(19)
(11)EP 2 816 571 B1

(12)EUROPEAN PATENT SPECIFICATION

(45)Mention of the grant of the patent:
16.09.2020 Bulletin 2020/38

(21)Application number: 13197132.7

(22)Date of filing:  13.12.2013
(51)International Patent Classification (IPC): 
H01F 3/12(2006.01)
H01F 38/08(2006.01)
H01F 27/06(2006.01)

(54)

Inductor and electronic device including the same

Induktor und elektronische Vorrichtung damit

Inducteur et dispositif électronique le comprenant


(84)Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30)Priority: 17.06.2013 KR 20130069060

(43)Date of publication of application:
24.12.2014 Bulletin 2014/52

(73)Proprietor: Samsung Electronics Co., Ltd.
Gyeonggi-do 16677 (KR)

(72)Inventor:
  • Kang, Jeong-il
    Gyeonggi-do (KR)

(74)Representative: Taor, Simon Edward William et al
Venner Shipley LLP 200 Aldersgate
London EC1A 4HD
London EC1A 4HD (GB)


(56)References cited: : 
JP-A- S5 443 533
US-A- 4 047 138
US-B1- 8 242 870
US-A- 416 762
US-A1- 2010 156 584
  
      
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description


    [0001] Apparatuses consistent with the exemplary embodiments relate to an inductor and an electronic device including the same. More particularly, the exemplary embodiments relate to an improved inductor which reduces a height of an inductor core and secures current capacity, and an electronic device including the same.

    [0002] Recently, rapid development in semiconductor technology enables high density integration and high performance of semiconductors, and accordingly electronic products, such as mobile phones, notebooks and TVs, have largely become slim and light weight.

    [0003] US 4047138 discloses a ferrite magnetic core including a rectangular outer member with apertures in which the ends of a cylindrical member are retained to ensure a radial air gap, so as to eliminate movement and result in low acoustic noise.

    [0004] US8242870 discloses a magnetic core structure including a core body with a notched region having the cross-sectional shape of a trapezoid and including two notch walls separated by a middle wall.

    [0005] US 416762 discloses an electric inductorium or converter with a hollow frame of iron having a central opening, and a separable core-piece of iron carrying electric coils.

    [0006] A display apparatus includes an image display using a liquid crystal display (LCD), a light emitting diode (LED) and an organic light emitting diode (OLED). As the display apparatus relatively becomes slim with an increasing area of the image display, an installation space for the display apparatus may be minimized, for example, by installing the display apparatus on a wall.

    [0007] To manufacture a slim electronic device, electronic components mounted on a printed circuit board (PCB) to drive the electronic device may need to have a minimized height. FIGS. 1 to 3 illustrate a core of an inductor mounted on a PCB of an electronic device in the related art.

    [0008] As shown in FIG. 1, the core 1 of the inductor is a hollow rectangular body including an upper portion 3, a lateral portion 4, a lower portion 5, and a cylindrical central portion 2, in which a coil is wounded around the central portion 2 to generate magnetic flux.

    [0009] As shown in FIG. 2, in the inductor, the coil 6 is wound around the central portion 2 of the core 1. When an electric current flows into a right side of a coil and out of a left side of the coil, that is, when an electric current flows counterclockwise, as viewed from a top of the core 1, magnetic flux m is formed in the central portion 2 and passes through the central portion 2, the upper portion 3, the lateral portion 4, the lower portion 5 and then back to the central portion 2 as indicated by arrows. A bottleneck phenomenon occurs in an area f where magnetic flux vertically flowing in the central portion 2 curves to the upper portion 3.
    The bottleneck phenomenon of the magnetic flux is determined on a cross-sectional area of the core in which the magnetic flux flows. FIG. 3 is a cross-sectional view, taken along a center of the core 1, in which a cross section a of the central portion 2 and a cross section b of the upper portion 3 are shown as half of their actual sizes.

