(19)
(11)EP 2 816 188 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
11.12.2019 Bulletin 2019/50

(21)Application number: 13172276.1

(22)Date of filing:  17.06.2013
(51)International Patent Classification (IPC): 
E06B 5/16(2006.01)
E04B 1/94(2006.01)

(54)

Fire barrier for a building and method for producing an insulation element for a fire barrier of a building

Feuerbarriere für ein Gebäude und Verfahren zur Herstellung eines Dämmelements für eine Feuerbarriere eines Gebäudes

Barrière coupe-feu pour un bâtiment et procédé de production d'un élément d'isolation pour une barrière coupe-feu d'un bâtiment


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(43)Date of publication of application:
24.12.2014 Bulletin 2014/52

(73)Proprietor: Rockwool International A/S
2640 Hedehusene (DK)

(72)Inventor:
  • Nowack, Peter
    45891 Gelsenkirchen (DE)

(74)Representative: Rausch Wanischeck-Bergmann Brinkmann 
Partnerschaft mbB Patentanwälte Am Seestern 8
40547 Düsseldorf
40547 Düsseldorf (DE)


(56)References cited: : 
EP-A1- 0 075 187
DE-U1- 8 608 493
EP-A2- 1 538 297
US-A- 4 571 915
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description


    [0001] The invention relates to a fire barrier for a building, especially a fire door, comprising a frame defining a hollow space and at least one insulation element of rectangular shape having two main surfaces being arranged parallel to each other and being connected via side faces, which insulation element is inserted into the hollow space and divided into at least two parts along an abutment namely a first part and a second part. Furthermore, the invention relates to a method for producing a fire barrier of a building, especially for a fire door, whereby the insulation element of rectangular shape with two major surfaces being arranged parallel to each other and four side faces being arranged perpendicular to each other and to the major surfaces is made from a continuously produced web of mineral fibers and whereby the insulation element is cut from the web of mineral fibers.

    [0002] When protecting structures against fire it is common to employ thermal insulation boards, that is to say boards of low organic matter content, of thermal conductivity less than about 0.5 W/m °C at ambient temperature, of density less than about 1500 g/m3, and of modules of rupture greater than about 0.5 N/mm2.

    [0003] Well known examples of such boards are those based on cementitious material, for example Portland cement or autoclaved calcium silicate, reinforced with fibers which may be asbestos but are now usually cellulose, synthetic organic fibers such as polyvinylalcohol or polyacrylonitrile fibers, or inorganic fibers such as glass or mineral wool fibers. Thermal insulation boards are available in a wide range of thicknesses, especially 3-80mm; and the time for which a board will protect what lies behind it from a fire of given intensity will, or course, depend on the thickness of the board.

    [0004] In one kind of fire-protective construction at present in wide use to provide internal walls and fire doors, opposed thermal insulation boards have in the cavity between them an additional heat barrier of bulk mineral wool, glass fibers or the like. In another kind of construction, for example to protect external walls, a layer of mineral wool is fastened to the surface to be protected, and a single skin of boards is assembled by fixing the boards to spaces attached to the wall through the mineral wool layer, leaving a cavity between the mineral wool layer and the skin of boards. In a further type of construction, to protect structural steel columns, a single skin of boards is assembled to encase the column, leading to cavities, one on each side of the upright of the column. In this case, no bulky heat barrier of mineral wool or the like is ordinarily used.

    [0005] The invention at present relates to fire-protective constructions to be used inside buildings as to say fire-retardant insulating building panels or fire doors which comprise a frame defining a hollow space. The insulation element of rectangular shape having two main surfaces being arranged parallel to each other and being connected via side faces is inserted into the hollow space and may consist of mineral fibers being bound with a small amount of organic binder. To increase the fire-protective characteristics of the insulation element it is well known to use a fire retardant material which is incorporated into the insulation element made of mineral fibers and binder. Such fire retardant elements are for example described in DE 20119043 U1, DE 10212331 A1 and DE 10212332 A1.

    [0006] Furthermore, it is well known to divide the insulation element into parts whereby the abutments are arranged perpendicular to side faces which are the longer side faces of the insulation element of rectangular shape. Such a technique is well known from DE 10354221 B3. Another technique, where the insulation element is divided with a non-parallel abutment is known from EP 0 075 187 A1.

    [0007] EP 1 538 297 A2 discloses a fire barrier according to the preamble of claim 1.

