durch die Kondensatorbank bereitgestellt wird, auf einer logarithmischen Skala durch Erhöhen eines Wertes des Steuercodes linear geändert wird,

    wobei der Satz der Kandidatenkapazitäten eine geometrische Reihe mit einem konstanten Verhältnis zwischen aufeinanderfolgenden Kandidatenkapazitäten bildet,

    gekennzeichnet dadurch, dass

    die mehreren Schaltersegmente sieben Schaltersegmente umfassen und der Steuercode einen 3-Bit-Digitalcode umfasst, und

    wobei das Schalten eines ersten Schaltersegments durch ein erstes Bit (b0) des 3-Bit-Digitalcodes gesteuert wird, das Schalten eines zweiten Schaltersegments durch ein zweites Bit (b1) des 3-Bit-Digitalcodes gesteuert wird und das Schalten eines vierten Schaltersegments durch ein drittes Bit (b2) des 3-Bit-Digitalcodes gesteuert wird, das Schalten eines dritten Schaltersegments durch ein Ergebnis (b0b1) einer AND-Operation des ersten Bits und des zweiten Bits des Digitalcodes gesteuert wird, das Schalten eines fünften Schaltersegments durch ein Ergebnis (b0b2) einer AND-Operation des ersten Bits und des dritten Bits des Digitalcodes gesteuert wird, das Schalten eines sechsten Schaltersegments durch ein Ergebnis (b1b2) einer AND-Operation des zweiten Bits und des dritten Bits des Digitalcodes gesteuert wird und das Schalten eines siebten Schaltersegments durch ein Ergebnis (b0b1b2) einer AND-Operation des ersten Bits, des zweiten Bits und des dritten Bits des Digitalcodes gesteuert wird.


     
    2. Variabler Kondensator (222) nach Anspruch 1, wobei eine der Kandidatenkapazitäten durch eine Kombination aller der mehreren Kondensatorsegmente bereitgestellt wird.
     
    3. Variabler Kondensator (222) nach Anspruch 1, wobei die Kondensatorbank ein erstes Kondensatorsegment umfasst, das unabhängig von den mehreren Schaltersegmenten geschaltet ist.
     
    4. Spannungsgesteuerter Oszillator, VCO, (200), welcher Folgendes umfasst:

    einen Resonanzkreis (220), in dem ein Induktor (224) und ein variabler Kondensator (222) parallel geschaltet sind, um eine Frequenz zu oszillieren, wobei der variable Kondensator der variable Kondensator nach einem der Ansprüche 1 bis 3 ist; und

    einen ersten Verstärkerschaltkreis (210) und einen zweiten Verstärkerschaltkreis (230) zum Verstärken einer von dem Resonanzkreis ausgegebenen Schwingungsfrequenz.


     
    5. Phasenregelkreis, PLL, welcher Folgendes umfasst:

    einen Phasenkomparator (400) zum Messen einer Phasendifferenz zwischen einer Phase eines Eingabesignals und einer Phase eines Signals, das von einem spannungsgesteuerten Oszillator, VCO, (420) zurückgeführt wird, um eine Spannung proportional zu der Phasendifferenz auszugeben;

    einen Tiefpassfilter (410) zum Entfernen einer Hochfrequenzkomponente einer Phasendifferenz zwischen zwei von dem Phasenkomparator (400) ausgegebenen Signalen und zum Ausgeben einer Regelspannung zum Reduzieren der Phasendifferenz; und

    den VCO (420) zum Oszillieren einer Frequenz gemäß der Regelspannung von dem Tiefpassfilter (410),

    wobei der VCO (420) die Frequenz gemäß einem Steuercode, der der Regelspannung entspricht, linear steuert,

    wobei der VCO nach Anspruch 4 ist.


     
    6. PLL nach Anspruch 5, wobei die Kapazität des variablen Kondensators (222) als eine der mehreren Kandidatenkapazitäten bestimmt wird, wenn sich ein Verbindungszustand von einem oder mehreren Kondensatorsegmenten unter den mehreren parallel geschalteten Kondensatorsegmenten gemäß einem Steuersignal ändert.
     