    [0010] As shown in FIG. 3, the magnetic flux generated in the central portion 2 passes through the cross section a and then the cross section b of the upper portion 3. Here, the cross section b has an area at least equivalent to or larger than the cross section a so that the bottleneck phenomenon of magnetic flux does not occur in the core 1. Thus, in the core of the related art, the upper portion 3 is formed thick so as to increase the area of the cross section b.

    [0011] In the thick inductor core, even a portion of the core where the bottleneck phenomenon does not occur is formed thick which causes an unnecessary waste of materials, raising production costs. Also, the inductor has a greater height, making it difficult to apply the inductor to an electronic device that is slim.

    [0012] An aspect of one or more exemplary embodiments is to reduce a height of an inductor core and to minimize a bottleneck phenomenon of magnetic flux which may occur in the inductor core.

    [0013] Another aspect of one or more exemplary embodiments is to provide an inductor which is installed in a slim electronic device, while securing current capacity.

    [0014] According to an aspect of the invention, there is provided an inductor as set out in claim 1. Preferred features are set out in claims 2 to 9.

    [0015] According to an aspect of the invention, there is provided an electronic device as set out in claim 10.

    [0016] The above and/or other aspects will become apparent and more readily appreciated from the following description of the exemplary embodiments, taken in conjunction with the accompanying drawings, in which:

    FIG. 1 is a cross-sectional view schematically illustrating a core of an inductor of the related art.

    FIGS. 2 and 3 are cross-sectional views of the core which schematically illustrate a path of magnetic flux circulated in the inductor of the related art.

    FIG. 4 is a cross-sectional view which schematically illustrates a core of an inductor according to an example.

    FIGS. 5 and 6 are cross-sectional views of the core which schematically illustrate a path of magnetic flux circulated in the inductor according to an example.

    FIG. 7 is a cross-sectional view which schematically illustrate an inductor core according to an example.

    FIG. 8 is a cross-sectional view which schematically illustrate an inductor core according to an embodiment of the invention.

    FIG. 9 is a block diagram which schematically illustrates a configuration of an electronic device according to an exemplary embodiment.

    FIG. 10 is a cross-sectional view comparing an inductor of the related art and the inductor according to an exemplary embodiment, mounted on a printed circuit board.



    [0017] Hereinafter, an inductor according to exemplary embodiments will be described in detail with reference to the accompanying drawings.

    [0018] FIGS. 4 to 6 illustrate an inductor core and an inductor mounted on a printed circuit board (PCB) of an electronic device according to an example.

    [0019] As shown in FIGS. 4 and 5, the inductor 10 according the examples includes a coil 80 in which an electric current flows and the core 20 which the coil 80 is wound around.

    [0020] The coil 80 is provided to obtain inductance of the inductor 10 and is formed of a wire having good conductivity. The coil 80 is formed by coating the wire with an insulating material and the coil 80 wound in a cylindrical or spiral shape for use.

    [0021] The core 20 includes a central portion 30 which the coil 80 is wound around, extension portions 40 and 60 extending from opposite edges of the central portion 30, and lateral portions 50 formed outside the central portions 30.

    [0022] The central portion 30 is provided in a cylindrical shape in a center of the inductor 10, and the coil 80 is wound around the central portion 30. When an electric current flows in the coil 80 wound around the central portion 30, magnetic flux is generated.

    [0023] Referring to FIG. 5, when the electric current enters a right side of the coil and exits from a left side of the coil based on FIG. 5, that is, when the electric current flows counterclockwise on the coil 80 wound around the central portion 30, viewed from a top of the core 20, the magnetic flux m is formed in the central portion 30 and travels in a vertically upward direction in the central portion 30 as indicated by arrows.

    [0024] The central portion 30 is designed to have a diameter and length which correspond to a desired inductance of the inductor 10. However, the central portion 30 is not limited to the aforementioned form but may have various shapes, for example, a rectangular pillar.