    [0008] There is an increasing demand for larger (especially higher) fire barriers, and this poses some challenges in production and for the resulting fire barrier. One of the problems with prior art insulation elements is that most of the insulation elements of rectangular shape are used for doors which require an inlay with the length of approximately two metres which means that more than one part is used as an inlay in the frame as two metres is generally the maximum production size. Of course it is possible to cut an insulation element with a length of more than two metres from a web being produced in the usual method for producing an insulation element for a fire barrier of a building but these webs have different strength characteristics in their lengthwise and crosswise direction within the web so that the length of such insulation elements used in fire doors is usually limited to less than two metres to fulfill all requirements of stability of the insulation element which is usually used by the producer of fire barriers, especially fire doors. These producers are not interested to handle a lot of parts within the fire barrier, especially the fire door.

    [0009] Therefore, the object of this invention is a fire barrier for a building, especially a fire door which can be easily produced in different heights without the need of arranging a great number of parts within a hollow place which insulation element guarantees a high stability for the whole life of the door. Furthermore, an object of this invention is a method for producing a fire barrier of a building, especially for a fire door with which insulation elements for this purpose can be produced which guarantee high stability requirements and which can be used for fire barriers of different heights without using a great number of parts.

    [0010] The solution of the object with respect to the fire barrier for a building provides a fire barrier for a building with an abutment extending non-parallel to the side faces, especially from two corner regions being the connection area of two side faces which corner regions are arranged diametrically opposed to each other. By corner region should be understood not only the exact corner, but a region extending from the exact corner up to a distance of 40% of the length of a side of the frame. This distance will generally be chosen as short as possible, so in practice the distance will often be below 20%

    [0011] The insulation element for the fire barrier according to the invention can be produced in different widths and because of their division into two parts having a shape more or less like a triangle makes it possible to move the two parts of the insulation element along the abutment so that the length of the insulation element can be easily varied according to the requirements of the frame. According to this the insulation element can be used in frames of different sizes. Such insulation elements have the advantage that the amount of waste in production can be reduced by the flexible arrangement of the parts to to fit the frame, so the amount of insulation material cut off and not utilized is limited. Further the number of cuts is limited so production is easy and quick. Furthermore, with an insulation element according to the invention it is possible to use different materials which means materials with different characteristics with respect to stability, fire retarding characteristics, density and/or binder amount within the insulation element made of mineral fibers. With respect to this it is possible to use two parts of the insulation element which for example have different densities whereby a higher density defines an area within the frame which is dedicated to higher fire resistance and an area which is less fire demanding and therefore can be filled with a part of the insulation element having lower density.

    [0012] According to the invention the insulation element contains mineral fibers. Furthermore, the fire barrier for a building according to the invention can be developed in that the first and the second part of the insulation element containing mineral fibers having different properties, as length of the fibers, diameter of the fibers, orientation of the fibers within the first or second part, binder content with respect to the amount and/or kind of binder, amount and kind of fire resistant material.

    [0013] A fire barrier according to this development can be easily adapted to certain requirements of the producer of fire barriers, especially fire doors.

    [0014] The insulation element can be multi-layered which means that at least two layers of insulating material are arranged on top of each other so that the two layers are in contact via their main surfaces. A layer of fire resistant material can be arranged between two layers of insulating material, especially layers made of mineral fibers and a binder. Of course, the insulation element can comprise more than two layers of insulating material and more than one layer of fire resistant material.

    [0015] According to a further development of the invention the first and second parts of the insulation element have different bulk densities. It is well known that in case of a fire the heat ascents towards the upper part of a room and therefore to the upper part of for example a fire door. Therefore, it is helpful if the fire door or the fire barrier has improved fire resistance in the upper part. To achieve this improved fire resistance in the upper part the invention proposes to use an insulation element with higher bulk density in the upper part of the fire barrier, especially the fire door.

    [0016] According to a further feature of the invention the first and second part of the insulation element are connected via a strip of insulation and/or fire resistant material which may be fixed, especially glued to the first and/or the second part of the insulation element. This strip which can have a thickness according to the distance between two covering elements being arranged parallel to the main surfaces of the insulation element reinforces the insulation element in a direction diagonal to the frame defining the hollow space and therefore diagonal to the fire door or the fire barrier for a building. The strip can be glued to both parts of the insulation element which fulfills most of the stability requirements of such insulation elements. The connection between the strip and at least one of the parts of the insulation element can be achieved before setting the insulation element into the frame. Preferably a fire resistant glue can be used to connect the strip with respect to at least one part of the insulation element.

    [0017] The connection by gluing can be done by using the glue on the whole surfaces which are to be connected or only in certain areas of these surfaces. Especially if a glue is used which is not fire resistant or has a low fire resistance or which represents a fire load it is of advantage to use only a small amount of glue and therefore to connect the part with the strip only via spots of glue arranged on the surfaces which are to be connected. Furthermore, the strip has the advantage that it is in contact with the covering elements being arranged parallel to the main surfaces of the insulation element and which reduces vibrations of these covering elements.

