(11)EP 2 812 668 B1


(45)Mention of the grant of the patent:
17.06.2020 Bulletin 2020/25

(21)Application number: 13747144.7

(22)Date of filing:  11.02.2013
(51)Int. Cl.: 
G01M 15/11  (2006.01)
F02P 5/152  (2006.01)
F02D 41/22  (2006.01)
G01L 23/22  (2006.01)
(86)International application number:
(87)International publication number:
WO 2013/119178 (15.08.2013 Gazette  2013/33)





(84)Designated Contracting States:

(30)Priority: 09.02.2012 SE 1250100

(43)Date of publication of application:
17.12.2014 Bulletin 2014/51

(73)Proprietor: SEM Aktiebolag
662 21 Åmål (SE)

  • BENGTSSON, Jörgen
    S-662 96 Svanskog (SE)
  • ANDERSSON, Lars-Åke
    S-662 37 Åmål (SE)
    S-662 91 Åmål (SE)

(74)Representative: Johansson, Lars E. 
Hynell Intellectual Property AB P.O.Box 138
683 23 Hagfors
683 23 Hagfors (SE)

(56)References cited: : 
EP-A2- 1 217 207
DE-A1-102006 010 807
US-A- 5 437 154
US-A1- 2003 209 211
US-B1- 6 298 717
DE-A1- 19 953 710
DE-C1- 4 437 480
US-A1- 2003 200 023
US-A1- 2004 083 717
  • MEHRZAD KAIADI: "Diluted Operation of a Heavy-duty Natural Gas Engine Aiming at Improved Efficiency, Emissions and Maximum Load", DOCTORAL THESIS. DIVISION OF COMBUSTION ENGINES. DEPARTMENT OF ENERGY SCIENCES. FACULTY OF ENGINEERING. LUND UNIVERSITY., 1 January 2011 (2011-01-01), XP055159131,
  • "COMBUSTION MONITORING", AUTOMOTIVE ENGINEERING, SOCIETY OF AUTOMOTIVE ENGINEERS. WARRENDALE, US, vol. 101, no. 7, 1 July 1993 (1993-07-01), pages 15-19, XP000387347, ISSN: 0098-2571
  • KAIADI, M.: 'Diluted Operation of a Heavy-duty Natural Gas Engine. Aiming at Improved Efficiency, Emissions and Maximum Load.' DOCTORAL THESIS. DIVISION OF COMBUSTION ENGINES. DEPARTMENT OF ENERGY SCIENCES. FACULTY OF ENGINEERING. LUND UNIVERSITY. January 2011, XP055159131
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).



[0001] The present invention relates to an engine for a utility vehicle using alternative fuel, preferably gas, comprising an engine having an engine management system including an ignition control system wherein said ignition system includes misfire detection by means of a sensor device providing information to said ignition control system, and wherein said combustion includes diluted operation to optimize emissions.


[0002] Today when using utility vehicles, such as a truck or a bus, there are some legislative demands that assist in reducing pollution. However, different engine types need different control parameters to optimize combustion. For instance a diesel-powered engine will need no system that detects misfiring, whereas an engine powered by alternative fuels will need such a system to optimize combustion. It is becoming more and more common to use engines powered by alternative fuels for utility vehicles and therefore also an increased need of systems that may detect other parameters than those needed to meet todays legislative demands for diesel engines, e.g. an increased need for detecting misfiring.

[0003] Detecting misfiring can be made in different ways. To meet this demand the control system of the vehicle has to be completed with a function for detecting misfiring. This can be both an expensive and an advanced procedure.

[0004] The document JP 2001050114 shows a method to detect misfiring in an engine powered by compressed natural gas. The method is founded on analysis of variables as rotational speed of the engine and a feedback of the air/fuel ratio. This is a typical example which will be both expensive and require an advanced procedure.

[0005] The document US 2008289600 shows a method for an engine to use two types of fuels with different octane numbers and ion current analysis is used to calculate the combustion timing such that the fuel mix to each cylinder may be adjusted from this calculation. The document also suggests that misfiring may be detected by a sensor signal from the rotational speed or by measurement of temperature and oxygen concentration in the exhausts through existing sensors in the engine. However, this method inherently comes with some disadvantages, e.g. that it is a complex system in need of a multiplicity of different sensors supplying a complex set of signals, i.a. leading to a risk for misinterpretation of combinations of the signals.