    [0025] The lateral portions 50 extend from the extension portions 40 and 60 and face the central portion 30 with the coil 80 disposed there between. The lateral portions 50 are provided to form a closed circulation path of the magnetic flux m which is formed in the central portion 30 to circulate back to the central portion 30.

    [0026] The portions 40 and 60 are formed in the shape of a rectangular plate which extends from the opposite edges of the central portion 30 and having a predetermined thickness t2. The extension portions 40 and 60, however, are not limited to the foregoing shape but may be formed in various shapes; for example, a circular shape.

    [0027] The extension portions 40 and 60 include a first extension portion 40 formed above the central portion 30 and a second extension portion 60 formed under the central portion 30. The extension portions 40 and 60 respectively include protrusions 42 and 62 which protrude with a larger diameter than the diameter of the central portion 30. The first extension portion 40 and the second extension portion 60 have the same shape, and thus the following description will be made with reference to the first extension portion 40.

    [0028] The magnetic flux m formed in the central portion 30 flows in the first extension portion 40. Here, the magnetic flux m travelling vertically curves in a horizontal direction in an overlapping area of the central portion 30 and the first extension portion 40 and travels in the horizontal direction along the first extension portion 40 radially with respect to the central portion 30.

    [0029] As shown in FIG. 6, a height t1 at a first position of the first extension portion 40 in contact with an edge of the central portion 30 is larger than a height t2 at a second position spaced away from the edge of the central portion 30 by a predetermined distance which is longer than the first position. That is, the protrusion 42 is formed with a height which becomes shorter from a center of the central portion 30 to the lateral portions 50.

    [0030] Thus, a height t1 of a first cross section b formed by vertically cutting from the edge of the central portion 30, that is, a boundary between the central portion 30 and the first extension portion 40, to an outside of the protrusion 42 is larger than a height t2 of a second cross section c having a predetermined radius r2 in an area of the first extension portion 40 where the protrusion 42 is not formed.

    [0031] The magnetic flux m travelling vertically (i.e. along the axis of the central portion) in the central portion 30 curves in the horizontal direction in the first cross section b. Magnetic flux through a surface is proportionate to a number of magnetic field lines passing through that surface. Thus, when the first cross section b has a smaller area than a cross-sectional area of the central portion 30, the magnetic flux m formed in the central portion 30 becomes concentrated in the first cross section b having the smaller area, causing a bottleneck phenomenon. To reduce the bottleneck phenomenon, the area of the first cross section b is at a predetermined level or higher. The area of the first cross section b may be at least equivalent to or larger than the cross-sectional area a of the central portion 30.

    [0032] In particular, the bottleneck phenomenon in the core 20 is determined, based on a cross-sectional area of the core 20 in which the magnetic flux m flows. FIG. 6 is a cross-sectional view formed by cutting across a center of the core 20. In FIG. 6, a cross section a of the central portion 30 and the first cross section b and the second cross section c of the first extension portion 40 are half of their actual sizes. Although FIG. 6 shows half of the cross sections, the following description will be made with reference to actual cross-sectional areas.

    [0033] As the central portion 30 has a circular cross section, the magnetic flux formed on the circular cross section travels radially from the central portion 30 in the first extension portion 40. Thus, as shown in FIG. 6, the magnetic flux m formed on the cross section of the central portion 30 passes through an area in a circular band shape, such as the first cross section b and the second cross section c of the first extension portion 40.

    [0034] The central portion 30 has a radius of ri, the area of the cross section a is πr12 and the area of the first cross section b where the magnetic flux curves to the first extension portion 40 is 2πr1t1. To reduce the bottleneck phenomenon of magnetic flux, the area of the first cross section b is at least equivalent to or larger than the area of the cross section a of the central portion 30. That is, to satisfy πr12 ≤ 2πr1t1, the height t1 of the first cross section b is equivalent to or larger than half of the radius r1 of the central portion 30.

    [0035] As the second cross section c is the radius r2 from the center of the central part 30 and has the height t2, the area of the second cross section c is 2πr2t2. Thus, since the area thereof is also proportionally large, the bottleneck phenomenon of magnetic field does not occur without increasing the height thereof as in the first cross section b.