    [0018] According to a further aspect of the invention the strip reinforces the insulation element with respect to its compressive strength. The strip can be made of mineral fibers and a binder. Furthermore, the strip has a high bulk density which is useful for reinforcement requirements. A strip with high bulk density can take over the load of at least one part of the insulation element as far as the strip is in contact with two areas of the frame defining the hollow space which are arranged diametrically opposed to each other.

    [0019] As already mentioned the fire barrier according to the invention has a frame being connected to covering elements being arranged parallel to the main surfaces of the insulation element. The two covering elements enclose together with the frame the insulation element so that the insulation element is protected against mechanical damages.

    [0020] Furthermore, the strip is in contact with and preferably connected to the covering elements thereby giving a higher stability with less vibrations to the covering elements.

    [0021] According to a further feature the second part of the insulation element has a higher bulk density than the first part of the insulation element as already described before. It has been discovered that the second part of the insulation element has preferably a bulk density between 150 kg/m3 and 220 kg/m3, preferably between 165 kg/m3 and 195 kg/m3 and the first part of the insulation element has a bulk density preferably between 80 kg/m3 and 140 kg/m3, preferably between 100 kg/m3 and 130 kg/m3. The first part of the insulation element is preferably arranged in an area close to the floor of a room whereas the second part is preferably arranged in an area of the fire barrier which is directed to the ceiling.

    [0022] According to a further feature of the invention the abutment between the first and the second part of the insulation element is arranged perpendicular to the main surface of the insulation element. Nevertheless, the abutment can be arranged under a certain angle relatively to the main surfaces of the insulation element which angle differs from the right angle and which means that the surfaces of both parts of the insulation element defining the abutment are not parallel to the surface normal of the main surfaces.

    [0023] Finally, with respect to the fire barrier according to the invention the first and/or the second part of the insulation element contains a strip of fire resistant material being arranged parallel to one of the side faces. This strip is used to improve the fire resistance especially in the upper part of a fire door and for example in the part of box staple in the area of one side face.

    [0024] With respect to the method according to the invention the solution of the before mentioned objects is achieved by a method whereby the insulation element is cut from the web of mineral fibers with its lengthwise direction perpendicular to the lengthwise direction of the web of mineral fibers before the insulation element is divided into a first part and a second part along an abutment extending non-parallel to the side faces, especially extending from two corner regions being the connection area of two side faces which corner regions are arranged diametrically opposed to each other.

    [0025] By cutting the insulation element with its lengthwise direction perpendicular to the lengthwise direction of the web of mineral fibers the insulation element uses the beneficial stability characteristics of the fiber web. Furthermore, the length of the insulation element can be limited to two metres whereas the width of the insulation element can be varied so that after cutting the insulation element in two parts of approximately triangle shape these parts can be moved along the abutment to set an insulation element with dimensions according to the hollow space arranged within the frame.

    [0026] Further features and advantages of the invention will become apparent from the following description of the attached drawings showing a preferred embodiment of the invention. In the drawings it is shown by:
    Fig. 1
    a fire door in a sectional view;
    Fig. 2
    a first embodiment of an insulation element for use in a fire door according to Fig. 1 in a plan view;
    Fig. 3
    a second embodiment of the insulation element for use in the fire door according to Fig. 1 in a plan view;
    Fig. 4
    a third embodiment of the insulation element for the fire door according to Fig. 1 in a plan view and
    Fig. 5
    a mineral fiber web with an insulation element in a perspective view.


    [0027] Fig. 1 shows a fire door 1 comprising a frame 2 and an insulation element 3 being inserted in a hollow space 4 defined by the frame 2. The frame 2 consists of two parallel elements 5 and two elements 6 being shorter in length than the elements 5 and being arranged perpendicular to the elements 5 and parallel to each other. The elements 5, 6 are made of metal profiles, preferably of steel.

    [0028] The fire door 1 furthermore comprises covering elements 7 of which Fig. 1 only shows a sectional part of one covering element 7. The covering elements 7 are connected to the elements 5, 6 preferably by welding elements 5, 6 to the covering elements 7. Therefore, the covering elements 7 are preferably made of steel. Nevertheless, the elements 5, 6 and the covering elements 7 can be made of wood.