[0006] Many control system are known that use ion current sensing to detect different aspects and to control combustions parameters. From US 20030200023 (D2) and US 20030209211 (D3) there are known such a systems, which however do not present any solution how to also handle misfire detection in a reliable manner. US 6,298,717 (D4) presents another system which suggests the use of a ion sensing in combination with revolution data, depending on operation conditions, implying a complex mode of functioning. "Kaiadi, M. Diluted Operation of a Heavy-duty Natural Gas Engine. Aiming at Improved Efficiency, Emissions and Maximum Load. Doctoral thesis. Division of Combustion Engines. Department of Energy Sciences. Faculty of Engineering. Lund University. Doktorsavhandling. Januari 2011." (D1) describes another known system using ion current sensing as one of many means to optimize combustion, but it does not provide any reliable solution regarding how to detect misfires using ion current in diluted SI-engines. US 2004/083717 A1 and DE 199 53 710 A1 represent further relevant art concerning ion current diagnosis during diluted operation.


[0007] It is an object of the present invention to improve upon the situation described above, which is obtained by an engine in accordance with claim 1.

[0008] Thanks to this invention a reliable and relatively inexpensive way is obtained for providing engines for utility vehicles, powered by alternative fuels to obtain optimized control of combustion, e.g. to more easy fulfill the legislative demands regarding emissions.

[0009] According to another aspect of the invention it gives the advantage that an engine built in accordance with the invention may be cost-efficiently converted from diesel to alternative fuels.

[0010] According to the invention said built-in function comprises a combination of ion current information and information about discharge current and/or spark-over voltage that covers detection of misfiring in more reliable and easy manner than feasible with known systems.


Fig. 1
shows a schematic view of a vehicle according to the invention, and,
Fig. 2
shows a circuit diagram for a sensor device according to an exemplary embodiment of the invention.


[0012] Fig. 1 schematically shows a utility vehicle 1 having an engine 5, an engine management system 2 and a fuel tank 3, wherein the engine management system 2 includes a CPU (not shown) that controls the combustion of the engine 5, i.e. by means sensor signals from a sensing device 4.

[0013] In a preferred embodiment the engine 5 has an engine block 5A that has a total cylinder volume of at least 3 dm3, more preferred between 5-12 dm3. To enable optimizing the combustion in relation to an engine powered by an alternate fuel there is used an ignition system, being controlled by an ignition control system 20 receiving sensor signals from an ion sensing measurement means 40. Accordingly, ignition control system 20 forms a sub system within the engine management system 2. Said ion sensing measurement means 40 is arranged to measure an ion current in the engine 5, which in turn may be used to optimize combustion, e.g. by controlling Air/Fuel rate, ignition timing, etc. In the preferred embodiment the ignition control system 20 does not merely control basic parameters, but also has a built-in function arranged to analyze the ion current to detect misfiring. Thanks to having such a function built in (i.e. the engine management system 2 being provided with appropriate software and means for sensor input) the misfire detection ability may be obtained without any "add-on". More preferred said built-in function may also comprises a combination of detecting ion current information and information about discharge current and/or spark-over voltage, to enable even more sophisticated control of the combustion.

[0014] In the preferred mode the engine 5 according to the invention the engine is equipped with means (not shown) for diluted operation, wherein the engine management system 2 controls the diluted operation to achieve stoichiometric combustion, i.e. the engine 5 operating at λ equal to one. A three way catalyst (not shown) may be used to provide extra safety for attaining low emissions. Diluted operation implies that an extra amount of inert gas is added to optimize the combustion, which in applications with larger engines (i.e. larger than 3 dm3) will lead to relatively large amounts of inert gas. The amount of course varies with the load, but it is foreseen that the means and control system 2 shall provide for enabling supply of a maximum amount of inert gas of at least 10 %, and in some applications a maximum up to 30 %, preferably it shall enable a peak supply between 15 - 25 %. One preferable way to obtain this is by means of Exhaust gas recirculation (EGR) wherein the recirculated amount is controlled by means of input from the ion sensing measurement means 40/control system 2.