    Revendications

    1. Condensateur variable (222) comprenant :

    une batterie de condensateurs comprenant une pluralité de segments de condensateur connectés en parallèle ; et

    une pluralité de segments de commutation configurés pour commander des états de connexion de la pluralité de segments de condensateur par un code de commande (b0, b1, b2),

    où la batterie de condensateurs fournit une capacité à partir d'un ensemble de capacités candidates en réponse aux états de connexion,

    où la capacité fournie par la batterie de condensateurs est changée de façon linéaire sur une échelle logarithmique en augmentant une valeur du code de commande,

    où l'ensemble de capacités candidates forme une série géométrique avec un rapport constant entre des capacités candidates successives,

    caractérisé en ce que
    la pluralité de segments de commutation comprend sept segments de commutation et le code de commande comprend un code numérique à 3 bits, et

    où la commutation d'un premier segment de commutation est commandée par un premier bit (b0) du code numérique à 3 bits, la commutation d'un deuxième segment de commutation est commandée par un deuxième bit (b1) du code numérique à 3 bits et la commutation d'un quatrième segment de commutation est commandée par un troisième bit (b2) du code numérique à 3 bits, la commutation d'un troisième segment de commutation est commandée par un résultat (b0b1) d'une opération AND du premier bit et du deuxième bit du code numérique, la commutation d'un cinquième segment de commutation est commandée par un résultat (b0b2) d'une opération AND du premier bit et du troisième bit du code numérique, la commutation d'un sixième segment de commutation est commandée par un résultat (b1b2) d'une opération AND du deuxième bit et du troisième bit du code numérique, et la commutation d'un septième segment de commutation est commandée par un résultat (b0b1b2) d'une opération AND du premier bit, du deuxième bit et du troisième bit du code numérique.


     
    2. Condensateur variable (222) selon la revendication 1, où l'une des capacités candidates est fournie par une combinaison de la totalité de la pluralité de segments de condensateur.
     
    3. Condensateur variable (222) selon la revendication 1, où la batterie de condensateurs comprend un premier segment de condensateur qui est connecté indépendamment de la pluralité de segments de commutation.
     
    4. Oscillateur commandé en tension, VCO, (200) comprenant :

    un circuit de résonance (220) où un inducteur (224) et un condensateur variable (222) sont connectés en parallèle pour faire osciller une fréquence, le condensateur variable étant le condensateur variable selon l'une quelconque des revendications 1 à 3 ; et

    un premier circuit amplificateur (210) et un deuxième circuit amplificateur (230) permettant d'amplifier une sortie de fréquence d'oscillation en provenance du circuit de résonance.


     
    5. Boucle à verrouillage de phase, PLL, comprenant :

    un comparateur de phase (400) pour mesurer une différence de phase entre une phase d'un signal d'entrée et une phase d'un signal renvoyé par un oscillateur commandé en tension, VCO, (420) pour délivrer en sortie une tension proportionnelle à la différence de phase ;

    un filtre passe-bas (410) pour supprimer une composante de haute fréquence d'une différence de phase entre deux signaux délivrés en sortie par le comparateur de phase (400) et pour délivrer en sortie une tension de commande permettant de réduire la différence de phase ; et

    le VCO (420) pour faire osciller une fréquence selon la tension de commande en provenance du filtre passe-bas (410),

    où le VCO (420) commande de façon linéaire la fréquence selon un code de commande correspondant à la tension de commande,

    où le VCO est selon la revendication 4.


     
    6. PLL selon la revendication 5, où la capacité du condensateur variable (222) est déterminée en tant que l'une de la pluralité de capacités candidates lorsqu'un état de connexion d'un ou plusieurs segments de condensateur parmi la pluralité de segments de condensateur connectés en parallèle change selon un signal de commande.
     




    Drawing




















    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description