    [0029] The insulation element 3 is made of mineral fibers, preferably stone wool fibers. The thickness of the insulation element 3 is approximately equal to the height of the hollow space 4 between the two covering elements 7 connected to the elements 5, 6. The insulation element 3 has a rectangular shape with two main surfaces 8 being arranged parallel to each other and parallel to the covering elements 7. Furthermore, the insulation element 3 has four side faces 9 connecting the main surfaces 8 to each other and being arranged rectangular to the main surfaces 8 and to each other so that the side faces 9 are running parallel to the elements 5, 6.

    [0030] The length and the width of the insulation element 3 is approximately equal to the length and the width of the hollow space 4 so that the insulation element 3 is clamp fitted into the hollow space 4.

    [0031] Furthermore, the insulation element 3 is divided in a first part 10 and a second part 11. The division of the two parts 10, 11 is arranged along an abutment 12 which divides the insulation element 3 into the two parts 10, 11 which have approximately a shape of a triangle. Therefore, the abutment 12 extends non-parallel to the side faces 9 and runs from a first corner region 13 of the frame 2 to a second corner region 14 of the frame 2. The corner regions 13, 14 are approximately the connection area of two side faces 9. Therefore, the corner regions 13, 14 are arranged diametrically opposed to each other.

    [0032] The first part 10 of the insulation element 3 which can be called the lower part within the fire door 1 consists of mineral fibers and a binder connecting the mineral fibers to each other and a fire resistant material as it is for example described in the before mentioned documents of the prior art. The first part 10 differs from the second part 11 which may be called the upper part within the fire door 1 in its properties especially in the characteristics of bulk density.

    [0033] The first part 10 of the insulation element 3 has a bulk density of 120 kg/m3 whereas the second part 11 of the insulation element has a bulk density of 180 kg/m3. The two parts 10, 11 may differ in further characteristics as length of the fibers, diameters of the fibers, orientation of the fibers, binder content with respect to the amount and/or the kind of binder and fire resistant material, with respect to the amount and/or kind of the fire resistant material. Furthermore, the insulation element 3 can be formed as a multi-layered element comprising one or two layers of mineral fibers and at least one layer of a fire resistant material which can be arranged sandwich-like between two layers of mineral fibers.

    [0034] The abutment 12 between the first part 10 and the second part 11 is formed by side faces of the insulation element 3 which originate from cutting a rectangular insulation element 3 crosswise from one corner region 13 to a diametrically arranged corner region 14 of the insulation element 3. These side faces of the two parts 10, 11 are arranged perpendicular to the main surfaces 8 of the insulation element 3 or with other words parallel to the surface normal of the main surfaces 8.

    [0035] Fig. 2 shows the insulation element 3 in a first arrangement before cutting the insulation element 3 into the two parts 10, 11 along a broken line 15. Furthermore, a second arrangement of the insulation element 3 is shown by the broken line 15 and a dot-and-dash line 16 which second arrangement shows the insulation element 3 after cutting the insulation element 3 into the first part 10 and the second part 11 and moving the two parts 10, 11 relative to each other along the broken line 15 to prolong the original length of the insulation element 3 according to the requirements of the hollow space 4 in its length which is larger than the length of the insulation element 3 as cut from a web 17 (Fig. 5).

    [0036] As a final step two parts 18 in the shape of triangles can be removed from the insulation element 3 after moving the two parts 10, 11 relatively to each other two achieve the required rectangular shape of the insulation element 3 again. Nevertheless, these parts 18 need not to be cut from the insulation element 3 if these parts can be compressed within the frame 2 so that these compressed parts 18 support the full transmission by clamping the insulation element 3 into the frame 2.

    [0037] Fig. 3 shows a further embodiment of the insulation element 3 with an additional strip 19. The additional strip 19 is made of insulation material and has a shape of approximately a parallelogram. Furthermore, the additional strip 19 can contain a fire resistant material and the additional strip 19 can have a higher bulk density than the insulation element 3. Depending on the material and the requirements for the fire door the additional strip 19 may be relatively thin, e.g. 0.5 cm, or relatively thick, such as 20 cm. The strip 19 may even be a reinforcing mesh or web, such as glass fibre mesh, having a thickness of less than 0.5 cm, such as 1-2 mm.

    [0038] Fig. 3 shows the original shape of the insulation element 3 as broken line 20 and the movement of the second part 11 relative to the first part 10 according to an arrow 21.

    [0039] The strip 19 can be fixed to at least one of the parts 10, 11, preferably by gluing. In this case the amount of glue necessary to connect this strip 19 to the first part 10 and/or the second part 11 should be as slow as possible in case an organic glue or binder is used. The thickness of the additional strip 19 can be higher than the thickness of the insulation element 3 so that the additional strip 19 is in direct contact with the covering elements 7 thereby giving a higher stability to the fire door 1 with less vibrations of the covering elements 7. To decrease the possible vibrations of the covering elements the additional strip 19 can be connected to the covering elements 7 preferably by gluing.