[0015] Furthermore it is preferable that a modular engine construction system is used enabling use of common parts both for diesel and alternative fuels, e.g. the engine block 5A and basic elements of the engine management system 2. Preferably in a manner enabling conversion, from diesel to alternative fuels, in a manner as cost efficient as possible, e.g. implying using several common parts for the engine 5, etc. When using alternative fuels some additional aspects have to be considered for optimal engine control (as mentioned above) and therefore it is an advantage to use basic elements of the engine management system 2 that may allow easy adaptation of a diesel engine to an alternative fuel. For instance the housing of the engine management system 2 is preferably equipped with extra input connections, enabling easy interconnection when installing supplementary equipment (for control of an engine using alternative fuel), e.g. of an ion sensing measurement means 40. Furthermore the soft ware may also then easily be prepared for a swift conversion enabling optimized combustion, i.e. low emissions/pollution.

[0016] In Fig 2. there is shown an exemplary control circuit to describe the general principles of the invention, and whereby also other parameters, e.g. knock may be detected.

[0017] In the circuit diagram of Fig. 2 a spark generating means10 is shown comprising a coil 11 with secondary coil 11" that has a first end 11a connected to a spark plug 12 and a second end 11b connected to an ion current measurement means 2. The coil 11 comprises a primary coil 11' to which a current is lead from a power supply 14 such as a battery or a capacitor for inducing a current in the secondary coil 11". A primary switch 13 is used to control the flow of a current in the primary coil 11' and the operation of this switch 13 is determined by a control unit 61 (not shown).

[0018] The current that is induced in the secondary coil 11" flows to the spark plug 12, but also to the ion current measurement means 40 that are connected to the secondary coil 11" by its second end 11b. During a spark event, a spark current is created that flows to or from the spark plug and thereby creates a current that in turn induces a second current component at the second end 11b of the secondary coil 11". This current is used to charge a capacitor 21. This current will charge the capacitor to a voltage that equals a Zener voltage. After the spark event, the capacitor voltage will supply a voltage in a range of 60-400 V to a spark gap and if ions are present, an ion current will flow that is further transmitted to an amplifier 41 in the form of a first signal 71. The amplifier 41 is a variable-gain amplifier and amplifies the first signal 71 to form an amplified signal 72.

[0019] When a coil select switch 44 is closed, the amplified signal 72 is transmitted towards a band pass filter 43 connected to an analysing means 20 by a first connection 82, and towards a low pass filter 42 connected to an analysing means 20 by a second connection 83. The analysing means 20 can be used for analysing the amplified signal 72 and yield information regarding the operation of the spark generation means 1 and the combustion, and further the analysing means 20may be arranged to adjust a gain of the amplifier 41 via a third connection 46. The operation of the first and second analysing means will be described in more detail further below.

[0020] The spark generating means 1 can comprise a plurality of coils 11, each connected to a power supply 14 and divided by a primary switch 13 each that is connected to the power supply, so that only one primary coil 11' at a time can be used for generating a spark in the spark plug 12 in the active cylinder.

[0021] Any sparks generated by the spark plug 12 are used for igniting an air and fuel mixture inside a cylinder 51 (not shown) or a plurality of cylinders 52 (not shown). The timing of the spark is controlled by the control unit 20 that controls the connecting of each primary switch 13 that serves to create a current in the secondary coil 11" and thereby generates the spark at the spark plug 12.

[0022] According to a preferred embodiment within the scope of invention each coil 11 is connected to a separate ion current measurement means 40 and onwards to a separate amplifier 41, and via a fourth connection 45 each such separate amplifier 41 can be connected to the low pass filter 42 and band pass filter 43. Thanks to a coil select switch 44, the operation of the circuits can be controlled so that signals from only one of the separate amplifiers 41 are allowed to reach the low pass filter 42 and band pass filter 43 at the time. Thereby, signals with information regarding ion currents from more than one spark generating means 10 and cylinder 52 can be analysed by the same analysis means 20, thereby yielding detailed and comprehensive information to a control unit 20, that can be the same unit as the control unit 20 used for controlling the generation of sparks, or can alternatively be a separate control unit.