    [0036] Similarly to the first extension portion 40, the second extension portion 60 may be involved in the bottleneck phenomenon of magnetic flux on a boundary with the central portion 30, since the magnetic flux m passing through the lateral portions 50 curves back to the central portion 30. Thus, the protrusion 62 may be provided on the second extension portion 60 in the same manner as on the first extension portion 40.

    [0037] The second extension portion 60 includes a connection terminal 70 mounted on the PCB and electrically connectable thereto.

    [0038] The core 20 is not limited to the foregoing shape but may be formed for resolving the bottleneck phenomenon of magnetic flux such that a vertical side through which magnetic flux passes along the circulation path of the magnetic flux has a uniform area across the core 20.

    [0039] A pair of cores 20 may be provided in a form such that upper and lower portions formed by horizontally cutting across the center of the core 20 have the same form. FIG. 7 is a cross-sectional view which schematically illustrates an inductor core according to another example.

    [0040] As shown in FIG. 7, the core 100 may include a body 110 having an E-shaped cross section and a base 120 combined with a lower portion of the body 110.

    [0041] The body 110 includes a central portion 111 in a cylindrical shape that a coil is wound around, an upper portion 112 which extends from an upper portion of the central portion 111 and a lateral portion 113 which extends from an end of the upper portion 112 and disposed outside the central portion 111 to encompass the central portion 111.

    [0042] The upper portion 112 includes a protrusion 114 that protrudes outwards with a larger diameter than a diameter of the central portion 111 to prevent a bottleneck phenomenon of the magnetic field.

    [0043] The base 120 is formed in the same shape as the upper portion 112 and combined with a lower portion of the body 110. The base 120 includes a protrusion 124 which protrudes outwards in the same manner as the upper portion 112. This structure enables magnetic flux generated in the central portion 111 to form a closed circulation path, traveling through the upper portion 112, the lateral portion 113 and the base 120 and then back to the central portion 111.

    [0044] FIG. 8 is a cross-sectional view which schematically illustrates an inductor core with a different shape of a protrusion, according to an exemplary embodiment.

    [0045] As shown in FIG. 8, the core 200 includes a central portion 220 that is provided in a cylindrical shape in a center of the inductor and that a coil is wound there around, extension portions 230 and 250 which extend from opposite edges of the central portion 220 and have a predetermined thickness, and lateral portions 240 which extend from the extension portions 230 and 250 and disposed outside the central portion 220.

    [0046] The extension portions 230 and 250 may respectively include protrusions 232 and 252 which protrude outwards to enable magnetic flux generated in the central portion 220 to smoothly travel without generation of the bottleneck phenomenon.

    [0047] The protrusions 232 and 252 are provided to increase an area of only a region where a bottleneck phenomenon of magnetic flux occurs and are formed in a ring shape having the same diameter as that of the central portion 220 and predetermined internal and external thicknesses. With this structure, a bottleneck phenomenon of magnetic flux may be resolved while minimizing materials of the core 200.

    [0048] A pair of cores 200 may be provided in a form such that upper and lower portions formed by horizontally cutting across the center of the core 200 have the same shape.

    [0049] Also, the core 200 may have a base in the same manner as the core 100 of FIG. 7.

    [0050] FIG. 9 is a block diagram which schematically illustrating a configuration of an electronic device 300 according to an example.

    [0051] As shown in FIG. 9, the electronic device 300 includes a communicator 310 configured to receive a data signal from the outside, a driver 350 configured to perform a preset operation which corresponds to the signal received through the communicator 310, a storage 340 configured to store information needed for the operation of the driver 350 and a program, a display 330 configured to display an image, and a power circuit 360 configured to be supplied with external power to supply power needed for driving the foregoing components.