    [0040] A further embodiment of the insulation element 3 is shown in Fig. 4. This embodiment differs from the embodiment of Fig. 2 by a first strip 22 being designed as an inlay within a prepared opening 23 and consisting of a highly fire resisting material. The opening 23 is arranged in the upper part of the second part 11 of the insulation element 3 as it is well known that in case of a fire the upper part of a fire door 1 is exposed to higher temperatures.

    [0041] In the same way the area where a lock is arranged within the fire door 1 the fire door 1 is because of the lock less fire resistant. Therefore, Fig. 4 shows a further part 24 made of highly fire resistant material and being incorporated into a recess 25 within the second part 11 of the insulation element 3. The recess 25 has a rectangular shape and the part 24 shows an U-form so that the recess 25 is lined with the part 24 of highly fire resistant material. This fire resistant material can of course be made of mineral fibers and/or a certain amount of fire resistant material.

    [0042] Fig. 5 shows the web 17 as a final part of a production of insulation elements made of mineral fibers. This production starts with a not shown cupola furnace in which raw material is molten. The raw material contains at least an energy source like coke and a mineralic material like glass or stone. After the melting process the melt is fiberized and the fibers are collected together with a certain amount of binder depending on the mineralic material to an endless web 17 of which a part is shown in Fig. 5. The web 17 has different characteristics especially in strength with respect to its lengthwise and crosswise direction. The lengthwise direction of the web 17 is shown in Fig. 5 by arrow 26 which lengthwise direction is equal to the conveying direction of the web 17.

    [0043] As the web 17 is limited in its width and as it is necessary for insulation elements 3 to use the homogeneous characteristics of the web 17 in crosswise direction it is preferable to cut the insulation elements 3 perpendicular to the lengthwise direction of the web 17. Depending on the required width of the insulation element 3 with respect to the width of the frame 2 a more or less broader insulation element 3 can be cut from the web 17 having a width being larger than the width of the frame 2 so that the two parts 10, 11 can be moved relative to each other to adjust the insulation element 3 in its length to the length of the frame 2. This method achieves to use insulation elements 3 cut from the web 7 with a certain length which is limited according to the production process of such webs 17 even if the frame 2 of the fire door 1 has a larger length compared to the length of the insulation element 3 which can be adapted to the length of the frame 2.

    [0044] Fig. 5 shows the variable width of the insulation element 3 by arrow 27 and the width of the web 17 by arrow 28. The possible cutting line is shown by a dot-and-dash line 29.

    References



    [0045] 
    1
    fire door
    2
    frame
    3
    insulation element
    4
    hollow space
    5
    element
    6
    element
    7
    covering element
    8
    main surface
    9
    side face
    10
    first part (lower)
    11
    second part (upper)
    12
    abutment
    13
    corner region
    14
    corner region
    15
    broken line
    16
    dot-and-dash line
    17
    web
    18
    part
    19
    additional strip
    20
    broken line
    21
    arrow
    22
    strip
    23
    opening
    24
    part
    25
    recess
    26
    arrow
    27
    arrow
    28
    arrow
    29
    dot-and-dash line



    Claims

    1. Fire barrier for a building, especially a fire door (1), comprising

    - a frame (2) consisting of two parallel elements (5) and two elements (6) being shorter in length than the elements (5) and being arranged perpendicular to the elements (5) and parallel to each other and defining a hollow space (4),

    - at least one insulation element (3) of rectangular shape having two main surfaces (8) being arranged parallel to each other and being connected via side faces (9), and

    - covering elements (7) being arranged parallel to the main surfaces (8) of the insulation element (3),

    - which covering elements (7) are connected to the frame (2),

    - which insulation element (3) is inserted into the hollow space (4),

    - which insulation element (3) is divided into at least two parts (10, 11) along an abutment (12) namely a first part (10) and a second part (11), characterised in that the abutment (12) extends nonparallel to the side faces (9), especially from two corner regions (13, 14) being the connection area of two side faces (9) which corner regions (13,14) are arranged diametrically opposed to each other.


     
    2. Fire barrier according to claim 1, characterized in that the insulation element (3) contains mineral fibers.
     
    3. Fire barrier according to claim 2, whereby the first part (10) and the second part (11) of the insulation element (3) containing mineral fibers having different properties, as for example lengths of the fibers, diameters of the fibers, orientation of the fibers within the first part (10) or the second part (11), binder content with respect to an amount and/or kind of binder, an amount and kind of fire resistant material.
     