[0023] Preferably, properties of the ion current that can be detected at the second end 11b of the secondary coil 11" are only analysed during a section of a revolution of a cylinder 51, namely during a time interval when a knock event will occur. This section is preferably 0°-90°, more preferably 0°-50°, even more preferably 10°-40° of a revolution of a crank shaft of a cylinder, and it is advantageous if the section starts at a position when a piston of the cylinder 51 is at a top dead centre (TDC) position, thereby giving the position for 0° at this TDC position. Thereby, the analysis that is performed by the analysing means 20 uses only the section that comprises the information that is sought, e.g. the occurrence of a combustion event, to enable detection of misfire (i.e. if no detection of any combustion event a misfire has occurred). Further the system may also be used to detect other aspects, e.g. a knock event. The novel principle enables the analysing means to analyse signals 72 from more than one cylinder 51, so that the fourth connection 45 and the coil select switch 44 can be operated to allow the amplified signal 72 that is generated from the performance of a specific coil 11 to reach the analysing means during this section of the revolution. The analysing means can thereby receive signals 72 from a plurality of amplifiers 41 and arrive at a comprehensive analysis regarding most or all of the cylinders 51 in a specific engine.

[0024] According to the invention the circuitry also includes features to detect other many different kind of faulty operations, e.g. features that detect that the spark plug is short circuited and/or if the spark excites somewhere else than in the combustion chamber, because under such conditions the ion current on its own may not be used to detect such a fault. This is achieved by analyzing the ion current in combination with spark-over voltage and/or primary current/voltage.

[0025] It is evident that many modifications may be performed without departing from the scope of the invention, which is defined by the appended claims. For instance it is realized that many different kind of alternate fuels may be used in connection with the invention, e.g. Natural gas, LPG (liquefied propane gas), alcohols like ethanol and methanol, hydrogen gas, biogas or wood gas.


1. Engine for a utility vehicle using alternative fuel from the group of alcohols or gas, comprising an engine (5) including an engine block (5A) having a total cylinder volume of at least 3 dm3, a spark generating means (1) and an engine management system (2) including an analyzing means and an ignition control system (20), arranged to control combustion of said engine (5) and enabling misfire detection by means of a sensor device (4) providing information to said control system (20), and wherein said combustion includes means for diluted operation in the form of exhaust gas recirculation (EGR) to fulfill the legislative demands regarding emissions, wherein said sensor device (4) includes an ion sensing measurement means (40) arranged to measure an ion current in said engine (5) wherein input from said ion sensing measurement means (40) to said engine management system (2) is arranged to control the recirculated amount of the exhaust gas recirculation (EGR) and that said ignition control system (20) has a built-in function to detect misfiring through an analysis of the ion current of the engine (5) during combustion, wherein said built-in function further comprises means arranged to provide information about discharge current and/or means arranged to provide information of spark-over voltage, wherein said spark generating means (1) comprises a plurality of coils (11), each connected to a cylinder and a power supply (14), divided by a primary switch (13) so that only one coil (11) and cylinder at a time can be active to generate a spark in a spark plug (12) of said active cylinder, and wherein said ignition control system (20) includes a coil select switch (44) arranged to allow a signal (72) of a specific coil (11) to reach the analyzing means of said engine management system (2) during a section of a revolution, to obtain optimized combustion control of said engine (5).
2. Engine according to claim 1, characterized in that said engine (5) includes an engine block (5A) having a total cylinder volume of at least 5 dm3, more preferred at least 7 dm3.
3. Engine according to any of claims 1-2, characterized in that said means for diluted operation allows for peak values allowing at least 10 % of diluted gas, preferably at least 15 %.
4. Engine according to any of claims 1 - 3, characterized in that said built-in function comprises measures for detection of a combination of ion current information and information about primary current/voltage.
5. Engine according to any preceding claims, characterized in that said alternative fuels comprises natural gases like LNG (liquefied natural gas), CNG (compressed natural gas) and SNG (synthetic natural gas).
6. Method of building an engine, including the features as defined in any of claims 1- 5, characterized in that said engine (5) is built by using a modular engine construction system enabling use of common basic parts both for diesel and alternative fuels, wherein said basic parts, includes at least the engine block (5A) and some basic parts of the engine management system (2), irrespective if the engine is to be powered by diesel or an alternative fuel.
7. Method according to claim 6, characterized in that said engine management system includes a housing equipped with input connections for an ion sensing means (40).
8. Method according to any of claims 6 and 7, characterized in that said built-in function includes an analyzing arrangement enabling detection of events from more than one cylinder during one revolution.