    [0052] The inductor according to the exemplary embodiment may be mounted on a PCB of the power circuit 360 or the driver 350. Here, the inductor may be formed with a minimized height, securing output capacity, thereby being applied to the electronic device 300 which is manufactured to be slim.

    [0053] FIG. 10 is a cross-sectional view which comprises a inductor 1 of the related art and the inductor 10 according to an exemplary embodiment which has the same capacity and is mounted on PCBs 90.

    [0054] As shown in FIG. 10, the inductor 1 of the related art is formed with upper and lower portions having a sufficiently thick height to prevent a bottleneck phenomenon of magnetic flux.

    [0055] The inductor 10 according to the exemplary embodiment includes protrusions 42 and 62 formed at upper and lower portions of the core only in an area where a bottleneck phenomenon occurs so as to prevent a bottleneck phenomenon of magnetic flux.

    [0056] In addition, a hole 92 into which the lower protrusion 62 is inserted is provided on the PCB 90. When the inductor 10 is mounted on the PCB 90, the lower protrusion 62 is inserted into the hole 92 and an area where the protrusion 62 is not formed rests on PCB 90.

    [0057] With this structure, a mounted height of the inductor 10 may be reduced by h as compared with a mounted height of the inductor 1 in the related art.

    [0058] Although a few exemplary embodiments have been shown and described, it will be appreciated by those skilled in the art that changes may be made in these exemplary embodiments without departing from the principles of the invention, the scope of which is defined in the appended claims.


    Claims

    1. An inductor (10) comprising:

    a coil (80) in which an electric current is configured to flow; and

    a core (200) that the coil is wound around;

    wherein the core comprises:

    a central portion (30, 111, 220), which extends along an axis in a first direction, that the coil is wound around;

    extension portions (230, 250) which are in direct contact with the central portion and which extend from opposite edges of the central portion according to a circulation path of magnetic flux generated by the electric current of the coil; and

    lateral portions (240) which extend from the extension portions along the circulation path of the magnetic flux and facing the central portion with the coil disposed there between; and

    wherein an extension portion (230, 250) comprises a protrusion (232, 252) that forms a ring shape around an edge of the central portion such that a first height at a first position of the extension portion on the circulation path of the magnetic flux spaced away from the edge of the central portion by a first distance is larger than a second height at a second position on the circulation path of the magnetic flux spaced away from the edge of the central portion by a second distance which is longer than the first distance


     
    2. The inductor of claim 1, wherein the protrusion (232) overlaps the edge of the central portion.
     
    3. The inductor of any one of claims 1 to 2, wherein at the first position the extension portion has a predetermined thickness in the first direction so that a bottleneck phenomenon of the magnetic flux is not generated at the first position.
     
    4. The inductor of claim 3, wherein the predetermined thickness of the extension portion is equivalent to or larger than half of a radius (r1) of the central portion.
     
    5. The inductor of one of claims 1 to 4, wherein a thickness, in the first direction, of the extension portions at the first position is larger than a thickness of the extension portions at the second position.
     
    6. The inductor of one of claims 1 to 5, wherein the core is configured such that a cross sectional area of the lateral portions does not change in the first direction, and a cross sectional area of the central portion does not change in the first direction.
     
    7. The inductor of one of claims 1 to 6, wherein the extension portions comprise a first extension portion (40) formed on one side the central portion and a second extension portion (60) formed on an opposite side of the central portion, wherein the second extension portion comprises a connection terminal (70) mounted on a printed circuit board (90) and electrically connected thereto.
     
    8. The inductor of claim 7, wherein at least one of the first extension portion and the second extension portion comprises a protrusion extending from one side thereof such that a thickness in the first direction at the first position is larger than a thickness in the first direction at the second position.
     
    9. The inductor of claim 8, wherein the printed circuit board comprises a hole (92) into which the protrusion is inserted.
     
    10. An electronic device (300) comprising:

    a printed circuit board (90) on which an electronic component configured to drive the electronic device is mounted; and

    an inductor (10) mounted on the printed circuit board,

    wherein the inductor is according to any one of claims 1 to 9.