    4. Fire barrier according to any preceding claim, characterized in that the insulation element (3) is multi layered.
     
    5. Fire barrier according to any preceding claim, characterized in that the first part (10) and the second part (11) of the insulation element (3) have different bulk densities.
     
    6. Fire barrier according to any preceding claim, characterized in that the first part (10) and the second part (11) of the insulation element (3) are connected via a strip (19) of insulation and/or fire resistant material which may be fixed, especially glued to the first part (10) and/or the second part (11) of the insulation element (3).
     
    7. Fire barrier according to claim 6, characterized in that the strip (19) reinforces the insulation element (3) with respect to its compressive strength.
     
    8. Fire barrier according to claims 1 and 7 wherein the strip (19) is in contact with and preferably connected to the covering elements (7) thereby giving a higher stability with less vibrations to the covering elements (7).
     
    9. Fire barrier according to any preceding claim wherein the second part (11) of the insulation element (3) has a higher bulk density than the first part (10) of the insulation element (3) being the lower part in the fire door (1).
     
    10. Fire barrier according to any preceding claim wherein the second part (11) of the insulation element (3) has a bulk density between 150 kg/m3 and 220 kg/m3, preferably between 165 kg/m3 and 195 kg/m3 and the first part (10) of the insulation element (3) between 80 kg/m3 and 140 kg/m3, preferably between 100 kg/m3 and 130 kg/m3.
     
    11. Fire barrier according to any preceding claim, whereby the abutment (12) between the first part (10) and the second part (11) of the insulation element (3) is arranged perpendicular to the main surfaces (8) of the insulation element (3).
     
    12. Fire barrier according to any preceding claim, whereby the first part (10) and/or the second part (11) of the insulation element (3) contains a strip (22) of higher fire resistant material being arranged parallel to one of the side faces (9).
     
    13. Method for producing a fire barrier of a building according to claim 1, especially for a fire door (1), whereby the insulation element (3) of rectangular shape with two main surfaces (8) being arranged parallel to each other and four side faces (9) being arranged perpendicular to each other and to the main surfaces (8) is made from a continuously produced web (17) of mineral fibers and whereby the insulation element (3) is cut from the web (17) of mineral fibers with its lengthwise direction perpendicular to the lengthwise direction of the web (17) of mineral fibers before the insulation element (3) is divided into a first part (10) and a second part (11) along an abutment (12) extending nonparallel to the side faces (9), especially extending from two corner regions (13, 14) being the connection area of two side faces (9) which corner regions (13,14) are arranged diametrically opposed to each other.
     


    Ansprüche

    1. Feuerbarriere für ein Gebäude, insbesondere eine Brandschutztür (1), umfassend

    - einen Rahmen (2), bestehend aus zwei parallelen Elementen (5) und zwei Elementen (6), die kürzer sind als die Elemente (5) und senkrecht zu den Elementen (5) und parallel zueinander angeordnet sind und einen Hohlraum (4) definieren,

    - mindestens ein Isolierelement (3), das eine rechteckige Form hat, mit zwei parallel zueinander angeordneten Hauptflächen (8), die über Seitenflächen (9) verbunden sind, und

    - Abdeckelemente (7), die parallel zu den Hauptflächen (8) des Isolierelements (3) angeordnet sind,

    - wobei die Abdeckelemente (7) mit dem Rahmen (2) verbunden sind,

    - wobei das Isolierelement (3) in den Hohlraum (4) eingesetzt ist,

    - wobei das Isolierelement (3) entlang eines Stoßes (12) in mindestens zwei Teile (10, 11) unterteilt ist, nämlich einen ersten Teil (10) und einen zweiten Teil (11),

    dadurch gekennzeichnet, dass
    der Stoß (12) sich nichtparallel zu den Seitenflächen (9) erstreckt, insbesondere von zwei Eckbereichen (13, 14), die der Verbindungsbereich von zwei Seitenflächen (9) sind, wobei die Eckbereiche (13, 14) einander diametral gegenüberliegen.
     
    2. Feuerbarriere nach Anspruch 1, dadurch gekennzeichnet, dass das Isolierelement (3) Mineralfasern enthält.
     
    3. Feuerbarriere nach Anspruch 2, wobei der erste Teil (10) und der zweite Teil (11) des Isolierelements (3) Mineralfasern mit unterschiedlichen Eigenschaften enthalten, wie z.B. Länge der Fasern, Durchmesser der Fasern, Orientierung der Fasern innerhalb des ersten Teils (10) oder des zweiten Teils (11), Bindemittelgehalt in Bezug auf eine Menge und/oder Art eines Bindemittels, eine Menge und Art eines feuerfesten Materials.
     