1. Motor für ein Nutzfahrzeug, das alternativen Brennstoff verwendet aus der Gruppe von Alkoholen oder Kraftstoff, umfassend einen Motor (5) mit einem Motorblock (5A), der ein gesamtes Zylindervolumen von wenigstens 3 dm3 aufweist, ein Funkenerzeugemittel (1) und ein Motormanagementsystem (2) mit einem Analysemittel und einem Zündsteuersystem (20), angeordnet, um Verbrennung des Motors (5) zu steuern und Ermöglichen von Fehlzündungserkennung durch Mittel einer Sensorvorrichtung (4), die dem Steuersystem (20) Informationen bereitstellt, und wobei die Verbrennung Mittel zum verdünnten Betrieb einschließt in der Form von Abgasrückführung (EGR), um die gesetzlichen Anforderungen bezüglich Emissionen zu erfüllen, wobei die Sensorvorrichtung (4) ein ionenmessendes Messungsmittel (40) einschließt, das angeordnet ist, um einen Ionenstrom in dem Motor (5) zu messen, wobei Input von dem ionenmessenden Messungsmittel (40) an das Motormanagementsystem (2) angeordnet ist, um die rückgeführte Menge der Abgasrückführung (EGR) zu steuern und dass das Zündsteuersystem (20) eine eingebaute Funktion aufweist, um Fehlzünden durch eine Analyse des Ionenstroms des Motors (5) während Verbrennung zu erfassen, wobei die eingebaute Funktion ferner umfasst Mittel, angeordnet, um Informationen über Entladestrom bereitzustellen, und / oder Mittel, angeordnet, um Informationen von Funkenüberschlagsspannung bereitzustellen, wobei das Funkenerzeugemittel (1) eine Vielzahl Windungen (11) umfasst, wobei jede mit einem Zylinder und einer Stromversorgung (14) verbunden ist, getrennt durch einen primären Schalter (13), so dass nur eine Windung (11) und Zylinder zu einer Zeit aktiv sein kann, um einen Funken in einer Zündkerze (12) des aktiven Zylinders zu erzeugen, und wobei das Zündsteuersystem (20) einen Windungsauswahlschalter (44) einschließt, der angeordnet ist, einem Signal (72) einer bestimmten Windung (11) zu ermöglichen, das Analysemittel des Motormanagementsystems (2) zu erreichen während eines Abschnitts einer Umdrehung, um optimierte Verbrennungssteuerung des Motors (5) zu erhalten.
2. Motor nach Anspruch 1, gekennzeichnet dadurch, dass der Motor (5) aufweist einen Motorblock (5A) mit einem gesamten Zylindervolumen von wenigstens 5 dm3, besonders bevorzugt wenigstens 7 dm3.
3. Motor nach einem der Ansprüche 1-2, gekennzeichnet dadurch, dass das Mittel für verdünnten Betrieb Spitzenwerte ermöglicht, die wenigstens 10 % verdünnten Kraftstoff, bevorzugt wenigstens 15 % ermöglichen.
4. Motor nach einem der Ansprüche 1-3, gekennzeichnet dadurch, dass die eingebaute Funktion umfasst Maßnahmen zum Erfassen einer Kombination Ionenstrominformationen und Informationen über primären Strom/Spannung.
5. Motor nach einem der vorhergehenden Ansprüche, gekennzeichnet dadurch, dass die alternativen Brennstoffe Erdgase wie LNG (Flüssigerdgas), CNG (komprimiertes Erdgas) und SNG (synthetisches Erdgas) umfassen.
6. Verfahren zum Bauen eines Motors mit den Merkmalen wie definiert in einem der Ansprüche 1-5, gekennzeichnet dadurch, dass der Motor (5) gebaut wird durch Verwenden eines modularen Motorkonstruktionssystems, das Verwendung gemeinsamer Hauptbestandteile sowohl für Diesel als auch für alternative Brennstoffe ermöglicht, wobei die Hauptbestandteile einschließen wenigstens den Motorblock (5A) und einige Hauptbestandteile des Motormanagementsystems (2), unabhängig davon, ob der Motor mit Diesel oder einem alternativen Kraftstoff betrieben werden soll.
7. Verfahren nach Anspruch 6, gekennzeichnet dadurch, dass das Motormanagementsystem ein Gehäuse umfasst, das mit Inputanschlüssen für ein Ionenmessmittel (40) ausgestattet ist.
8. Verfahren nach einem der Ansprüche 6 und 7, gekennzeichnet dadurch, dass die eingebaute Funktion eine Analyseanordnung einschließt, die Erfassung von Ereignissen von mehr als einem Zylinder während einer Umdrehung ermöglicht.