     


    Ansprüche

    1. Induktor (10), der Folgendes umfasst:

    eine Spule (80), die so konfiguriert ist, dass ein elektrischer Strom in ihr fließt, und

    einen Kern (200), um den die Spule gewickelt ist,

    wobei der Kern Folgendes umfasst: einen mittleren Abschnitt (30, 111, 220), der in einer ersten Richtung eine Achse entlang verläuft und um den die Spule gewickelt ist,

    Verlängerungsabschnitte (230, 250), die direkt mit dem mittleren Abschnitt verbunden sind und von gegenüberliegenden Rändern des mittleren Abschnitts aus einem Flusskreis eines Magnetflusses entsprechend verlaufen, der durch den elektrischen Strom der Spule erzeugt wird, und

    seitliche Abschnitte (240), die von den Verlängerungsabschnitten aus den Flusskreis des Magnetflusses entlang verlaufen und dem mittleren Abschnitt zugewandt sind, wobei die Spule dazwischen angeordnet ist, und

    wobei ein Verlängerungsabschnitt (230, 250) einen Vorsprung (232, 252) umfasst, der um einen Rand des mittleren Abschnitts herum eine Ringform bildet, so dass eine erste Höhe an einer ersten Stelle des Verlängerungsabschnitts an dem Flusskreis des Magnetflusses, die in einem ersten Abstand von dem Rand des mittleren Abschnitts entfernt liegt, größer ist als eine zweite Höhe an einer zweiten Stelle an dem Flusskreis des Magnetflusses, die in einem zweiten Abstand von dem Rand des mittleren Abschnitts entfernt liegt, der größer ist als der erste Abstand.


     
    2. Induktor nach Anspruch 1, wobei der Vorsprung (232) den Rand des mittleren Abschnitts überlappt.
     
    3. Induktor nach einem der Ansprüche 1 und 2, wobei der Verlängerungsabschnitt an der ersten Stelle in der ersten Richtung eine vorgegebene Dicke aufweist, so dass an der ersten Stelle kein Bottleneck-Effekt im Magnetfluss entsteht.
     
    4. Induktor nach Anspruch 3, wobei die vorgegebene Dicke des Verlängerungsabschnitts mindestens der Hälfte eines Radius (r1) des mittleren Abschnitts entspricht.
     
    5. Induktor nach einem der Ansprüche 1 bis 4, wobei eine Dicke der Verlängerungsabschnitte an der ersten Stelle in der ersten Richtung größer ist als eine Dicke der Verlängerungsabschnitte an der zweiten Stelle.
     
    6. Induktor nach einem der Ansprüche 1 bis 5, wobei der Kern so konfiguriert ist, dass sich eine Querschnittsfläche der seitlichen Abschnitte in der ersten Richtung und eine Querschnittsfläche des mittleren Abschnitts in der ersten Richtung nicht ändert.
     
    7. Induktor nach einem der Ansprüche 1 bis 6, wobei die Verlängerungsabschnitte einen ersten Verlängerungsabschnitt (40), der an einer Seite des mittleren Abschnitts gebildet ist, und einen zweiten Verlängerungsabschnitt (60) umfassen, der an einer gegenüberliegenden Seite des mittleren Abschnitts gebildet ist, wobei der zweite Verlängerungsabschnitt eine Verbindungsklemme (70) umfasst, die auf eine Leiterplatte (90) montiert und elektrisch daran angeschlossen ist.
     
    8. Induktor nach Anspruch 7, wobei der erste oder/und der zweite Verlängerungsabschnitt einen Vorsprung umfasst, der von einer Seite davon aus so verläuft, dass eine Dicke in der ersten Richtung an der ersten Stelle größer ist als eine Dicke in der ersten Richtung an der zweiten Stelle.
     