    4. Feuerbarriere nach einem vorhergehenden Anspruch, dadurch gekennzeichnet, dass das Isolierelement (3) mehrschichtig ist.
     
    5. Feuerbarriere nach einem vorhergehenden Anspruch, dadurch gekennzeichnet, dass der erste Teil (10) und der zweite Teil (11) des Isolierelements (3) unterschiedliche Rohdichten aufweisen.
     
    6. Feuerbarriere nach einem vorhergehenden Anspruch, dadurch gekennzeichnet, dass der erste Teil (10) und der zweite Teil (11) des Isolierelements (3) über einen Streifen (19) aus Isoliermaterial und/oder feuerfestem Material verbunden sind, der an dem ersten Teil (10) und/oder dem zweiten Teil (11) des Isolierelements (3) befestigt, insbesondere festgeklebt sein kann.
     
    7. Feuerbarriere nach Anspruch 6, dadurch gekennzeichnet, dass der Streifen (19) das Isolierelement (3) hinsichtlich seiner Druckfestigkeit verstärkt.
     
    8. Feuerbarriere nach den Ansprüchen 1 und 7, wobei sich der Streifen (19) mit den Abdeckelementen (7) in Kontakt befindet und vorzugsweise mit diesen verbunden ist, wodurch den Abdeckelementen (7) eine größere Stabilität mit weniger Vibrationen verliehen wird.
     
    9. Feuerbarriere nach einem vorhergehenden Anspruch, wobei der zweite Teil (11) des Isolierelements (3) eine höhere Rohdichte aufweist als der erste Teil (10) des Isolierelements (3), welcher der untere Teil in der Brandschutztür (1) ist.
     
    10. Feuerbarriere nach einem vorhergehenden Anspruch, wobei der zweite Teil (11) des Isolierelements (3) eine Rohdichte zwischen 150 kg/m3 und 220 kg/m3, vorzugsweise zwischen 165 kg/m3 und 195 kg/m3, und der erste Teil (10) des Dämmelements (3) zwischen 80 kg/m3 und 140 kg/m3, vorzugsweise zwischen 100 kg/m3 und 130 kg/m3 aufweist.
     
    11. Feuerbarriere nach einem vorhergehenden Anspruch, wobei der Stoß (12) zwischen dem ersten Teil (10) und dem zweiten Teil (11) des Isolierelements (3) senkrecht zu den Hauptflächen (8) des Isolierelements (3) angeordnet ist.
     
    12. Feuerbarriere nach einem vorhergehenden Anspruch, wobei der erste Teil (10) und/oder der zweite Teil (11) des Isolierelements (3) einen Streifen (22) aus einem Material mit höherer Feuerfestigkeit enthalten, der parallel zu einer der Seitenflächen (9) angeordnet ist.
     
    13. Verfahren zur Herstellung einer Feuerbarriere eines Gebäudes nach Anspruch 1, insbesondere für eine Brandschutztür (1), wobei das rechteckförmige Isolierelement (3) mit zwei Hauptflächen (8), die parallel zueinander angeordnet sind, und vier Seitenflächen (9), die senkrecht zueinander und zu den Hauptflächen (8) angeordnet sind, aus einer kontinuierlich hergestellten Bahn (17) aus Mineralfasern besteht und wobei das Isolierelement (3) mit seiner Längsrichtung senkrecht zur Längsrichtung der Bahn (17) von der Mineralfaserbahn (17) abgeschnitten wird, bevor das Isolierelement (3) entlang eines Stoßes (12), der sich nichtparallel zu den Seitenflächen (9) erstreckt, insbesondere von den beiden Eckbereichen (13, 14), die der Verbindungsbereich der beiden Seitenflächen (9) sind und die einander diametral gegenüberliegen, in einen ersten Teil (10) und einen zweiten Teil (11) unterteilt wird.
     


    Revendications

    1. Barrière coupe-feu pour un bâtiment, notamment une porte coupe-feu (1), comprenant

    - un cadre (2) constitué de deux éléments parallèles (5) et de deux éléments (6) plus courts en longueur que les éléments (5) et disposés perpendiculairement aux éléments (5) et parallèles entre eux et définissant un espace creux (4),

    - au moins un élément isolant (3) de forme rectangulaire ayant deux surfaces principales (8) disposées parallèlement l'une à l'autre et reliées par des faces latérales (9), et

    - des éléments de recouvrement (7) étant disposés parallèlement aux surfaces principales (8) de l'élément isolant (3),

    - lesquels éléments de recouvrement (7) sont reliés au châssis (2),

    - lequel élément isolant (3) est inséré dans l'espace creux (4),

    - lequel élément isolant (3) est divisé en au moins deux parties (10, 11) le long d'une butée (12), à savoir une première partie (10) et une deuxième partie (11),

    caractérisé en ce que
    la butée (12) s'étend de manière non parallèle aux faces latérales (9), en particulier à partir de deux zones d'angle (13, 14) étant la zone de liaison de deux faces latérales (9), lesquelles zones d'angle (13, 14) sont disposées diamétralement opposées.
     