1. Moteur pour un véhicule utilitaire utilisant un carburant alternatif du groupe des alcools ou des gaz, comprenant un moteur (5) incluant un bloc moteur (5A) ayant un volume total de cylindre d'au moins 3 dm3, un moyen (1) de génération d'étincelles et un système (2) de gestion de moteur incluant un moyen d'analyse et un système (20) de commande d'allumage, agencé pour commander la combustion dudit moteur (5) et permettant la détection des ratés d'allumage au moyen d'un dispositif (4) formant capteur fournissant des informations audit système de commande (20), ladite combustion comprenant des moyens de fonctionnement dilué sous la forme d'une recirculation des gaz d'échappement (EGR) pour répondre aux exigences législatives concernant les émissions, ledit dispositif (4) formant capteur comprenant un moyen (40) de mesure de détection d'ions agencé pour mesurer un courant d'ions dans ledit moteur (5) ; l'entrée provenant dudit moyen (40) de mesure de détection d'ions vers ledit système (2) de gestion de moteur étant agencée pour commander la quantité recirculée de la recirculation des gaz d'échappement (EGR) et ledit système (20) de commande d'allumage ayant une fonction intégrée pour détecter les ratés d'allumage par une analyse du courant d'ions du moteur (5) pendant la combustion, ladite fonction intégrée comprenant en outre des moyens agencés pour fournir des informations sur le courant de décharge et/ou des moyens agencés pour fournir des informations sur la tension de décharge, lesdits moyens de génération d'étincelles (1) comprenant une pluralité de bobines (11), chacune étant connectée à un cylindre et à une alimentation électrique (14), divisé par un commutateur primaire (13) de sorte qu'une seule bobine (11) et un seul cylindre à la fois peuvent être actifs pour générer une étincelle dans une bougie d'allumage (12) dudit cylindre actif, et ledit système (20) de commande d'allumage comprenant un commutateur (44) de sélection de bobine agencé pour permettre à un signal (72) d'une bobine spécifique (11) d'atteindre le moyen d'analyse dudit système (2) de gestion de moteur pendant une portion d'une révolution, pour obtenir une commande de combustion optimisée dudit moteur (5).
2. Moteur selon la revendication 1, caractérisé en ce que ledit moteur (5) comprend un bloc-moteur (5A) ayant un volume total de cylindres d'au moins 5 dm3, de préférence d'au moins 7 dm3.
3. Moteur selon l'une quelconque des revendications 1 à 2, caractérisé en ce que ledit moyen de fonctionnement dilué permet des valeurs de pointe autorisant au moins 10 % de gaz dilué, de préférence au moins 15 %.
4. Moteur selon l'une quelconque des revendications 1 à 3, caractérisé en ce que ladite fonction intégrée comprend des mesures pour la détection d'une combinaison d'informations sur le courant d'ions et d'informations sur le courant/tension primaire.
5. Moteur selon l'une quelconque des revendications précédentes, caractérisé en ce que lesdits carburants alternatifs comprennent des gaz naturels comme le GNL (gaz naturel liquéfié), le GNC (gaz naturel comprimé) et le SNG (gaz naturel synthétique).
6. Procédé de construction d'un moteur, comprenant les caractéristiques définies dans l'une quelconque des revendications 1 à 5, caractérisé en ce que ledit moteur (5) est construit en utilisant un système de construction de moteur modulaire permettant l'utilisation de pièces de base communes à la fois pour le diesel et les carburants alternatifs, lesdites pièces de base comprenant au moins le bloc moteur (5A) et certaines pièces de base du système (2) de gestion de moteur, indépendamment du fait que le moteur doive être alimenté par du diesel ou un carburant alternatif.
7. Procédé selon la revendication 6, caractérisée en ce que ledit système de gestion du moteur comprend un boîtier équipé de connexions d'entrée pour un moyen (40) de détection d'ions.
8. Procédé selon l'une quelconque des revendications 6 et 7, caractérisé en ce que ladite fonction intégrée comprend un agencement d'analyse permettant la détection d'événements provenant de plus d'un cylindre pendant un tour.



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description