    9. Induktor nach Anspruch 8, wobei die Leiterplatte ein Loch (92) umfasst, in das der Vorsprung eingeführt ist.
     
    10. Elektronische Vorrichtung (300), die Folgendes umfasst:

    eine Leiterplatte (90), an die ein elektronisches Bauelement montiert ist, das so konfiguriert ist, dass es die elektronische Vorrichtung antreibt, und

    einen Induktor (10), der auf die Leiterplatte montiert ist,

    wobei der Induktor einem der Ansprüche 1 bis 9 entspricht.


     


    Revendications

    1. Inducteur (10) comprenant :

    une bobine (80) où un courant électrique est configuré pour circuler ; et

    un noyau (200) autour duquel la bobine est enroulée ;

    le noyau comprenant :

    une partie centrale (30, 111, 220), qui s'étend suivant un axe dans une première direction, et autour de laquelle la bobine est enroulée ;

    des parties d'extension (230, 250) qui sont en contact direct avec la partie centrale et qui s'entendent depuis des bords opposés de la partie centrale selon un chemin de circulation d'un flux magnétique généré par le courant électrique de la bobine ; et

    des parties latérales (240) qui s'étendent depuis les parties d'extension suivant le chemin de circulation du flux magnétique et en regard de la partie centrale avec la bobine disposée entre elles ; et

    une partie d'extension (230, 250) comprenant une protubérance (232, 252) qui forme une forme d'anneau autour d'un bord de la partie centrale, de sorte qu'une première hauteur à une première position de la partie d'extension sur le chemin de circulation du flux magnétique, espacée du bord de la partie centrale d'une première distance, soit plus grande qu'une seconde hauteur à une seconde position sur le chemin de circulation du flux magnétique, espacée du bord de la partie centrale d'une seconde distance qui est plus longue que la première distance.


     
    2. Inducteur selon la revendication 1, dans lequel la protubérance (232) chevauche le bord de la partie centrale.
     
    3. Inducteur selon l'une quelconque des revendications 1 et 2, dans lequel, à la première position, la partie d'extension a une épaisseur prédéterminée dans la première direction de sorte qu'un phénomène de goulot d'étranglement du flux magnétique ne soit pas généré à la première position.
     
    4. Inducteur selon la revendication 3, dans lequel l'épaisseur prédéterminée de la partie d'extension est équivalente ou supérieure à la moitié d'un rayon (r1) de la partie centrale.
     
    5. Inducteur selon l'une des revendications 1 à 4, dans lequel une épaisseur, dans la première direction, des parties d'extension à la première position est supérieure à une épaisseur des parties d'extension à la seconde position.
     
    6. Inducteur selon l'une des revendications 1 à 5, dans lequel le noyau est configuré de sorte qu'une section transversale des parties latérales ne varie pas dans la première direction et qu'une section transversale de la partie centrale ne varie pas dans la première direction.
     
    7. Inducteur selon l'une des revendications 1 à 6, dans lequel les parties d'extension comprennent une première partie d'extension (40) formée sur un côté de la partie centrale et une seconde partie d'extension (60) formée sur un côté opposé de la partie centrale, la seconde partie d'extension comprenant une borne de connexion (70) montée sur une carte de circuit imprimé (90) et connectée électriquement à celle-ci.
     
    8. Inducteur selon la revendication 7, dans lequel la première partie d'extension et/ou la seconde partie d'extension comprennent une protubérance s'étendant depuis un côté correspondant de sorte qu'une épaisseur dans la première direction à la première position soit plus grande qu'une épaisseur dans la première direction à la seconde position.
     
    9. Inducteur selon la revendication 8, dans lequel la carte de circuit imprimé comprend un trou (92) dans lequel la protubérance est insérée.
     
    10. Dispositif électronique (300), comprenant :

    une carte de circuit imprimé (90) sur laquelle est monté un composant électronique configuré pour commander le dispositif électronique ; et

    un inducteur (10) monté sur la carte de circuit imprimé,

    l'inducteur étant selon l'une quelconque des revendications 1 à 9.


     




    Drawing



































    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description