    2. Barrière coupe-feu selon la revendication 1, caractérisée en ce que l'élément isolant (3) contient des fibres minérales.
     
    3. Barrière coupe-feu selon la revendication 2, la première partie (10) et la deuxième partie (11) de l'élément isolant (3) contenant des fibres minérales ayant des propriétés différentes, comme par exemple la longueur des fibres, le diamètre des fibres, l'orientation des fibres dans la première partie (10) ou la deuxième partie (11), la teneur en liant par rapport à une quantité et/ou une nature du liant, une quantité et une nature du matériau résistant au feu.
     
    4. Barrière coupe-feu selon l'une des revendications précédentes, caractérisée en ce que le matériau isolant (3) est multicouche.
     
    5. Barrière coupe-feu selon l'une des revendications précédentes, caractérisée en ce que la première partie (10) et la deuxième partie (11) de l'élément isolant (3) ont des densités apparentes différentes.
     
    6. Barrière coupe-feu selon l'une des revendications précédentes, caractérisée en ce que la première partie (10) et la deuxième partie (11) de l'élément isolant (3) sont reliées par une bande (19) en matériau isolant et/ou résistant au feu qui peut être fixée, notamment collée sur la première partie (10) et/ou la deuxième partie (11) de l'élément isolant (3).
     
    7. Barrière coupe-feu selon la revendication 6, caractérisée en ce que la bande (19) renforce l'élément isolant (3) par rapport à sa résistance à la compression.
     
    8. Barrière coupe-feu selon les revendications 1 et 7, la bande (19) étant en contact avec l'élément de recouvrement (7) et de préférence reliée à celui-ci, ce qui confère aux éléments de recouvrement (7) une plus grande stabilité avec moins de vibrations.
     
    9. Barrière coupe-feu selon l'une des revendications précédentes, dans laquelle la deuxième partie (11) de l'élément isolant (3) a une densité apparente plus élevée que la première partie (10) de l'élément isolant (3) étant la partie inférieure dans la porte coupe-feu (1).
     
    10. Barrière coupe-feu selon l'une des revendications précédentes, dans laquelle la deuxième partie (11) de l'élément isolant (3) a une densité apparente comprise entre 150 kg/m3 et 220 kg/m3, de préférence entre 165 kg/m3 et 195 kg/m3 et la première partie (10) de l'élément isolant (3) entre 80 kg/m3 et 140 kg/m3, de préférence entre 100 kg/m3 et 130 kg/m3.
     
    11. Barrière coupe-feu selon l'une des revendications précédentes, la butée (12) entre la première partie (10) et la deuxième partie (11) de l'élément isolant (3) étant disposée perpendiculairement aux surfaces principales (8) de l'élément isolant (3).
     
    12. Barrière coupe-feu selon l'une des revendications précédentes, la première partie (10) et/ou la deuxième partie (11) de l'élément isolant (3) contenant une bande (22) en matériau plus résistant au feu étant disposée parallèlement à l'une des faces latérales (9).
     
    13. Procédé de production d'une barrière coupe-feu d'un bâtiment selon la revendication 1, en particulier pour une porte coupe-feu (1), dans lequel l'élément isolant (3) de forme rectangulaire avec deux surfaces principales (8) disposées parallèlement l'une à l'autre et quatre faces latérales (9) disposées perpendiculairement l'une à l'autre et aux surfaces principales (8) est constitué d'une bande (17) de fibres minérales produite en continu et dans lequel l'élément isolant (3) est coupé de la bande (17) de fibres minérales avec sa direction longitudinale perpendiculaire à la direction longitudinale de la bande (17) de fibres minérales avant que l'élément isolant (3) soit divisé en une première partie (10) et une seconde partie (11) le long d'une butée (12) s'étendant de manière non parallèle aux faces latérales (9), s'étendant en particulier à partir de deux zones d'angle (13, 14) étant la zone de raccordement de deux faces latérales (9), lesquelles zones d'angle (13, 14) sont disposées diamétralement opposées l'une à l'autre.
     




    Drawing




















    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description